# Probabilistic Graphical Models

Guest lecturer: David Sontag

Machine Learning and Pattern Recognition, Fall 2011

# Example application: Tracking



Where is the missile **now**?

Radar

# Probabilistic approach

- Our measurements of the missile location were  $Y_1, Y_2, ..., Y_n$
- Let X<sub>t</sub> be the true missile location at time t
- To keep this simple, suppose that the locations are discrete, i.e. X<sub>t</sub> and Y<sub>t</sub> take the values 1, ..., k

Grid the space:



# Probabilistic approach

• First, we specify the *conditional* distribution  $Pr(X_{t-1})$ :



From basic physics, we can bound the distance that the missile can have traveled

• Then, we specify  $Pr(Y_t \mid X_t)$ :

With probability  $\frac{1}{2}$ ,  $Y_t = X_t$ . Otherwise,  $Y_t$  is a uniformly chosen grid location

## Probabilistic approach

We describe the joint distribution on X<sub>1</sub>, X<sub>2</sub>, ..., X<sub>n</sub> and Y<sub>1</sub>, Y<sub>2</sub>, ..., Y<sub>n</sub> as follows:



$$\Pr(x_1, \dots, x_n, y_1, \dots, y_n) = \Pr(x_1) \Pr(y_1 \mid x_1) \prod_{t=2} \Pr(x_t \mid x_{t-1}) \Pr(y_t \mid x_t)$$

To find out where the missile is now, we do marginal inference:

$$\Pr(x_n \mid y_1, \dots, y_n)$$

To find the most likely trajectory, we do MAP (maximum a posteriori) inference:

$$\arg\max_{\mathbf{v}}\Pr(x_1,\ldots,x_n\mid y_1,\ldots,y_n)$$

# Probabilistic graphical models

• The previous example is called a **hidden Markov model**:



Shading in denotes observed variables

$$\Pr(x_1, \dots, x_n, y_1, \dots, y_n) = \Pr(x_1) \Pr(y_1 \mid x_1) \prod_{t=2}^n \Pr(x_t \mid x_{t-1}) \Pr(y_t \mid x_t)$$

- In general, there is a 1-1 mapping between the graph structure and the factorization of the joint distribution
- Let V be the set of variables (nodes), and pa(i) denotes the parents of variable i. Then,  $\Pr(\mathbf{v}) = \prod \Pr(v_i \mid \mathbf{v}_{pa(i)})$

Can infer conditional independencies from graphical model alone!

# Probabilistic graphical models

The previous example is called a hidden Markov model:



- In general, there is a 1-1 mapping between the graph structure and the factorization of the joint distribution
- Let V be the set of variables (nodes), and pa(i) denotes the parents of variable i. Then,  $\Pr(\mathbf{v}) = \prod \Pr(v_i \mid \mathbf{v}_{pa(i)})$
- Can infer conditional independencies from graphical model alone!

# Probabilistic graphical models

The previous example is called a hidden Markov model:



- In general, there is a 1-1 mapping between the graph structure and the factorization of the joint distribution
- Let V be the set of variables (nodes), and pa(i) denotes the parents of variable i. Then,  $\Pr(\mathbf{v}) = \prod_{i \in V} \Pr(v_i \mid \mathbf{v}_{pa(i)}) \qquad \text{Also called Bayesian networks}$
- Can infer conditional independencies from graphical model alone!

# Graphical model for medical diagnosis



Joint distribution factors as:

$$P(f,d) \ = \ P(f|d)P(d) = \left[\prod_i P(f_i|d)\right] \left[\prod_j P(d_j)\right]$$
 "Noisy or" distribution Prior probability of having disease

This model makes several assumptions:

- 1.  $d_i \perp d_j$
- 2.  $f_i \perp f_j \mid \mathbf{d}$

Marginal inference:  $\Pr(d_i \mid \mathbf{f})$ 

MAP inference:  $\underset{\mathbf{d}}{\arg\max} \Pr(\mathbf{d} \mid \mathbf{f})$ 

Having a probabilistic model allows us to quantify our *uncertainty* 

# Learning

- Suppose we had historical data {(x,y)¹, ..., (x,y)¹}
  - Assume drawn from the true distribution Pr(x, y)
  - Complete data (no variables unobserved)
- Find the parameters of the model that maximize the likelihood of the data,  $\prod_l \Pr(\mathbf{x}^l, \mathbf{y}^l; \theta)$
- In directed graphical models, ML estimation from complete data is easy -- simply calculate statistics
   How many parameters?





#### Inference

• Recall, to find out where the missile is now, we do marginal inference:  $\Pr(x_n \mid y_1, \dots, y_n)$ 



Applying Bayes' rule, we reduce to computing

$$\Pr(x_n \mid y_1, \dots, y_n) = \frac{\Pr(x_n, y_1, \dots, y_n)}{\Pr(y_1, \dots, y_n)}$$

• Naively, would seem to require k<sup>n-1</sup> summations,

$$\Pr(x_n, y_1, \dots, y_n) = \sum_{x_1, \dots, x_{n-1}} \Pr(x_1, \dots, x_n, y_1, \dots, y_n)$$

Is there a more efficient algorithm?

#### Marginal inference in HMMs

Use dynamic programming

$$\Pr(x_{n}, y_{1}, \dots, y_{n}) = \sum_{x_{n-1}} \Pr(x_{n-1}, x_{n}, y_{1}, \dots, y_{n})$$

$$= \sum_{x_{n-1}} \Pr(x_{n-1}, y_{1}, \dots, y_{n-1}) \Pr(x_{n}, y_{n} \mid x_{n-1}, y_{1}, \dots, y_{n-1})$$

$$= \sum_{x_{n-1}} \Pr(x_{n-1}, y_{1}, \dots, y_{n-1}) \Pr(x_{n}, y_{n} \mid x_{n-1})$$

$$= \sum_{x_{n-1}} \Pr(x_{n-1}, y_{1}, \dots, y_{n-1}) \Pr(x_{n} \mid x_{n-1}) \Pr(y_{n} \mid x_{n}, x_{n-1})$$

$$= \sum_{x_{n-1}} \Pr(x_{n-1}, y_{1}, \dots, y_{n-1}) \Pr(x_{n} \mid x_{n-1}) \Pr(y_{n} \mid x_{n})$$

- For n=1, initialize  $Pr(x_1, y_1) = Pr(x_1) Pr(y_1 | x_1)$
- Total running time is O(nk) linear time! Easy to do filtering

#### MAP inference in HMMs

MAP inference in HMMs can also be solved in linear time!

$$\arg \max_{\mathbf{x}} \Pr(x_1, \dots, x_n \mid y_1, \dots, y_n) = \arg \max_{\mathbf{x}} \Pr(x_1, \dots, x_n, y_1, \dots, y_n)$$

$$= \arg \max_{\mathbf{x}} \log \Pr(x_1, \dots, x_n, y_1, \dots, y_n)$$

$$= \arg \max_{\mathbf{x}} \log \left[ \Pr(x_1) \Pr(y_1 \mid x_1) \right] + \sum_{i=2}^n \log \left[ \Pr(x_i \mid x_{i-1}) \Pr(y_i \mid x_i) \right]$$

Formulate as a shortest paths problem



Called the Viterbi algorithm

## **Applications of HMMs**

- Speech recognition
  - Predict phonemes from the sounds forming words (i.e., the actual signals)
- Natural language processing
  - Predict parts of speech (verb, noun, determiner, etc.) from the words in a sentence
- Computational biology
  - Predict intron/exon regions from DNA
  - Predict protein structure from DNA (locally)
- And many many more!

## How to generalize?

How do we do inference in these models?





**NP-hard** 

Linear time

## Undirected graphical models

 Markov random fields provide an alternative parameterization of joint distributions, corresponding to an undirected graph



Partition function (normalization constant)

$$Z = \sum_{\mathbf{x}} \prod_{ij \in E} \psi_{ij}(x_i, x_j)$$

Non-negative function of two variables

$$X_j = 0$$
  $X_j = 1$   $X_i = 0$  0 10  $X_i = 1$  20 0

• Just as before, graphical model implies conditional independence properties, e.g.  $X_1 \bot X_4 \mid X_3$ 

#### HMM as an undirected model





$$\psi(x_1, x_2) = \Pr(x_1) \Pr(x_2 \mid x_1) \Pr(y_1 \mid x_1) \Pr(y_2 \mid x_2)$$

$$\psi(x_i, x_{i+1}) = \Pr(x_{i+1} \mid x_i) \Pr(y_{i+1} \mid x_{i+1}) \text{ for } i = 2, \dots, n-1$$

Next, we generalize the dynamic programming algorithm used for inference in HMMs to inference in tree-structured MRFs

## Belief propagation

1. Fix a root



2. Pass messages from the leaves to the root



3. Pass messages from the root to the leaves



## Sum-product belief propagation

The messages are always of the form:

$$m_{i \to j}(x_j) = \sum_{x_i} \psi_{ij}(x_i, x_j) \prod_{k \in N(i) \setminus j} m_{k \to i}(x_i)$$



$$m_{4\to 3}(x_3) = \sum_{x_4} \psi_{3,4}(x_3, x_4)$$

$$m_{3\to 2}(x_2) = \sum_{x_3} \psi_{2,3}(x_2, x_3) m_{4\to 3}(x_3)$$

$$m_{5\to 2}(x_2) = \sum_{x_5} \psi_{2,5}(x_2, x_5)$$

$$m_{1\to 2}(x_2) = \sum_{x_1} \psi_{2,1}(x_2, x_1)$$

## Sum-product belief propagation

The messages are

always of the form: 
$$m_{i \to j}(x_j) = \sum_{x_i} \psi_{ij}(x_i, x_j) \prod_{k \in N(i) \setminus j} m_{k \to i}(x_i)$$

Step 3



Step 4

$$\Pr(x_i) = \frac{\prod_{j \in N(i)} m_{j \to i}(x_i)}{\sum_{\hat{x}_i} \prod_{j \in N(i)} m_{j \to i}(\hat{x}_i)}$$

Applied to the HMM, this would compute  $\Pr(x_i \mid y_1, \dots, y_n)$  for all i

## Max-product belief propagation

The messages are always of the form:

$$m_{i \to j}(x_j) = \max_{x_i} \psi_{ij}(x_i, x_j) \prod_{k \in N(i) \setminus j} m_{k \to i}(x_i)$$

When the MAP assignment is unique, local decoding succeeds in finding it:

$$x_i^{\text{MAP}} = \arg\max_{\hat{x}_i} \prod_{j \in N(i)} m_{j \to i}(\hat{x}_i)$$

# The need for approximate inference (Example: stereo vision)

How far away are the objects in the images?



#### Approximate inference

- Two broad classes of approximate inference algorithms are:
  - Monte-carlo methods (e.g., likelihood weighting, MCMC)
  - Variational methods
- Popular variational method is loopy belief propagation
  - Initialize messages in BP to 1
  - Run BP algorithm until convergence, iteratively choosing a new edge to send a message along
  - Few guarantees of correctness. May not even converge!
- Much progress has been made in the last 15 years on approximate inference algorithms

#### Conclusion

- Graphical models are a powerful framework
  - Large number of real-world problems can be formulated as graphical models
  - Allows us to explicitly model uncertainty in predictions
- Key problems to solve are learning and inference
- Hidden Markov models have efficient inference algorithms based on dynamic programming
  - Algorithms are called forward-backward (marginal inference) and Viterbi (MAP inference)
- Message-passing algorithms allow efficient exact inference in any treestructured Markov random field
  - Can use as an approximate inference algorithm in graphs with loops
- Exciting field at the intersection of optimization, statistics, and algorithms

#### Want to learn more?

Next semester I am teaching
CSCI-GA.3033-006:

"Special Topics in Machine Learning:
Probabilistic Graphical Models"