
Yann LeCun

Convolutional Networks,
Image Recognition

 Yann LeCun
 The Courant Institute of Mathematical Sciences

New York University
Collaborators:

Marc'Aurelio Ranzato, Sumit Chopra, Fu­Jie Huang, Y­Lan Boureau

Yann LeCun

The Challenges of Pattern Recognition,
Computer Vision, and Visual Neuroscience

How do we learn “invariant representations”?
From the image of an airplane, how do we extract a
representation that is invariant to pose, illumination,
background, clutter, object instance....
How can a human (or a machine) learn those
representations by just looking at the world?

How can we learn visual categories from just a few examples?
I don't need to see many airplanes before I can
recognize every airplane (even really weird ones)

Yann LeCun

Invariance

The appearance of an object (in terms of pixels) changes considerably
under changes of pose, illumination, clutter, and occlusions.

Two instance of the same category may have widely differing shapes and
appearances
An airliner and a fighter plane, a person standing and another one
kneeling,...

Template­based methods are doomed because the number of templates
necessary to cover the space of variations grows exponentially with the
number of dimensions of the variations.

Yann LeCun

Generic Object Recognition

 Generic Object Recognition is the problem of detecting and
classifying objects into generic categories such as “cars”,
“trucks”, “airplanes”, “animals”, or “human figures”

 Appearances are highly variable within a category because
of shape variation, position in the visual field, scale, viewpoint,
illumination, albedo, texture, background clutter, and occlusions.

 Learning invariant representations is key.
 Understanding the neural mechanism behind invariant
recognition is one of the main goals of Visual Neuroscience.

Yann LeCun

What we want to achieve

 recognition from shape:
color, texture, and
distinctive local features
may be useful, but they
merely allow us to sweep
the real problems under the
rug.

 Full invariance to
viewpoint, illumination,
clutter, occlusions.

Yann LeCun

The Traditional Architecture for Recognition

The raw input is pre­processed through a hand­crafted feature extractor

The trainable classifier is often generic (task independent)

Trainable Classifier
Pre­processing /

Feature Extraction

this part is mostly hand­crafted

Yann LeCun

End­to­End Learning

The entire system is integrated and trainable “end­to­end”.

In some of the models presented here, there will be no discernible
difference between the feature extractor and the classifier.

We can embed general prior knowledge about images into the
architecture of the system.

trainable classifier
trainable

Feature Extraction

Yann LeCun

An Old Idea for Local Shift Invariance

[Hubel & Wiesel 1962]: architecture of the cat's visual cortex
simple cells detect local features
complex cells “pool” the outputs of simple cells within a
retinotopic neighborhood.

pooling subsampling

“Simple cells”
“Complex cells”

Multiple
convolutions

Retinotopic Feature Maps

Yann LeCun

The Multistage Hubel­Wiesel Architecture

Building a complete artificial vision system:
Stack multiple stages of simple cells / complex cells layers
Higher stages compute more global, more invariant features
Stick a classification layer on top
[Fukushima 1971-1982]
neocognitron

[LeCun 1988-2007]
convolutional net

[Poggio 2002-2006]
HMAX

[Ullman 2002-2006]
fragment hierarchy

[Lowe 2006]
HMAX

QUESTION: How do we
find (or learn) the filters?

Yann LeCun

Convolutional Network

 Hierarchical/multilayer: features get progressively more global, invariant, and numerous

 dense features: features detectors applied everywhere (no interest point)

 broadly tuned (possibly invariant) features: sigmoid units are on half the time.

 Global discriminative training: The whole system is trained “end­to­end” with a gradient­
based method to minimize a global loss function

 Integrates segmentation, feature extraction, and invariant classification in one fell swoop.

Yann LeCun

 Convolutional Net Architecture

input

1@32x32

Layer 1

6@28x28

Layer 2
6@14x14

Layer 3
12@10x10

Layer 4
12@5x5

Layer 5
100@1x1

10

5x5
convolution

5x5
convolution

5x5
convolution2x2

pooling/
subsampling

2x2
pooling/
subsampling

Layer 6: 10

 Convolutional net for handwriting recognition (400,000 synapses)

 Convolutional layers (simple cells): all units in a feature plane share the same weights
 Pooling/subsampling layers (complex cells): for invariance to small distortions.

 Supervised gradient­descent learning using back­propagation
 The entire network is trained end­to­end. All the layers are trained simultaneously.

Yann LeCun

MNIST Handwritten Digit Dataset

 Handwritten Digit Dataset MNIST: 60,000 training samples, 10,000 test samples

Yann LeCun

Results on MNIST Handwritten Digits
CLASSIFIER DEFORMATION PREPROCESSING ERROR (%) Reference
linear classifier (1-layer NN) none 12.00 LeCun et al. 1998
linear classifier (1-layer NN) deskewing 8.40 LeCun et al. 1998
pairwise linear classifier deskewing 7.60 LeCun et al. 1998
K-nearest-neighbors, (L2) none 3.09 Kenneth Wilder, U. Chicago
K-nearest-neighbors, (L2) deskewing 2.40 LeCun et al. 1998
K-nearest-neighbors, (L2) deskew, clean, blur 1.80 Kenneth Wilder, U. Chicago
K-NN L3, 2 pixel jitter deskew, clean, blur 1.22 Kenneth Wilder, U. Chicago
K-NN, shape context matching shape context feature 0.63 Belongie et al. IEEE PAMI 2002
40 PCA + quadratic classifier none 3.30 LeCun et al. 1998
1000 RBF + linear classifier none 3.60 LeCun et al. 1998
K-NN, Tangent Distance subsamp 16x16 pixels 1.10 LeCun et al. 1998
SVM, Gaussian Kernel none 1.40
SVM deg 4 polynomial deskewing 1.10 LeCun et al. 1998
Reduced Set SVM deg 5 poly deskewing 1.00 LeCun et al. 1998
Virtual SVM deg-9 poly Affine none 0.80 LeCun et al. 1998
V-SVM, 2-pixel jittered none 0.68 DeCoste and Scholkopf, MLJ 2002
V-SVM, 2-pixel jittered deskewing 0.56 DeCoste and Scholkopf, MLJ 2002
2-layer NN, 300 HU, MSE none 4.70 LeCun et al. 1998
2-layer NN, 300 HU, MSE, Affine none 3.60 LeCun et al. 1998
2-layer NN, 300 HU deskewing 1.60 LeCun et al. 1998
3-layer NN, 500+150 HU none 2.95 LeCun et al. 1998
3-layer NN, 500+150 HU Affine none 2.45 LeCun et al. 1998
3-layer NN, 500+300 HU, CE, reg none 1.53 Hinton, unpublished, 2005
2-layer NN, 800 HU, CE none 1.60 Simard et al., ICDAR 2003
2-layer NN, 800 HU, CE Affine none 1.10 Simard et al., ICDAR 2003
2-layer NN, 800 HU, MSE Elastic none 0.90 Simard et al., ICDAR 2003
2-layer NN, 800 HU, CE Elastic none 0.70 Simard et al., ICDAR 2003
Convolutional net LeNet-1 subsamp 16x16 pixels 1.70 LeCun et al. 1998
Convolutional net LeNet-4 none 1.10 LeCun et al. 1998
Convolutional net LeNet-5, none 0.95 LeCun et al. 1998
Conv. net LeNet-5, Affine none 0.80 LeCun et al. 1998
Boosted LeNet-4 Affine none 0.70 LeCun et al. 1998
Conv. net, CE Affine none 0.60 Simard et al., ICDAR 2003
Comv net, CE Elastic none 0.40 Simard et al., ICDAR 2003

Yann LeCun

Some Results on MNIST (from raw images: no preprocessing)

CLASSIFIER DEFORMATION ERROR Reference

2-layer NN, 800 HU, CE 1.60
3-layer NN, 500+300 HU, CE, reg 1.53 Hinton, in press, 2005
SVM, Gaussian Kernel 1.40 Cortes 92 + Many others
??? 0.95

0.80
0.70

??? 0.60
Training set augmented with Affine Distortions

2-layer NN, 800 HU, CE Affine 1.10
Affine 0.80
Affine 0.60

Training et augmented with Elastic Distortions
2-layer NN, 800 HU, CE Elastic 0.70

Elastic 0.40
??? 0.39

Knowledge-free methods (a fixed permutation of the pixels would make no difference)
Simard et al., ICDAR 2003

Convolutional nets
Convolutional net LeNet-5, Ranzato et al. NIPS 2006
Convolutional net LeNet-6, Ranzato et al. NIPS 2006

Simard et al., ICDAR 2003
Virtual SVM deg-9 poly Scholkopf
Convolutional net, CE Simard et al., ICDAR 2003

Simard et al., ICDAR 2003
Convolutional net, CE Simard et al., ICDAR 2003

Note: some groups have obtained good results with various amounts of preprocessing: [deCoste and Schoelkopf]

get 0.56% with an SVM on deskewed images; [Belongie] get 0.63% with “shape context” features;

 [CENPARMI] get below 0.4% with features and SVM; [Liu] get 0.42% with features and SVM.

Yann LeCun

Invariance and Robustness to Noise

Yann LeCun

Recognizing Multiple Characters with Replicated Nets

Yann LeCun

Recognizing Multiple Characters with Replicated Nets

Yann LeCun

Handwriting Recognition

Yann LeCun

TV sport categorization (with Alex Niculescu, Cornell)

Classifying TV sports snapshots into 7 categories: auto racing, baseball,
basketball, bicycle, golf, soccer, football.

123,900 training images (300 sequence with 59 frames for each sport)

82,600 test images (200 sequences with 59 frames for each sport)

Preprocessing: convert to YUV, high­pass filter the Y component, crop,
subsample to 72x60 pixels

Results:
frame-level accuracy: 61% correct
Sequence-level accuracy 68% correct (simple voting scheme).

Yann LeCun

TV sport categorization (with Alex Niculescu, Cornell)

Yann LeCun

Face Detection and Pose Estimation with Convolutional Nets

Training: 52,850, 32x32 grey­level images of faces, 52,850 non­faces.

Each sample: used 5 times with random variation in scale, in­plane rotation, brightness
and contrast.

2nd phase: half of the initial negative set was replaced by false positives of the initial
version of the detector .

Yann LeCun

Face Detection: Results

x93%86%Schneiderman & Kanade

x96%89%Rowley et al

x83%70%xJones & Viola (profile)

xx95%90%Jones & Viola (tilted)

88%83%83%67%97%90%Our Detector

1.280.53.360.4726.94.42

MIT+CMUPROFILETILTEDData Set->

False positives per image->

Yann LeCun

Face Detection and Pose Estimation: Results

Yann LeCun

Face Detection with a Convolutional Net

Yann LeCun

Applying a ConvNet on Sliding Windows is Very Cheap!

96x96

input:120x120

output: 3x3

 Traditional Detectors/Classifiers must be applied to every
location on a large input image, at multiple scales.
 Convolutional nets can replicated over large images very
cheaply.
 The network is applied to multiple scales spaced by 1.5.

Building a Detector/Recognizer:
Replicated Convolutional Nets

 Computational cost for replicated convolutional net:
96x96 ­> 4.6 million multiply­accumulate operations
120x120 ­> 8.3 million multiply­accumulate operations
240x240 ­> 47.5 million multiply­accumulate operations
480x480 ­> 232 million multiply­accumulate operations

 Computational cost for a non­convolutional detector of the
same size, applied every 12 pixels:

96x96 ­> 4.6 million multiply­accumulate operations
120x120 ­> 42.0 million multiply­accumulate operations
240x240 ­> 788.0 million multiply­accumulate operations
480x480 ­> 5,083 million multiply­accumulate operations 96x96 window

12 pixel shift

84x84 overlap

C. Elegans Embryo Phenotyping

Analyzing results for Gene Knock­Out Experiments

[Ning et al. IEEE Trans. Image Processing, Nov 2005]

C. Elegans Embryo Phenotyping

Analyzing results for Gene Knock­Out Experiments

C. Elegans Embryo Phenotyping

Raw
input

ConvNet
labeling

CCPoE
Cleanup

Elastic
Model
Fitting

CCPoE = Convolutional Conditional Product of Experts [Ning et al, IEEE TIP 2005]
(similar to Field of Experts [Roth & Black, CVPR 2005])

Visual Navigation for a Mobile Robot

 Mobile robot with two cameras
 The convolutional net is trained to emulate
a human driver from recorded sequences of
video + human­provided steering angles.
 The network maps stereo images to steering
angles for obstacle avoidance

[LeCun et al. NIPS 2005]

Yann LeCun

LAGR: Learning Applied to Ground Robotics

 Getting a robot to drive autonomously in
unknown terrain solely from vision (camera
input).
 Our team (NYU/Net­Scale Technologies
Inc.) is one of 8 participants funded by
DARPA
 All teams received identical robots and can
only modify the software (not the hardware)
 The robot is given the GPS coordinates of a
goal, and must drive to the goal as fast as
possible. The terrain is unknown in advance.
The robot is run 3 times through the same
course.

Yann LeCun

Training a ConvNet On­line to detect obstacles
[Hadsell et al. Robotics Science and Systems 2007]

Raw image
Traversability labels
from stereo (12 meters)

Traversability labels
from ConvNet (30 meters)

Yann LeCun

Training a ConvNet On­line to detect obstacles
[Hadsell et al. Robotics Science and Systems 2007]

Raw image
Traversability labels
from stereo (12 meters)

Traversability labels
from ConvNet (30 meters)

Yann LeCun

Generic Object Detection and Recognition
with Invariance to Pose and Illumination

 50 toys belonging to 5 categories: animal, human figure, airplane, truck, car
 10 instance per category: 5 instances used for training, 5 instances for testing

 Raw dataset: 972 stereo pair of each object instance. 48,600 image pairs total.

 For each instance:

18 azimuths
0 to 350 degrees every 20
degrees

9 elevations
30 to 70 degrees from
horizontal every 5 degrees

6 illuminations
on/off combinations of 4
lights

2 cameras (stereo)
7.5 cm apart

40 cm from the object

Training instances Test instances

Yann LeCun

Data Collection, Sample Generation

Image capture setup Objects are painted green so that:
­ all features other than shape are removed
­ objects can be segmented, transformed,
 and composited onto various backgrounds

Original image Object mask

Composite imageShadow factor

Yann LeCun

Data Collection, Sample Generation

Samples showing the 6 different illuminations for 2 different elevations

Yann LeCun

Textured and Cluttered Datasets

Yann LeCun

Computational Models of Object Recognition

 Detecting features at interest points
(Schmid, Perona, Ponce, Lowe) versus
detecting them everywhere (LeCun,
Ullman).
 Fixed features (Gabor, SIFT, Shape
Context...), versus learned features
 Many sparse/selective features
(Ullman's fragments) versus few
dense/broad features (features that are
“on” half the time).
 Selection from lots of simple features
(Viola/Jones), vs tuning/optimization
of a small number of features.
 Bag of features vs spatial relationships

Yann LeCun

What Architecture, what training?

 Selection of “patch” features (Schmid,
Ullman, Ponce, Perona,.....), versus
optimization of non­template features.
 “heuristic” feature selection (e.g. Using
mutual information) versus learning the
features by optimizing a global
performance measure.
 Piecemeal training of feature and model,
versus global training of the whole
system
 2­layer feature+model (almost
everyone), versus hierarchical/multi­
level (LeCun, Riesenhuber, Geman,
Ullman)
 Generative (Perona, Amit, Freeman),
versus discriminative (LeCun, Viola)

Yann LeCun

Experiment 1: Normalized­Uniform Dataset

 Normalized­Uniform Dataset: 972 stereo pair of each object instance (18
azimuths X 9 elevations X 6 illuminations).

 5 categories. 5 instances/category for training, 5 instances/category for testing
 24,300 stereo pairs for training, 24,300 for testing

 Objects are centered and size­normalized so all the views of each object instance
fits in an 80x80 pixel window.
 Objects are placed on uniform backgrounds (one for each of the 6 illuminations) of
size 96x96 pixels
 Each sample is composed of two 96x96 images

Yann LeCun

Experiment 1: Normalized­Uniform Dataset

Training instances Test instances

Yann LeCun

Experiment 1: Normalized­Uniform Set: Representations

 1 ­ Raw Stereo Input: 2 images 96x96 pixels input dim. = 18432
 2 ­ Raw Monocular Input:1 image, 96x96 pixels input dim. = 9216
 3 – Subsampled Mono Input: 1 image, 32x32 pixels input dim = 1024
 4 – PCA­95 (EigenToys): First 95 Principal Components input dim. = 95 First 60 eigenvectors (EigenToys)

Yann LeCun

Convolutional Network

Stereo

input

2@96x96

Layer 1

8@92x92
Layer 2
8@23x23

Layer 3
24@18x18 Layer 4

24@6x6
Layer 5
100

5

5x5
convolution
(16 kernels)

6x6
convolution
(96 kernels)

6x6
convolution
(2400 kernels)

4x4
subsampling 3x3

subsampling

Layer 6
Fully
connected
(500 weights)

 90,857 free parameters, 3,901,162 connections.
The architecture alternates convolutional layers (feature detectors) and subsampling layers
(local feature pooling for invariance to small distortions).

 The entire network is trained end­to­end (all the layers are trained simultaneously).

 A gradient­based algorithm is used to minimize a supervised loss function.

Yann LeCun

Alternated Convolutions and Subsampling

 Local features are extracted
everywhere.
 averaging/subsampling layer
builds robustness to variations in
feature locations.
 Hubel/Wiesel'62, Fukushima'71,
LeCun'89, Riesenhuber &
Poggio'02, Ullman'02,....

Averaging
subsampling

“Simple cells”
“Complex cells”

Multiple
convolutions

Yann LeCun

Normalized­Uniform Set: Error Rates

 Linear Classifier on raw stereo images: 30.2% error.
 K­Nearest­Neighbors on raw stereo images: 18.4% error.
 K­Nearest­Neighbors on PCA­95: 16.6% error.
 Pairwise SVM on 96x96 stereo images: 11.6% error
 Pairwise SVM on 95 Principal Components: 13.3% error.
 Convolutional Net on 96x96 stereo images: 5.8% error.

Training instances Test instances

Yann LeCun

Normalized­Uniform Set: Learning Times

SVM: using a parallel implementation by
Graf, Durdanovic, and Cosatto (NEC Labs)

Chop off the
last layer of the
convolutional net
and train an SVM on it

Yann LeCun

Jittered­Cluttered Dataset

 Jittered­Cluttered Dataset:
 291,600 tereo pairs for training, 58,320 for testing

 Objects are jittered: position, scale, in­plane rotation, contrast, brightness,
backgrounds, distractor objects,...
Input dimension: 98x98x2 (approx 18,000)

Yann LeCun

Experiment 2: Jittered­Cluttered Dataset

 291,600 training samples, 58,320 test samples
 SVM with Gaussian kernel 43.3% error
Convolutional Net with binocular input: 7.8% error
 Convolutional Net + SVM on top: 5.9% error
 Convolutional Net with monocular input: 20.8% error
 Smaller mono net (DEMO): 26.0% error
 Dataset available from http://www.cs.nyu.edu/~yann

Yann LeCun

Jittered­Cluttered Dataset

OUCH! The convex loss, VC bounds
and representers theorems
don't seem to help

Chop off the last layer,
and train an SVM on it
it works!

What's wrong with SVMs? they are shallow!

 SVM with Gaussian kernels is based on matching global templates
 It is a “shallow” architectures
 There is now way to learn invariant recognition tasks with such naïve architectures
(unless we use an impractically large number of templates).

Linear
Combinations

Global Template Matchers
(each training sample is a template

Input

Features (similarities)

OutputThe number of necessary templates grows
exponentially with the number of dimensions
of variations.
 Global templates are in trouble when the
variations include: category, instance shape,
configuration (for articulated object),
position, azimuth, elevation, scale,
illumination, texture, albedo, in­plane
rotation, background luminance, background
texture, background clutter,

SVM is glorified template matching

Yann LeCun

Examples (Monocular Mode)

Yann LeCun

Learned Features
La

ye
r 2

Layer 3
In

pu
t

Layer 1

Yann LeCun

Examples (Monocular Mode)

Yann LeCun

Examples (Monocular Mode)

Yann LeCun

Examples (Monocular Mode)

Yann LeCun

Examples (Monocular Mode)

Yann LeCun

Examples (Monocular Mode)

Yann LeCun

Examples (Monocular Mode)

Yann LeCun

Natural Images (Monocular Mode)

Yann LeCun

Commercially Deployed applications of Convolutional Nets

Faxed form reader
Developed at AT&T Bell Labs in the early 90's
Commercially deployed in 1994

Check Reading system:
Developed at AT&T Bell Labs in the mid 90's
Commercially deployed by NCR in 1996
First practical system for reading handwritten checks
Read 10 to 20% of all the checks in the US in the late 90's

Face detector / Person detector / Intrusion detector
Developed at NEC Research Institute in 2002/2003
Commercially deployed in 2004 by Vidient Technologies
Used at San Francisco Airport (among others).

Yann LeCun

Supervised Convolutional Nets: Pros and Cons

Convolutional nets can be trained to perform a wide variety of visual
tasks.
Global supervised gradient descent can produce parsimonious
architectures

BUT: they require lots of labeled training samples
60,000 samples for handwriting
120,000 samples for face detection
25,000 to 350,000 for object recognition

Since low­level features tend to be non task specific, we should be able to
learn them unsupervised.

Hinton has shown that layer­by­layer unsupervised “pre­training” can be
used to initialize “deep” architectures
[Hinton & Shalakhutdinov, Science 2006]

Can we use this idea to reduce the number of necessary labeled examples.

Yann LeCun

Models Similar to ConvNets

HMAX
[Poggio &
Riesenhuber
2003]
[Serre et al.
2007]
[Mutch and Lowe
CVPR 2006]

Difference?
the features are
not learned

HMAX is very
similar to
Fukushima's
Neocognitron

[from Serre et al. 2007]

Yann LeCun

Part 3:
 Unsupervised Training of “Deep” Energy­Based Models,
 Learning Invariant Feature Hierarchies

Why do we need Deep Learning?
“scaling learning algorithms towards AI” [Bengio and LeCun 2007]

Deep Belief Networks, Deep Learning
Stacked RBM [Hinton, Osindero, and Teh, Neural Comp 2006]
Stacked autoencoders [Bengio et al. NIPS 2006]
Stacked sparse features [Ranzato & al., NIPS 2006]
Improved stacked RBM [Salakhutdinov & Hinton, AI-Stats 07]

Unsupervised Learning of Invariant Feature Hierarchies
learning features for Caltech-101 [Ranzato et al. CVPR 2006]
learning features hierarchies for hand-writing [Ranzato et al ICDAR'07]

[See Mar'cAurelio Ranzato's poster on Wednesday]

Yann LeCun

Why do we need “Deep” Architectures?

Conjecture: we won't solve the perception problem without solving the
problem of learning in deep architectures [Hinton]
Neural nets with lots of layers
Deep belief networks
Factor graphs with a “Markov” structure

We will not solve the perception problem with kernel machines
Kernel machines are glorified template matchers
You can't handle complicated invariances with templates (you would
need too many templates)

Many interesting functions are “deep”
Any function can be approximated with 2 layers (linear combination
of non-linear functions)
But many interesting functions a more efficiently represented with
multiple layers
Stupid examples: binary addition

[Bengio & LeCun 2007]

Yann LeCun

The Basic Idea of Deep Learning

Unsupervised Training of Feature Hierarchy [Hinton et al. 2005 – 2007]
Each layer is designed to extract higher-level features from
lower-level ones
Each layer is trained unsupervised with a reconstruction criterion
The layers are trained one after the other, in sequence.

[Hinton et al. 2005 ­ 2007]

ENCODER

DECODER

COST

INPUT Y LEVEL 1
FEATURES

RECONSTRUCTION ERROR

ENCODER

DECODER

COST

LEVEL 2
FEATURES

RECONSTRUCTION ERROR

Yann LeCun

Encoder­Decoder Architecture for Unsupervised Learning

A principle on which
unsupervised algorithms can be
built is reconstruction of the
input from a code (feature
vector)
reconstruction from compact
feature vectors (e.g. PCA).
reconstruction from sparse
overcomplete feature vectors
[Olshausen & Field 1997],
[Ranzato et al NIPS 06].
approximation of data
likelihood: Restricted
Boltzmann Machine [Hinton
2005-...]

ENCODER

DECODER

COST

FEATURES
(CODE)

 Z

RECONSTRUCTION ENERGY
 E(Y,W) = min_z E(Y,Z,W)

ZY=argminZ E Y ,Z ,W 

E Y ,W =minZ E Y , Z ,W 

Y

Yann LeCun

What is Energy­Based Unsupervised Learning?

Probabilistic View:
Produce a probability density function that:
has high value in regions of high sample
density
has low value everywhere else (integral=1)
Training: maximize the data likelihood
(intractable)

Energy­Based View:
produce an energy function E(Y) that:
has low value in regions of high sample
density
has high(er) value everywhere else

Y

P(Y)

Y

E(Y)

Yann LeCun

Unsupervised Training of Energy­Based Models

Basic Idea:
push down on the energy of training samples
pull up on the energy of everything else
but this is often intractable

Approximation #1: Contrastive Divergence [Hinton et al 2005]
Push down on the energy of the training samples
Pull up on the energies of configuration that have low energy near
the training samples (to create local minima of the energy
surface)

Approximation #2: Minimizing the information content of the code
[Ranzato et al. AI­Stats 2007]
Reduce the information content of the code by making it sparse
This has the effect of increasing the reconstruction error for non-
training samples.

Yann LeCun

Deep Learning for Non­Linear Dimensionality Reduction

Restricted Boltzmann
Machine.
simple energy function

code units are binary
stochastic
training with contrastive
divergence

From: [Hinton and Salakhutdinov, Science 2006]

E Y , Z ,W =∑ij
−Y i W ij Z j

Yann LeCun

RBM: filters trained on MNIST

“bubble” detectors

Yann LeCun

Non­Linear Dimensionality Reduction: MNIST

[Hinton and Salakhutdinov, Science 2006]

[Salakhutdinov and Hinton, AI­Stats 2007]:
< 1.00% error on MNIST using K-NN on 30 dimensions:
BEST ERROR RATE OF ANY KNOWEDGE-FREE METHODS!!!

Yann LeCun

Encoder/Decoder Architecture for
learning Sparse Feature Representations

Algorithm:
1. find the code Z
that minimizes the
reconstruction
error AND is close
to the encoder
output

2. Update the
weights of the
decoder to
decrease the
reconstruction
error

3. Update the
weights of the
encoder to
decrease the
prediction error

DECODER
Wd

ENCODER
Wc

||Wd f(Z)–X||

Input X

Sparsifying
Logistic f

||Wc X–Z||

Code Z

Energy of encoder
(prediction error)

Energy of decoder
(reconstruction error)

Yann LeCun

MNIST Dataset

 Handwritten Digit Dataset MNIST: 60,000 training samples, 10,000 test samples

Encoder direct filters

 60,000 28x28 images

 196 units in the code
 0.01
 1
 learning rate 0.001
 L1, L2 regularizer 0.005





Training on handwritten digits

Handwritten digits ­ MNIST

forward propagation through
encoder and decoder

after training there is no need to
minimize in code space

Handwritten digits ­ MNIST

Yann LeCun

Training The Layers of a Convolutional Net Unsupervised

Extract windows from the MNIST images

Train the sparse encoder/decoder on those windows

Use the resulting encoder weights as the convolution kernels of a
convolution network

Repeat the process for the second layer

Train the resulting network supervised.

Unsupervised Training of Convolutional Filters

 Experiment 1
Train on 5x5 patches to find 50 features
Use the scaled filters in the encoder to initialize the kernels in
the first convolutional layer

 Experiment 2
Same as experiment 1, but training set augmented by elastically distorted digits (random
initialization gives test error rate equal to 0.49%).

 The baseline: lenet6 initialized randomly

Test error rate: 0.60%. Training error rate: 0.00%.

Test error rate: 0.39%. Training error rate: 0.23%.

Test error rate: 0.70%. Training error rate: 0.01%.

CLASSIFICATION EXPERIMENTS

IDEA: improving supervised learning by pre-training

 with the unsupervised method (*)

sparse representations & lenet6 (1->50->50->200->10)

supervised filters in first conv. layer

unsupervised filters in first conv. layer

(*)[Hinton, Osindero, Teh “A fast learning algorithm for deep belief nets” Neural Computaton 2006]

Yann LeCun

Best Results on MNIST (from raw images: no preprocessing)

CLASSIFIER DEFORMATION ERROR Reference
Knowledge-free methods

2-layer NN, 800 HU, CE 1.60 Simard et al., ICDAR 2003
3-layer NN, 500+300 HU, CE, reg 1.53 Hinton, in press, 2005
SVM, Gaussian Kernel 1.40 Cortes 92 + Many others
Unsupervised Stacked RBM + backprop 0.95 Hinton, Neur Comp 2006

Convolutional nets
Convolutional net LeNet-5, 0.80 Ranzato et al. NIPS 2006
Convolutional net LeNet-6, 0.70 Ranzato et al. NIPS 2006
Conv. net LeNet-6- + unsup learning 0.60 Ranzato et al. NIPS 2006

Training set augmented with Affine Distortions
2-layer NN, 800 HU, CE Affine 1.10 Simard et al., ICDAR 2003
Virtual SVM deg-9 poly Affine 0.80 Scholkopf
Convolutional net, CE Affine 0.60 Simard et al., ICDAR 2003

Training et augmented with Elastic Distortions
2-layer NN, 800 HU, CE Elastic 0.70 Simard et al., ICDAR 2003
Convolutional net, CE Elastic 0.40 Simard et al., ICDAR 2003
Conv. net LeNet-6- + unsup learning Elastic 0.39 Ranzato et al. NIPS 2006

Yann LeCun

MNIST Errors (0.42% error)

 100,000 12x12 patches

 200 units in the code
 0.02
 1
 learning rate 0.001
 L1 regularizer 0.001
 fast convergence: < 30min.




Berkeley data set

Training on natural image patches

200 decoder filters (reshaped columns of matrix Wd)

Natural image patches: Filters

Yann LeCun

Learning Invariant Feature Hierarchies

Learning Shift Invariant Features

ENCODER

DECODER

COST

INPUT Y

FEATURES
(CODE)

 Z

RECONSTRUCTION ERROR

ENCODER

DECODER

COST

INPUT Y

INVARIANT
FEATURES
(CODE)

Z

RECONSTRUCTION ERROR

TRANSFORMATION
PARAMETERS U

Standard Feature Extractor Invariant Feature Extractor

Yann LeCun

Learning Invariant Feature Hierarchies

Learning Shift Invariant Features

input

image

+

reconstruction

shift­invariant

representation

encoder

filter bank

decoder

basis functions

transformation

parameters

1

0

0

1

“1001”

convolutions convolutionsswitch

upsampling

max
pooling

17x17

feature
maps

feature
maps

feature maps

17x17

encoder decoder

(a) (b) (c) (d)

Yann LeCun

Shift Invariant Global Features on MNIST

Learning 50 Shift Invariant Global Features on MNIST:
50 filters of size 20x20 movable in a 28x28 frame (81 positions)
movable strokes!

Yann LeCun

 

Example of Reconstruction

=

ORIGINAL
DIGIT

RECONS­
TRUCTION

ACTIVATED DECODER
BASIS FUNCTIONS

(in feed­back layer)
red squares: decoder bases

Any character can be reconstructed as a
linear combination of a small number of
basis functions.

Yann LeCun

Learning Invariant Filters in a Convolutional Net

Yann LeCun

Influence of Number of Training Samples

Yann LeCun

Generic Object Recognition: 101 categories + background

Caltech­101 dataset: 101 categories
accordion airplanes anchor ant barrel bass beaver binocular bonsai brain
brontosaurus buddha butterfly camera cannon car_side ceiling_fan cellphone
chair chandelier cougar_body cougar_face crab crayfish crocodile crocodile_head
cup dalmatian dollar_bill dolphin dragonfly electric_guitar elephant emu
euphonium ewer Faces Faces_easy ferry flamingo flamingo_head garfield
gerenuk gramophone grand_piano hawksbill headphone hedgehog helicopter ibis
inline_skate joshua_tree kangaroo ketch lamp laptop Leopards llama lobster
lotus mandolin mayfly menorah metronome minaret Motorbikes nautilus octopus
okapi pagoda panda pigeon pizza platypus pyramid revolver rhino rooster
saxophone schooner scissors scorpion sea_horse snoopy soccer_ball stapler
starfish stegosaurus stop_sign strawberry sunflower tick trilobite umbrella watch
water_lilly wheelchair wild_cat windsor_chair wrench yin_yang

Only 30 training examples per category!

A convolutional net trained with backprop (supervised) gets 20%
correct recognition.

Training the filters with the sparse invariant unsupervised method

Yann LeCun

Training the 1st stage filters

12x12 input windows (complex cell receptive fields)

9x9 filters (simple cell receptive fields)

4x4 pooling

Yann LeCun

Training the 2nd stage filters
13x13 input windows (complex cell receptive fields on 1st features)

9x9 filters (simple cell receptive fields)

Each output feature map combines 4 input feature maps

5x5 pooling

Yann LeCun

Generic Object Recognition: 101 categories + background

9x9 filters at the first level

9x9 filters at the second level

Yann LeCun

Shift­Invariant Feature Hierarchies on Caltech­101

2 layers of filters
trained
unsupervised

supervised
classifier on top.

54% correct on
Caltech­101 with
30 examples per
class

20% correct with
purely supervised
backprop

input
image

140x140

8 among the 64 33x33 feature maps

first level
feature extraction

second level
feature extraction

.

2 among the 512
5x5

feature maps

convolution

64 9x9 filters

max­pooling

4x4 window

and squashing

+

+

convolution

2048 9x9 filters

max­pooling

5x5 window

and squashing

Yann LeCun

Recognition Rate on Caltech 101

BEST WORST
ant 16%

background
3%

wild cat
1%

cougar body
12%

beaver
13%

lotus22%
anchor

41
%

cellphone
83%

w. chair
92%

minaret

91%

joshua t.

47%

bonsai
34%

ewer 65%

sea horse
37%

84%
face

skate
100%

100%

dollar
100%

100%
okapi

metronome

Yann LeCun

Caltech 256

Yann LeCun

Conclusion

Energy­Based Models is a general framework for probabilistic and non­
probabilistic learning
Make the energy of training samples low, make the energy of
everything else high (e.g. Discriminant HMM, Graph Transformer
Networks, Conditional Random Fields, Max Margin Markov Nets,...)

Invariant vision tasks require deep learning
shallow models such as SVM can't learn complicated invariances.

Deep Supervised Learning works well with lots of samples
Convolutional nets have record accuracy on handwriting recognition
and face detection, and can be applied to many tasks.

Unsupervised Learning can reduce the need for labeled samples
Stacks of sequentially-trained RBMs or sparse encoder-decoder
layers learn good feature without requiring labeled samples

Learning invariant feature hierarchies
yields excellent accuracy for shape recognition

Yann LeCun

Thank You

