Latent Variables

Yann LeCun

The Courant Institute of Mathematical Sciences

New York University

http://yann.lecun.com

http://www.cs.nyu.edu/~yann

Energy-Based Model for Decision-Making

Model: Measures the compatibility between an observed variable X and a variable to be predicted Y through an energy function E(Y,X).

$$Y^* = \operatorname{argmin}_{Y \in \mathcal{Y}} E(Y, X).$$

- Inference: Search for the Y that minimizes the energy within a set y
- If the set has low cardinality, we can use exhaustive search.

Transforming Energies to Probabilities

- Energies are uncalibrated
 - The energies of two separately-trained systems cannot be combined
 - The energies are uncalibrated (measured in arbitrary untis)
- How do we calibrate energies?
 - We turn them into probabilities (positive numbers that sum to 1).
 - Simplest way: Gibbs distribution
 - Other ways can be reduced to Gibbs by a suitable redefinition of the energy.

$$P(Y|X) = \frac{e^{-\beta E(Y,X)}}{\int_{y \in \mathcal{Y}} e^{-\beta E(y,X)}},$$
Partition function Inverse temperature

Latent Variable Models

The energy includes "hidden" variables Z whose value is never given to us

$$E(Y, X) = \min_{Z \in \mathcal{Z}} E(Z, Y, X).$$

$$Y^* = \operatorname{argmin}_{Y \in \mathcal{Y}, Z \in \mathcal{Z}} E(Z, Y, X).$$

What can the latent variables represent?

- Variables that would make the task easier if they were known:
 - Face recognition: the gender of the person, the orientation of the face.
 - Object recognition: the pose parameters of the object (location, orientation, scale), the lighting conditions.
 - ▶ Parts of Speech Tagging: the segmentation of the sentence into syntactic units, the parse tree.
 - Speech Recognition: the segmentation of the sentence into phonemes or phones.
 - ► **Handwriting Recognition**: the segmentation of the line into characters.
- **■** In general, we will search for the value of the latent variable that allows us to get an answer (Y) of smallest energy.

Probabilistic Latent Variable Models

Marginalizing over latent variables instead of minimizing.

$$P(Z, Y|X) = \frac{e^{-\beta E(Z, Y, X)}}{\int_{y \in \mathcal{Y}, z \in \mathcal{Z}} e^{-\beta E(y, z, X)}}.$$

$$P(Y|X) = \frac{\int_{z \in \mathcal{Z}} e^{-\beta E(Z,Y,X)}}{\int_{y \in \mathcal{Y}, z \in \mathcal{Z}} e^{-\beta E(y,z,X)}}.$$

Equivalent to traditional energy-based inference with a redefined energy function:

$$Y^* = \operatorname{argmin}_{Y \in \mathcal{Y}} - \frac{1}{\beta} \log \int_{z \in \mathcal{Z}} e^{-\beta E(z, Y, X)}.$$

Reduces to traditional minimization when Beta->infinity

Face Detection and Pose Estimation with a Convolutional EBM

- **Training:** 52,850, 32x32 grey-level images of faces, 52,850 selected non-faces.
- Each training image was used 5 times with random variation in scale, in-plane rotation, brightness and contrast.
- **2nd phase:** half of the initial negative set was replaced by false positives of the initial version of the detector.

Small E*(W,X): face

Large $E^*(W,X)$: no face

[Osadchy, Miller, LeCun, NIPS 2004]

$$E^*(W, X) = \min_Z ||G_W(X) - F(Z)||$$

$$Z^* = \operatorname{argmin}_Z ||G_W(X) - F(Z)||$$

Face Manifold

Probabilistic Approach: Density model of joint P(face,pose)

Probability that image

X is a face with pose Z

$$P(X,Z) = \frac{\exp(-E(W,Z,X))}{\int_{X,Z \in \text{images,poses}} \exp(-E(W,Z,X))}$$

Given a training set of faces annotated with pose, find the W that maximizes the likelihood of the data under the model:

$$P(\text{faces} + \text{pose}) = \prod_{X,Z \in \text{faces} + \text{pose}} \frac{\exp(-E(W,Z,X))}{\int_{X,Z \in \text{images}, \text{poses}} \exp(-E(W,Z,X))}$$

Equivalently, minimize the negative log likelihood:

$$\mathcal{L}(W, \text{faces} + \text{pose}) = \sum_{X,Z \in \text{faces} + \text{pose}} E(W,Z,X) + \log \left[\int_{X,Z \in \text{images}, \text{poses}} \exp(-E(W,Z,X)) \right]$$

COMPLICATED

Energy-Based Contrastive Loss Function

$$\mathcal{L}(W) = \frac{1}{|\mathbf{f} + \mathbf{p}|} \sum_{X, Z \in \text{faces+pose}} \left[L^+ \left(E(W, Z, X) \right) \right] + L^- \left(\min_{X, Z \in \text{bckgnd,poses}} E(W, Z, X) \right)$$

$$L^{+}(E(W,Z,X)) = E(W,Z,X)^{2} = ||G_{W}(X) - F(Z)||^{2}$$

Attract the network output Gw(X) to the location of the desired pose F(Z) on the manifold

$$L^{-}\left(\min_{X,Z\in\text{bckgnd,poses}}E(W,Z,X)\right) = K\exp\left(-\min_{X,Z\in\text{bckgnd,poses}}||G_{W}(X) - F(Z)||\right)$$

Repel the network output Gw(X) away from the face/pose manifold

Convolutional Network Architecture

[LeCun et al. 1988, 1989, 1998, 2005]

Hierarchy of local filters (convolution kernels), sigmoid pointwise non-linearities, and spatial subsampling

All the filter coefficients are learned with gradient descent (back-prop)

Alternated Convolutions and Pooling/Subsampling

- Local features are extracted everywhere.
- pooling/subsampling layer builds robustness to variations in feature locations.
- Long history in neuroscience and computer vision:
 - 🚅 Hubel/Wiesel 1962,
 - Fukushima 1971-82,
 - **l** LeCun 1988-06
 - Poggio, Riesenhuber, Serre 02-06
 - **Ullman 2002-06**
 - Triggs, Lowe,....

Building a Detector/Recognizer: Replicated Conv. Nets

- input:40x40
- Traditional Detectors/Classifiers must be applied to every location on a large input image, at multiple scales.
- Convolutional nets can replicated over large images very cheaply.
- The network is applied to multiple scales spaced by sqrt(2)
- Non-maximum suppression with exclusion window

Building a Detector/Recognizer:

Replicated Convolutional Nets

- Computational cost for replicated convolutional net:
 - 96x96 -> 4.6 million multiply-accumulate operations
 - 120x120 -> 8.3 million multiply-accumulate operations
 - 240x240 -> 47.5 million multiply-accumulate operations
 - 480x480 -> 232 million multiply-accumulate operations
- Computational cost for a non-convolutional detector of the same size, applied every 12 pixels:
 - 96x96 -> 4.6 million multiply-accumulate operations
 - 120x120 -> 42.0 million multiply-accumulate operations
 - 240x240 -> 788.0 million multiply-accumulate operations
 - 480x480 -> 5,083 million multiply-accumulate operations

Face Detection: Results

Data Set->	TILTED		PROFILE		MIT+CMU	
False positives per image->	4.42	26.9	0.47	3.36	0.5	1.28
Our Detector	90%	97%	67%	83%	83%	88%
Jones & Viola (tilted)	90%	95%	X		X	
Jones & Viola (profile)	X		70%	83%	X	

Face Detection and Pose Estimation: Results

Yann LeCun

* New York University

Face Detection with a Convolutional Net

Performance on standard dataset

Detection Pose estimation 100 100 95 Percentage of poses correctly estimated 90 Percentage of faces detected 85 80 Frontal In-plane rotation Rotated in plane - Yaw **Profile** 55 50<u></u> 10 15 0.5 1.5 2.5 3 3.5 4.5 5 20 25 30 False positives per image Pose-error tolerance (degrees)

Pose estimation is performed on faces located automatically by the system when the faces are localized by hand we get: 89% of yaw and 100% of in-plane rotations within 15 degrees.

Synergy Between Detection and Pose Estimation

Pose Estimation Improves Detection

Detection improvespose estimation

