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Example application: Tracking

Observe noisy measurements of
missile location: Y, Y,, ...

Where is the missile now?



Probabilistic approach

e Our measurements of the missile location were
Y, Y, 0 Y,

* Let X, be the true missile location at time t

* To keep this simple, suppose that the locations
are discrete, i.e. X, and Y, take the values 1, ..., k

Grid the space:



Probabilistic approach

* First, we specify the conditional distribution
Pr(X, | X.,):

From basic physics, we can bound
the distance that the missile can
have traveled

* Then, we specify Pr(Y, | X,):

With probability %2, Y, = X,. Otherwise, Y, is a uniformly chosen grid
location



Probabilistic approach

* We describe the joint distribution on X, X,, ..., X, and Y, Y,, ..., Y, as

follows:
>
Graphical model
Y1 Y2 Y3 Y4 Y5 Y6
mn

Pr(z1,...Tp, Y1.-- - yn) = Pr(z1) Pr(yy | 1) [ [ Pr(ze | we—1) Pr(y: | 2)
t=2

* To find out where the missile is now, we do marginal inference:

PI‘(QZ‘n ‘ Yty .- 7yn)

e To find the most likely trajectory, we do MAP (maximum a
posteriori) inference:

argmijr(:Ul,...,:En \ y17---,yn)



Probabilistic graphical models

* The previous example is called a hidden Markov model:

X, X, X3 X, X Xe
>
Shading in denotes
observed variables
Y, Y, Y, Y, Yo Y

Pr(zi,...2n,y1,---,Yn) = Pr(xy) Pr(yy | z1) H Pr(zs | x4—1) Pr(y: | x¢)
t=2

* In general, thereis a 1-1 mapping between the graph structure and the
factorization of the joint distribution

* LetV be the set of variables (nodes), and pa(i) denotes the parents of
variable i. Then,
Pr(v) = ][ Pr(vi | Vpa(s))
icV
* Caninfer conditional independencies from graphical model alone!



Probabilistic graphical models

e The previous example is called a hidden Markov model:

Yi1lYs | X,
Pr(Y1,Y2 | X7) =Pr(Y7 | X1) Pr(Ys | X1)

Pr(zi,...2n,y1,---,Yn) = Pr(xy) Pr(yy | z1) H Pr(zs | x4—1) Pr(y: | x¢)
t=2

* In general, thereis a 1-1 mapping between the graph structure and the
factorization of the joint distribution

* LetV be the set of variables (nodes), and pa(i) denotes the parents of
variable i. Then,
Pr(v) = ][ Pr(vi | Vpa(s))
icV
* Caninfer conditional independencies from graphical model alone!



Probabilistic graphical models

* The previous example is called a hidden Markov model:

Xi X X X, Xs X
> X11X5 | X5
PI‘(Xl,Xg ‘ X2) = PI'(X1 ‘ X2)PI’(X3 | XQ)
Y]. Y2 Y3 Y4 Y5 Y6

Pr(zi,...2n,y1,---,Yn) = Pr(xy) Pr(yy | z1) H Pr(zs | x4—1) Pr(y: | x¢)
t=2

* In general, thereis a 1-1 mapping between the graph structure and the
factorization of the joint distribution

* LetV be the set of variables (nodes), and pa(i) denotes the parents of
variable i. Then,
Pr(v) = H Pr(v; | Vpa(i)) Also called Bayesian networks
iceV
* Caninfer conditional independencies from graphical model alone!



Graphical model for medical diagnosis

diseases

Joint distribution factors as:
d; d,

P(f,d) = P(fld)P(d)I[H led] 11 Ptd;

& / i

“Noisy or” distribution  Prior probability of
f f having disease
1 findings m

Marginal inference: Pr(d; | f)
This model makes several
assumptions:
1. d;Lld;

2 fJ_f ’ d Having a probabilistic model allows us to quantify
' e our uncertainty

MAP inference: arg max Pr(d | f)

How does one learn the model? ,
(Miller et al., ‘86, Shwe et al., ‘91)



Learning

Suppose we had historical data {(x,y)%, ..., (x,y)'}
 Assume drawn from the true distribution Pr(x, y)
 Complete data (no variables unobserved)

Find the parameters of the model that maximize the
likelihood of the data, H Pr(x!,y'; 0)
z

In directed graphical models, ML estimation from complete

data is easy -- simply calculate statistics
How many parameters?

p diseases actual trajectory
I dy X, X X X, Xs X
i . Y Y Y Y Y Y
! findings ! 2 > 4 > 6

observed trajectory



Inference

Recall, to find out where the missile is now, we do marginal

inference: Pr(x
( n | Y1, 7yn) X, X, X, X,
How does one compute this? Yo Y, Y Y,

Applying Bayes’ rule, we reduce to computing

Pr(zn, y1,---,Yn)

PI’(.Tn ‘ yla'”ayn) —

Pr(ys, ..., ¥n)
Naively, would seem to require k™! summations, Is there a
more efficient
Pr(xnayla"‘ayn) — Z Pr(a;l)‘"axnayla"‘ayn) algorithm?

L1yeeesymy—1



Marginal inference in HMMs

e Use dynamic programming

Pr(ajnayly s 7yn> — Z Pr(xn_hxn’yl’ T ’yn)

LTn—1
- Z Pr(zn 1,91, Yn—1) Pr(Zn, Un | Tn—1,¥1,- -, Yn—1)

Tn—1

— Z Pr(xn—layla s 7yn—1> Pr($n7yn | xn—l)

Tn—1

— Z Pr(iEn—la Yis--- 7yn—1) PI‘(ZE‘n | xn—l) Pr(yn | L, xn—l)

Tn—1

= Z Pr(z,_1,y1,-,Yn—1) Pr(zn | xn_1) Pr(y, | x,)
* For n=1, initialize Pr(zy,y1) = Pr(z;) Pr(y; | 1)
e Total running time is O(nk) — linear time! Easy to do filtering



MAP inference in HMMs

MAP inference in HMMs can also be solved in linear time!
argmax Pr(zy,...x, | y1,...,yn) = argmax Pr(x1, ... Tn,Y1,---,Yn)

= argmaxlogpr($1, v Lny Yty .- 7yn)

— argmax log | Pr(e1) Pr(yr | 21)| + > log | Pr(z; | @i 1) Pr(y, | z;)
1=2

Formulate as a shortest paths problem

Weight for edge (s, x,) is Weight for edge (x, ;, X;) is log [Pr(:ﬁi | z_1) Pr(y; | xi)]

log {Pf(wl) Pr(y; | z1)

t
Weight for edge (x,, t) is O

k nodes per variable

Called the Viterbi algorithm



Applications of HMMs

Speech recognition

— Predict phonemes from the sounds forming words (i.e., the
actual signals)

Natural language processing

— Predict parts of speech (verb, noun, determiner, etc.) from
the words in a sentence

Computational biology
— Predict intron/exon regions from DNA
— Predict protein structure from DNA (locally)

And many many more!



How to generalize?

* How do we do inference in these models?

dlseases phylogeny
findings

NP-hard Linear time



Undirected graphical models

 Markov random fields provide an alternative parameterization of joint
distributions, corresponding to an undirected graph

X X
. 1 X1
Pairwise model: Pr(x) — Z H @Dij(xi,xj) X,
el X,
Partition function (normalization constant) Non-negative function of two variables
AR X; =0 0 10

Xzzl 20 0

e Just as before, graphical model implies conditional independence
properties, e.g. X 1 X, | X3



HMM as an undirected model

2
X, X,
mapped to O—Cr

(@1, w2) = Pr(zy) Pr(az | 1) Pr(y: | #1) Pr(yz | 22)

Y(xi,xi1) = Pr(xieq | @) Pr(ysaq | wia1) for i=2,...,n—1

X,
O

O

Next, we generalize the dynamic programming algorithm used
for inference in HMMs to inference in tree-structured MRFs



Belief propagation
1. Fixaroot

2. Pass messages from the leaves to the root

XZ X3
X% 2=\
\ X,
XS

3. Pass messages from the root to the leaves

X, X

X, i 2_) \
X,

Xs



Sum-product belief propagation

The messages are

always of the form: Mis; ()

m4—>3 1173

Step 2

X2 X3
xl/'\(_ r\ m3—>2 5132

X4

X5 m5—>2 372
m1—>2 $2

ijaj ;)

H mk—>i($¢)

kEN(i)\J

Z¢34 $3,374
2%3 (72, 3)Ma3(x3)
Z¢25 5132,565
Z@DM 5132,5171



Sum-product belief propagation

The messages are

always of the form: M (25) = Zwiﬂ'(mi’xi) H Mg (%)
zs kEN(D)\J

Step 3
Xy X
XlL/ m2—>1(931) — Z¢2,1($2,331)m5—>2($2)m3—>2(£€2)
X, T2
XS
Step 4 Pr(z;) = FEN (i) =i\t A
Zx HjeN(z') M i (2;)

Applied to the HMM, this would compute Pr(z; | y1,...,yn) foralli



Max-product belief propagation

The messages are Mi—j(x;) = max i (z;, ;) H Mo ()
always of the form: i kEN(i)\j

When the MAP assignment is unique, local decoding succeeds in finding it:

MAP _ .
vy = argmax H M (Z5)
" jEN()



The need for approximate inference
(Example: stereo vision)

 How far away are the objects in the images?

input: two images Undirected graphical model

0ij (25, 75) = log i (xs, ;)

Even for a small
100x100 pixel image,
(Tappen and Freeman ‘03) model has 10 000
/ G=(V,E) variables
output: disparity Inference

— arginax Z Hij(xi,xj)
(:,5)€E




Approximate inference

Two broad classes of approximate inference algorithms are:
— Monte-carlo methods (e.g., likelihood weighting, MCMC)

— Variational methods

Popular variational method is loopy belief propagation
— Initialize messagesinBP to 1

— Run BP algorithm until convergence, iteratively choosing a new edge to
send a message along

— Few guarantees of correctness. May not even converge!

Much progress has been made in the last 15 years on
approximate inference algorithms



Conclusion

Graphical models are a powerful framework
— Large number of real-world problems can be formulated as graphical models
— Allows us to explicitly model uncertainty in predictions

Key problems to solve are learning and inference

Hidden Markov models have efficient inference algorithms based on
dynamic programming

— Algorithms are called forward-backward (marginal inference) and Viterbi (MAP
inference)

Message-passing algorithms allow efficient exact inference in any tree-
structured Markov random field

— Can use as an approximate inference algorithm in graphs with loops

Exciting field at the intersection of optimization, statistics, and algorithms



Want to learn more?

Next semester | am teaching
CSCI-GA.3033-006:
“Special Topics in Machine Learning:
Probabilistic Graphical Models”



