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Ensemble M ethods

Democracy applied to decision making: 1,000,000 Lerning NMahCan't Be
Wrong.

Generate many learning machines that are slightly diffirem each other,
and make them vote.

This can be viewed as a way to perform regularization

Example: Bayesian learning. The outputs produced by r@pld the machine
for each possible value of the parameter vector are addédweights that
reflect the conditional probability of the parameter vediven the training
dataset.

The key idea of ensemble methods: find a way to make eachaeylibe
learning machine different from the others, yet useful.
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Full Bayesian Learning: keep’em all

Training set:X = (X!, X?,...X?), and Y = (Y1,Y?, ...Y?P)
Full Bayesian prediction: average answers fol&ll weighted byP(W | X', )):

P(Y|X, X)) = /P(Y|X, WYP(W|X, V) dW

Where
VIX,W)P(W|X)

PY|X)

where the denominator is a normalization term:

Py, x) = L

P(YA) = / PY|X, W) P(W|X)dW

that ensures that P(W|S)dW = 1.
this is generally intractable. Approximations must be udexplace, Sampling,
Variational approximations...
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Variational Bayesan Method

Main idea: approximaté’(W|S) with some parameterized model that we can actuall

compute.
ChooseP(W|S) (i.e. P(W X, ))) within in a family Q (W), so that it best

approximates the red (W |S) in Kulback-Leibler terms.
Replace the log likelihood by\aariational free energywe will see more of that when

we study the Expectation-Maximization Algorithm):

_log P(Y|X, X.Y) = —log / P(Y|X, W)P(W|X, V)dW

_log P(Y|X, X, V) = —log / PY X, W)Q(W)P(W|X, ) /Q(W)dW
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Variational Bayes

—log P(Y|X,X,)) = —log/Q(W)P(Y]X, W)P(WI|X,Y)/Q(W)dW

This is the expectation (average)BfY | X, W)P(W|X,Y)/Q(W) under
distribution@(W).

We use Jensen’s inequality: thelog of an average is less than the average of the
— log’s, because- log is a concave function (with a positive secnd derivativehdee

“log P(Y|X, X,) < / QW) log[P(Y | X, W)P(W|X, )/Q(W)ldW
—log P(Y|X,X,Y) <

_ / QW) log[P(Y | X, W)]dW — / QW) log P(W|X, )/ Q(W)]|dW
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Variational Bayes

—log P(Y|X,X,)) <

_ / QW) log[P(Y' | X, W)]dW — / QW) log P(W|X, ) /Q(W)]|dW

The first term is the average energy under distributgi’ ), the second term is the
Kullback-Leibler divergencbetweenP (W |X', Y) andQ (W) (akin to a relative
entropy).

The right-hand side is very much like tfree energyn statistical physics.

More details aht t p: //vari ati onal - bayes. org
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Bootstrap/Bagging

P ) wn— Tea\NING SET )
“ﬁ:::-__—s "Nz

c—— " "3

TAR MiNG
PAG

A simple idea: use different subsets of the training set.

The Bootstrap method consists in generating multiple iingiset by drawing
samples from the original training seith replacement

The Bagging method consists simply in averaging of the datproduced by
each of the instances.
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Boosting

Train a machine on the training set.

construct a new training set in which samples that the firstinme got wrong
have a higher weight (or probability of being picked).

train another copy of the machine on this set

make the overall output of the system a weighted sum of allrdieed models
where the weights are higher for machines that make lesskeaist

iterate

This technique trains new machines on samples that thequdyitrained
machines found difficult.

This is a way to build multiple “experts” that specialize affetent types of
patterns.
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Adaboost

0. given a training setX*, y1), ...(X ¥, y")
1. Initialize the observation weights = 1/P,i = 1,2, ..., P.

2. Form = 1to M do:
W (a) Train a classifie€r,,, (X)) on the training set by drawing each sample

with probability v*.

= (b) computefZ,, = 3>, vi{y’ # G (X))}

M (c) computer,,, = 3log((1 — E,,)/Ep)

W (d) setD; « v; expla,,{y* # Gn(XY)}] and,v; = Efgl_)f B for
i=1,2,... P.

outputG(X) = sign (zﬂ,{zl ame(X))
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Adaboost = Greedy Gradient Descent

Adaboost greedily minimizeg = Y7, exp (—yF(X?)) assuming thaf’ (X))
IS a linear combination of elementary classifiéreX ) = fo:l AU G (X).

Let’'s assume that we have already trained the fifst- 1 elementary classifiers
(calledweak learnerk

How should we train thé/-th classifier, and what value should we givgy so
as to maximally decrease the loss exponential,.

P . M
Eexp — ZeXp (_yz Z Oéme(X))
=1 m=1
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Adaboost = Greedy Gradient Descent

Loxp = Zexp yZOém

This loss can be decomposed as follows:

P M-—-1
Loxp =Y _exp(—y" D amGm(X))exp (—y an G (X))
=1 m=1

eXp ZDM 1€Xp yZOéMGM(X))

Finding theG (X)) that mininizesC., can be performed by giving each training a
sample a weight; proportional toD?,_, and training thel/-th copy of the weak
learner on this re-weighted training set.is simply a normalized version dp*:

i P i
= Diyr_1/ 221 D1
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Computing the combination weight

Now we need to compute the combination weight for the new ieatnera,,. We
will choose the value that minimizes the loss. To find theraptivalue, we

differentiate the loss:

80210 - ‘ZD 1y Gu(X) exp (—y'anGu (X)) =0

We can decompose the sum into two terms, those for which tla& \earner gave the

right answer {'G ;(X) = 1), and those for which it was wrong‘G; (X) = —1):

S° Diyyexp(—am)+ > —Diy_yexp(an) =0

t€right teEwrong
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Computing the combination weight

Since each training sample was weighted/®y, ,, the sumy_, . —Dj, s
simply the expected number of mistakes made by the weakdeamthe weighted
training setPy ong:

Pm’ght €exXp (_aM) - varong €eXp (aM) =0

Or
(P — Pwrong> eXp (_aM) — Pwrong eXp (aM) =0
whereP is the total size of the training set. Solving t@f,;, we get:

P_Pwromg_1 1_E'M
Pwrong 2 EM

1
ay = ilog

WhereFE), Is the proportion of errors made by tldé-th learning on the training set
weigthed by theD?,_,.
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An Overview of Learning Theory

The main purpose of Learning Theory:
Give formulae and techniques to predict/estimate the gdimation error.
Give well-principled methods to minimize the generaliaaterror.
Most formulae for the expected risk (generalization eresg of the form:
h

Eexpected — Etrain + Cﬁ

Wherec Is a constantP is the number of training samplegpha is a constant
between 0.5 and 1.0, arkdis a measure atapacityof the family of functions
Implemented by the model.
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Estimating the Expected Risk

PROBLEM I In fact, many formulae are probabilistic upper boundse&athan
equalities: “with probabilityl — §™:

Eexpected < Etrain + C(é)i

Pa
PROBLEM 2 The bound formulae derived from general learning theares
generally extremely loose, so you can’t just plug in numiaerd hope that the
formula will give you useful information. That is becausangeal formulae
cannot take into account the peculiarities of the problehaad.

PROBLEM 3 The “capacity” termh is generally impossible to know for a
complex model family. Intuitivelyh is akin to some sort odffective number of
free parametergwhich may or may not reflect the actual number of free
parameters).
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Bayesian Formula for Model Selection

Bayesian Information Criterion (BIC)

log(P) h

2 P

Eexpected — Etrain

can be derived from a Bayesian inference formula with a $ledalaplace”
approximation (2nd order taylor expansion of the log liketbd around the
MLE estimate).
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Structural Risk Minimization

Structural Risk Minimizationthese are very general bounds derived from first
principles. The bad news is that they are distribution feawl therefore very
loose.

SRM bound for classification: with probability— ¢:

€ 4F rain
EeXpected < Etrain + 5 (1 + \/1 + - )

€

[log(a2p/h)+1]

with € = a4 log(9/4) , whereaq, as are constant not furnished by

the theory, and is theVapnlk -Chervonenkis Dimensiofithe family of
function.

SRM bound for regression

< Etraln
xpected
1 — C\/7€

Le

with the same as above.
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An Example of How to get a Bound

UYPo THE ¢} StAce

TIOE
RYPoT, oneatiee HytoT: coﬂ;fm

WITH THE FiasT wm" (nind wn.ﬁs'
100 TRAINING SApPES 7,00 TP

The hypothesis space of our model is the family of all possibhctions
Indexed by our paramet&V .

H:{F(Y,X,W),vyW}

That set may have an infinite (possibly uncountable) calithna

One view of learning: each training example eliminates elets of the
hypothesis space that disagree with it.
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An Example of How to get a Bound

Let’s assume that the number of hypotheses is finite and ¢g&al
Wl, WQ, Wk

Let’s assume the loss is binary: O if correct, 1 if error.

Let’s define the expected error for a particular hypothésis, (W, ), the error
thatT¥; over an infinite training set.

Let's define the empirical error faP examplesE/,, (W;), the error thatV;
over a particular training set of size.

The Hoeffding/Chernoff bound tells us:
P(|Eeap(Wi) — EL,,(Wi)| > €) < 2exp(—2¢*P)

emp

The Hoeffding/Chernoff bound is a wonderful formula thalsteis how fast the
average of a variable computed over a finite set of samplesrgas to the true
expectation (average over an inifinte number of samples)asevease the
number of samples.
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Bound on the Expected Error

Since the probability of the union of a set of events is bodral®ove by the sum of the
individual event probabilities, we can write:

k
P(3Wi, | Ecap(Ws) — EL,,(Wi)| > €) <Y 2exp(—2€6°P) = 2k exp(—2€°P)

emp
1=1

this can be rewritten as
P(YWi, | Bewp(Ws) — EX (W;)| <€) > 1 — 2k exp(—26*P)

emp

This is a uniform convergence bound, because it holds fangibtheses.
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Bound on the Expected Error

Let's defined = 2k exp(—2¢2P). Suppose we hold@® andd, and solve fok, we get
with probability1 — §:

Eea:p(W) < Efmp \/— log

In particular, the previous inequality is true for the hylp@gisiV; . ,i, that minimizes
the training set error:

Eexp(Wtram) < Efmp Wtraln \/— lOg
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VC-dimension

The previous bound assumed the space of hypotheses wagMiitite:
hypotheses).

The Vapnik-Chervonenkis approach derives similar redaltafinite
hypotheses spaces.

key idea: as far as we are concerned, two hypotheses areciaahthey
produce the same classification on our dataset: identigaithgses are put into
equivalence classes.

The formulae we obtain are the SRM formulae shown a few shae& whereh
IS the VC-dimension of the family of functions

The VC-dim is defined as the largest number of points (in argitipm) that our
family of function could classify in every possible ways.

EXAMPLE: The VC-dim of linear classifier witV inputs isN + 1: in

dimension 2, there is a set of 3 points on which2dltichotomies are linearly
separable. There is no such set with 4 points.
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V C-dimension, continued

The VC-dim and the SRM formulae are very interesting coneapt, because
they are derived with a minimal set of assumptions.

The VC theory allows us to “derive” and quantify the intuéimotion of
Occam'’s Razor fronfirst principles

Occam’s Razor is the idea that simple models are preferalderhplex one.

Until the VC theory, Occam’s Razor was assumed to be a goa] atevas
derived from rather contrived sets of assumptions.

Y. LeCun: Machine Learnina and Pattern Recoanition — 0~



How Can we get the Constants?

Recall that a good general form for the generalization esor

h

Eexpected — Etrain + CPO‘

The constants depends on the task and the learning algorithm usel&pends on the
model, and).5 < o < 1 depends on the type of task (e.g. regression versus
classification).

We canmeasurdhe constants and« for a particular task by running a learning
machine with a know on the task (e.g. a linear classifier for whieh= N + 1) with
various size of the training set.

Then, if we assume s constant from model to model, we can measufer unknown
learning machine by running on several size of training adtféating the curve.

This process is rather long and expensive, and rarely worth |
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