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Invariance
[ —

@ The appearance of an object (in terms of pixels) changes considerably

under changes of pose, illumination, clutter, and occlusions.

& Two instance of the same category may have widely differing shapes and

appearances
» An airliner and a fighter plane, a person standing and another one kneeling,...

@ Template-based methods are doomed because the number of templates
necessary to cover the space of variations grows exponentially with the

number of dimensions of the variations.

Yann LeCun t New York University



Generic Object Recognition
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& Generic Object Recognition is the problem of detecting and _
classifying objects into generic categories such as “cars”, s "'IE

29 ¢ 29 ¢¢

“trucks”, “airplanes”, “animals”, or “human figures”

il Appearances are highly variable within a category because ﬁ&’ f
of shape variation, position in the visual field, scale, viewpoint,
illumination, albedo, texture, background clutter, and occlusions. — sege uﬂ:f

& Learning invariant representations is key.

- Understanding the neural mechanism behind invariant \ i

recognition is one of the main goals of Visual Neuroscience. .

Yann LeCun

t New York University
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hat we want to achieve
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i@ recognition from shape:

color, texture, and
distinctive local features
may be useful, but they
merely allow us to sweep
the real problems under the
rug.

@ Full invariance to
viewpoint, illumination,

clutter, occlusions.

Yann LeCun t New York University



Occlusions
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Foom= 1.0, Threshold= -1 .E:. filter on
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Thrs= 0.5, f on , 05=40, nwin=23616 Thrs= 0.3, T on , 0s5=40, nwin=23616

Thrs= 0.5, f on , 05=40, nwin=23616 Thrs= 0.5, f on 05=10, nwin=23616
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The NYU Object Recognltlon Benchmark (NORB Dataset)

@ 50 toys belonging to 5 categories: animal, human figure, airplane, truck, car
i 10 instance per category: 5 instances used for training, 5 instances for testing
i@ Raw dataset: 972 stereo pair of each object instance. 48,600 image pairs total.

'; For each instance:

il 18 azimuths it % s ﬁ A \g Q’ o m
- . | p o
;) :;22;) degrees every 20 3’_ ;E_ 'ﬂ 5 1 ﬁ'&/ E @ i{ @

Ia 9 elevations

il 30 to 70 degrees from W % ;4 iﬁ } Oﬁ ‘= }& ‘j‘ %

horizontal every 5 degrees | - . )
igl 6 illuminations % ‘ % N w \ St ‘ N %

il on/off combinations of 4 n - - %
lights \ \n \a \.a 2
il 2 cameras (stereo)

il 7.5 cm apart Training instances Test instances
i 40 cm from the object

Yann LeCun
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Data Collection, Sample Generation

Objects are painted green so that:
- all features other than shape are removed

- objects can be segmented, transformed,

and composited onto various backgrounds
Original image Object mask

Shadow factor Composite image

Yann LeCun t New York University
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Samples showing the 6 different illuminations for 2 different elevations

Yann LeCun t New York University



and Cluttered Datasets
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omputational Models of Object Recognition
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@@ Detecting features at interest points

(Schmid, Perona, Ponce, Lowe) versus

detecting them everywhere (LeCun,
Ullman).

¥ Fixed features (Gabor, SIFT, Shape
Context...), versus learned features

& Many sparse/selective features /

(Ullman's fragments) versus few

dense/broad features (features that are
“on”” half the time).

@@ Selection from lots of simple features
(Viola/Jones), vs tuning/optimization
of a small number of features.

& Bag of features vs spatial relationships
N

Yann LeCun t New York University




m,

What Architecture, what training?
| —

& Selection of “patch” features (Schmid,
Ullman, Ponce, Perona,.....), versus
optimization of non-template features.

¥ “heuristic” feature selection (e.g. Using
mutual information) versus learning the
features by optimizing a global
performance measure.

i Piecemeal training of feature and model,
versus global training of the whole

system

@ 2-layer feature+model (almost

everyone), versus hierarchical/multi-
level (LeCun, Riesenhuber, Geman,

Ullman)

@ Generative (Perona, Amit, Freeman),

versus discriminative (LeCun, Viola)
Yann LeCun

t New York University
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Convolutlonal Network
| SESSE———

i@ Hierarchical/multilayer: features get progressively more global, invariant, and numerous
i dense features: features detectors applied everywhere (no interest point)
i@ broadly tuned (possibly invariant) features: sigmoid units are on half the time.

i@ Global discriminative training: The whole system is trained “end-to-end” with a gradient-

based method to minimize a global loss function

i@ Integrates segmentation, feature extraction, and invariant classification in one fell swoop.

Yann LeCun t New York University
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Convolutlonal Network

L 3
ayet . A Layer 6
24@18x18 ayer
Stereo Layer 1 . Layer 5 Fully
. Layer 2 24@6x6
input 8@92x92 100 connected
8@23x23
2@96x96 (500 weights)

/v

4x4
5x5 - 353
; convolution X
convolution subsampling _convolution
(96 kernels) subsampling
(16 kernels) (2400 kernels)

¥ 90,857 free parameters, 3,901,162 connections.

il The architecture alternates convolutional layers (feature detectors) and subsampling layers

(local feature pooling for invariance to small distortions).
i@ The entire network is trained end-to-end (all the layers are trained simultaneously).

i A gradient-based algorithm is used to minimize a supervised loss function.
Yann LeCun t New York University
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Alternated Convolutions and Subsampling
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Averaging

Multiple
convolutions

subsampling
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i@ Local features are extracted

Foom= 0.6, Thres= -1.0, f on , os=40, ny

=
i
s

everywhere.

ML
SEE

@ averaging/subsampling layer
builds robustness to variations in

feature locations.

@ Hubel/Wiesel'62, Fukushima'71,
LeCun'89, Riesenhuber &
Poggio'02, Ullman'(2,....

Yann LeCun



Experiment 1: Normalized-Uniform Dataset
| — R ———

& Normalized-Uniform Dataset: 972 stereo pair of each object instance (18

azimuths X 9 elevations X 6 illuminations).
¥ 5 categories. 5 instances/category for training, 5 instances/category for testing
& 24,300 stereo pairs for training, 24,300 for testing

¥ Objects are centered and size-normalized so all the views of each object instance
fits in an 80x80 pixel window.

¥ Objects are placed on uniform backgrounds (one for each of the 6 illuminations) of
size 96x96 pixels

¥ Each sample is composed of two 96x96 images

Yann LeCun

t New York University
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‘Experiment 1: Normalized-Uniform Dataset
|

& 2 &1 %8 % &4
& W R A S N
YNVISY V=¥

Training instances Test instances
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'Experiment 1: Normalized-Uniform Set: Representations
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i@ 1 - Raw Stereo Input: 2 images 96x96 pixels input dim. = 18432
¥ 2 - Raw Monocular Input:1 image, 96x96 pixels input dim. = 9216
¥ 3 — Subsampled Mono Input: 1 image, 32x32 pixels input dim = 1024

W

il 4 — PCA-95 (EigenToys): First 95 Principal Comionents input dim. =9
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Experiment 1: Normalized-Uniform Set: Error Rates

& Linear Classifier on raw stereo images: 30.2% error.

@@ K-Nearest-Neighbors on raw stereo images: 18.4% error.

& K-Nearest-Neighbors on PCA-95: 16.6 % error.
& Pairwise SVM on 96x96 stereo images: 14.1% error
& Pairwise SVM on 48x48 stereo images: 12.5% error
& Pairwise SVM on 32x32 stereo images: 11.8% error.

& Pairwise SVM on 48x48 monocular images: 13.9% error.
& Pairwise SVM on 32x32 monocular images: 12.6% error.
@@ Pairwise SVM on 95 Principal Components 13.3% error.
@@ Convolutional Net on 32x32 stereo images: 11.3% error.
& Convolutional Net on 48x48 stereo images:  8.7% error.

& Convolutional Net on 96x96 stereo images: 6.6 % error.

Yann LeCun t New York University



& K-NN and SVM with Gaussian kernels are based on matching global templates
@ Both are “shallow” architectures

@ There is now way to learn invariant recognition tasks with such naive architectures

(unless we use an impractically large number of templates).

Output
i@ The number of necessary templates grows
exponentially with the number of dimensions Linear
of variations. Combinations

@ Global templates are in trouble when the

. e . . Features (similarities)
variations include: category, instance shape,

configuration (for articulated object),

Global Template Matchers
position, azimuth, elevation, scale,

(each training sample is a template

illumination, texture, albedo, in-plane

rotation, background luminance, background

texture, background clutter, .....




Experiment 2: Jittered-Cluttered Dataset

M“,Q‘ e

¥ 291,600 training samples, 58,320 test samples

& Convolutional Net with binocular input: 7.8% error
& Convolutional Net + SVM on top: 5.8% error
& Convolutional Net with monocular input: 20.8% error
& Smaller mono net (DEMO): 26.0% error

& Dataset available from http://www.cs.nyu.edu/~yann

Yann LeCun t New York University
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Building a Detector/Recognizer: Replicated Conyv. Nets
| S — AR lad—

= output: 3x3

96x96

input:120x120

¥ Traditional Detectors/Classifiers must be applied to every
location on a large input image, at multiple scales.

¥ Convolutional nets can replicated over large images very
cheaply.

¥ The network is applied to multiple scales spaced by 1.5.

Yann LeCun t New York University



Replicated Convolutional Nets

—

i Computational cost for replicated convolutional net:
i 96x96 -> 4.6 million multiply-accumulate operations
i 120x120 -> 8.3 million multiply-accumulate operations
il 240x240 -> 47.5 million multiply-accumulate operations
il 480x480 -> 232 million multiply-accumulate operations

& Computational cost for a non-convolutional detector of the
same size, applied every 12 pixels:

i 96x96 -> 4.6 million multiply-accumulate operations

il 120x120 -> 42.0 million multiply-accumulate operations
il 240x240 -> 788.0 million multiply-accumulate operations
i 480x480 -> 5,083 million multiply-accumulate operations

< — 96x96 window
< 12 pixel shift

84x84 overlap




[Examples (Monocular Mode)

Zoom= 0.6, Thres=-1.0, f on , 05=40, nv Zoom= 0.6, Thres= -1.0, f on , 05=40, nv Zoom= 0.6, Thres= -1.0, f on , 05=40, nv
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Learned Features
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Examples (Monocular Mode)

Yann LeCun t New York University
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Examples (Monocular Mode)
|~

Yann LeCun t New York University



————— e —

Examples (Monocular Mode)

Yann LeCun t New York University



Examples (Monocular Mode)
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Examples (Monocular Mode)
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Foom= 1.0, Threshold= -1 .E:. filter on

Yann LeCun t New York University
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xamples (Monocular Mode)

ENE

Zoom=_0.7, Threshold= -1.5, filter on

£
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Natural Images (Monocular Mode)
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Thrs= 0.5:. f on , 05=40, hwin=23616 Thrs= 0.5, f on , 05=40, nwin=23616
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Natural Images (Monocular Mode)

Thrs= 0.5, f on , 05=40, nwin=23616 Thrs=_ 0.5, f on , 05=40, nwin=23616 Thrs= 0.5, f on , 0s=40, nwin=23616

Thrs= 0.3, f on , 05=40, nwin=23616 . ; : Thrs= 0.3, f on , 05=40, nwin=23616 Thrs= 0.5, f on , 0s=40, hwin=23616
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Natural Images (Monocular Mode)

Thrs=_ 0.5, f on , 05=40, nwin=23616 Thrs= 0.3, T on , 05=40, nwin=23616
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Thrs= 0.3, f on , 0s5=40, nwin=23616 Thrs= 0.5, f on , 05=40, hwin=23616
i
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EBM w1th Latent Varlable for Pose Invariance

maxx,x-,

EBM Architecture for invariant object recognition

i transformable energy
image X . feature feature shiact wodel class 1
(input) extractor v e
switch
ener
z transformable anergy selector)
;P lu:tn;nt object model a:las 5 2
class 2
variable) —

category Y ] [Tiee ot
{output)

Each object model matches the output of the feature extractor to a reference
representation that is transformed by the pose parameters.
Inference finds the category and the pose that minimize the energy.

Yan
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EBM with a latent pose variable
| R —

[LeCun, Huang, AlStats 2005]

2@96x96 8

\
\Smsﬁlq

& Mapping inputs to “shape manifolds”

azimuth+elevation .
@ One manifold per category 9-D shape space

i Each manifold is a 2-D half sphere embedded in a 9-D space

i 2 latent variables parameterize position on the manifold (azimuth @

and elevation).

& Loss function: pulls the network output toward manifold of
deesird class, and repel from manifolds of non-desired classes.

@@ Result on uniform set: 5.1% error (vs 6.6 %)

Yann LeCun t New York University



Cl: feature
maps 8@ 828

C3: f. maps
20@10x10
S1: f. maps 54: f. maps

12 200 :151:5 C5: 120
8@ 1ld4x14 = Qutput:

E (Y,Z,X)
w

conmectio
Lonvolutions . <

il .Training: 52,850, 32x32 grey-level G (X)—F(2) T
images of faces, 52,850 non-faces.
GW(XV F(Z)
& Each training image was used 5 times .
with random variation in scale, in-plane convolutional ana?ytmal
W mapping onto
rotation, brightness and contrast. network . :
(p aram) A ace lgamfold
il 2" phase: half of the initial negative set . I
was replaced by false positives of the X y4 Y

initial version of the detector .

(image) | |(pose) | |(label)

Yann LeCun t New York University
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Facke Detection: Results

B
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Data Set->| TILTED PROFILE MIT+CMU

Fal se positives per image->

4.42

26.9

0.47

3.36

0.5

1.28

Our Detector

90%

97%

6/%

83%

83%

88%

Jones & Viola (tilted)

90%

95%

Jones & Viola (profile)

/0%

83%

Yann LeCun




»ace Detection: Results

4 GOOSSENS -N-APAMS
OTLiB - COUTELIS=SOoLE
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Handwriting Recognition

[. majps L. maps
1e@ioxio  Lm
leature maps G 16555

INPUT Bizibxll (. maps
BE14x14

g : 2 o £ g ¢
@ Network: 400,000 connections, 60,000 parameters S

@ Input: 32x32 pixels
& Dataset: MNIST: 60,000 handwritten digits for training, 10,000 for testing.
& Results: 0.8% error on test set

& Simard et al. recently obtained 0.4% error with a similar architecture

Yann LeCun t New York University
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Handwriting Recognition
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"TV sport categorization (with Alex Niculescu, Cornell)

& Classifying TV sports snapshots into 7 categories: auto racing, baseball,

basketball, bicycle, golf, soccer, football.
& 123,900 training images (300 sequence with 59 frames for each sport)
& 82,600 test images (200 sequences with 59 frames for each sport)

& Preprocessing: convert to YUV, high-pass filter the Y component, crop,

subsample to 72x60 pixels

@@ Results:

» frame-level accuracy: 61% correct
» Sequence-level accuracy 68% correct (simple voting scheme).

Yann LeCun t New York University



TV sport categorization (with Alex Niculescu, Cornell)
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Learnlng an Invarlant D1$Slmllar1ty Metric Wlth EBMs
S E— .

[Chopra, Hadsell, LeCun CVPR 2005] E(W, Xl X2)
P Training a parameterized, invariant dissimilarity metric | I GW(XI) Gw(X2)l I

may be a solution to the many-category problem.

@ Find a mapping Gw(X) such that the Euclidean distance
IGw(X1)- Gw(X2)Il reflects the “semantic” distance between
X1 and X2.

i Once trained, a trainable dissimilarity metric can be used to
classify new categories using a very small number of

training samples (used as prototypes).

@ This is an example where probabilistic models are too

constraining, because we would have to limit ourselves to

models that can be normalized over the space of input pairs.

& With EBMs, we can put what we want in the box (e.g. A
convolutional net).

& Siamese Architecture

i Application: face verification/recognition

Yann LeCun t New York University



earning an Invariant Dissimilarity Metric with EBMs

]

Siames=a Cost Function

E(W,)il,XZ)
Il Gw(X1D)-Gw(X2)ll

_T

Gw(X1) Gw(X2)

&
X# X2
& Siamese models: distance between the outputs of two

identical copies of a model.

@ E(W.X1,X2) = IGW(X1)-Gw(X2)Il

i If X1 and X2 are from the same category, train the two

eldidean detance

copies of the model to produce similar outputs

il If X1 and X2 are from different categories, train the two

copies of the model to produce different outputs

i Loss function: square-exponential loss:

2
LW, Y, X1, X3) = (1=Y ) 5 (| Gao( X1) = Go(Xo) )2+ 2Re™ KX

Yann LeCun ¢ New York Univers
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ts: AT&T/ORL

® The AT&T/ORL dataset

* Total subjects: 40. Images per subject: 10. Total images: 400.

* Images had a moderate degree of variation in pose, lighting, expression and head position.

* Images from 35 subjects were used for training. Images from 5 remaining subjects for testing.
®* Training set was taken from: 3500 genuine and 119000 impostor pairs.

* Test set was taken from: 500 genuine and 2000 impostor pairs.

* http://www.uk.research.att.com/facedatabase.html

Dataset

Yann LeCun t New York University



Face Verification datasets: AR/Purdue dataset

®* The AR/Purdue dataset
* Total subjects: 136. Images per subject: 26. Total images: 3536.

* Each subject has 2 sets of 13 images taken 14 days apart.

* Images had very high degree of variation in pose, lighting, expression and position. Within each set
of 13, there are 4 images with expression variation, 3 with lighting variation, 3 with dark sun glasses
and lighting variation, and 3 with face obscuring scarfs and lighting variation.

* Images from 96 subjects were used for training. The remaining 40 subjects were used for testing.
® Training set drawn from: 64896 genuine and 6165120 impostor pairs.

* Test set drawn from: 27040 genuine and 1054560 impostor pairs.

® http://rv11.ecn.purdue.edu/aleix/aleix_face_DB.html

Yann LeCun t New York University



Face Verification dataset: AR/Purdue |
i 2 A nal
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il tested on AT&T and AR/Purdue

@ AT&T dataset
Number of subjects: 5
Images/subject: 10
Images/Model:
Total test size: 5000

Number of Genuine: 500
Number of Impostors: 4500

il Purdue/AR dataset
Number of subjects: 40
Images/subject: 26
Images/Model: 13
Total test size: 5000

Number of Genuine: 500
Number of Impostors: 4500

Yann LeCun

& The AT&T dataset @ The AR/Purdue dataset
False Accept False Reject  False Accept False Reject

10.00% 0.00% 10.00% 11.00%
7.50% 1.00% 7.50% 14.60%
5.00% 1.00% 5.00% 19.00%

~

8 & 8B 3 2 a8 48 & & 8 82 B

....................

10% 510 1520 2530 3540 assué‘elims:o 7580 85 9 95100

t New York University
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Classification Examples
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i@l Example: Correctly classified genuine pairs

KPER

energy: 0.3159 energy: 0.0043 energy: 0.0046
&P Example: Correctly classified impostor pairs

£28ALR

energy: 20.1259 energy: 32.7897 energy: 5.7186
i Example: Mis-classified
pairs
energy: 10.3209 energy: 2.8243

Yann LeCun ¢ New York Univers
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isual Navigation for a Mobile Robot

i@ Mobile robot with two cameras

Lt L e

il The convolutional net is trained to emulate
a human driver from recorded sequences of
video + human-provided steering angles.

@ The network maps stereo images to steering
angles for obstacle avoidance

Yann LeCun

¢ New York University



Invariant Object Recognition

-_ s

@ The old feed-forward architecture can do more than expected.

@ Full invariance to viewpoint and illumination for detecting and recognizing objects
can be learned discriminatively by a simple feed-forward architecture.

¥ With only 5 training instances from each category, the model can detect and
recognize new instances with high accuracy.

¥ The model outperforms “traditional” template-based classifiers operating on raw
pixels or on PCA features.

@ The system takes advantage of the binocular input.

@ The convolutional net architecture is generic, and can be applied to a variety of
vision tasks with essentially no change.

i@ Feature tuning produces very parcimonious systems with only a small number of
feature detectors at each layer.

¥ Invariance can be achieved with “deep” architectures, containing mutiple,
successive layers of feature detection and feature integration/subsampling
(Hubel/Wiesel'62, Fukushima'/72, LeCun'89, Ullman'02, Riesenhuber/Poggio'02).

Yann LeCun * New York University




