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We developed a method for

Simultaneous face detection and pose estimation.
Robust to: yaw (from left to right profile), roll (-45, 45), and pitch (-60, 60).

Technion NEC Labs NYU

Single Detector is applied to all poses.
Pose estimation: Within 15° error about 90% of poses are estimated correctly.
Near real-time: 5 frames per second on standard hardware.
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Minimum Energy Machine
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Operating the Machine

Clamp X to the observed value (the image)

Find Z and Y such that:
(Y,Z): argmin EW(Y,Z,X)
Ye{Y},Ze{Z]
Complete energy:
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Convolutional Network:

C1. feature maps

8@28x28 C3: f. maps
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Convolutions Convolutions

Convolutions

“end-to-end” trainable systems from low-level
features to high-level representations.

Easily learn the type of shift-invariant features,
relevant to object recognition.

Can be replicated over large images much more
efficiently than traditional classifiers.
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We showed that this loss function causes th.e machine to
exhibit proper behavior: E(Ydes”ed,...ﬁE(Y““demd,...)+margin

Running the Machine

Works on grey-level images.
Applied at range of scales stepping by a factor of\/5

The network is replicated over the image at each
scale, stepping by 4 pixels in x and y.

Overlapping detections are replaced by the
strongest.

Training
“52,850, 32x32 grey-level images of faces (NEC Labs hand annotated set) with uniform distribution of poses.
Initial negative set: 52,850 random non-face natural images.
Second phase: half of the initial negative set was replaced by false positives of the initial version of the detector.
Each training image was used 5 times with random variation in scale, in-plane rotation, brightness and contrast.
9 passes on the data: 26 hours on 2Ghz Pentium 4.
The system converged to an EER of 5% on training set and 6% on test set of 90,000 images.

Test on Standard Data Sets

No standard set tests all poses, that our system is designed to detect.
3 standard sets focusing on particular pose variation: tilted, profile, and frontal.
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Pose Estimation:

Note: typical pose estimation systems input
centered faces; when we hand localize this
faces we get: 89% of yaw and 100% of in-
plane rotations within 15 degrees.
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