Support Vector Machines: Maximum Margin Classifiers

Machine Learning and Pattern Recognition: September 16, 2008

Piotr Mirowski
Based on slides by Sumit Chopra and Fu-Jie Huang

Outline

- What is behind Support Vector Machines?
-Constrained Optimization
-Lagrange Duality
- Support Vector Machines in Detail
\rightarrow Kernel Trick
*LibSVM demo

Binary Classification Problem

- Given: Training data generated according to the distribution D

$$
\begin{aligned}
& \qquad\left(x_{1}, y_{1}\right), \ldots,\left(x_{p}, y_{p}\right) \in \mathfrak{R}^{n} \times\{-1,1\} \\
& \text { input label } \\
& \text { input label } \\
& \text { space space }
\end{aligned}
$$

- Problem: Find a classifier (a function) $h(x): \mathfrak{R}^{n} \rightarrow\{-1,1\}$ such that it generalizes well on the test set obtained from the same distribution D
- Solution:
*Linear Approach: linear classifiers (e.g. Perceptron)
\rightarrow Non Linear Approach: non-linear classifiers
(e.g. Neural Networks, SVM)

Linearly Separable Data

- Assume that the training data is linearly separable

Linearly Separable Data

- Assume that the training data is linearly separable

- Then the classifier is: $\quad h(x)=\vec{w} \cdot \vec{x}+b \quad$ where $w \in \mathfrak{R}^{n}, b \in \mathfrak{R}$
- Inference: $\operatorname{sign}(h(x)) \in\{-1,1\}$

Linearly Separable Data

- Assume that the training data is linearly separable

- Margin $\rho=\frac{1}{\|\vec{w}\|}$
- Maximize margin ρ (or 2ρ) so that:

For the closest points: $h(x)=\vec{w} \cdot \vec{x}+b \in\{-1,1\}$

Optimization Problem

- A Constrained Optimization Problem

$$
\begin{aligned}
& \min _{w} \frac{1}{2}\|\vec{w}\|^{2} \\
& \text { s.t.: } \\
& y_{i}\left(\vec{w} \cdot \vec{x}_{i}+b\right) \geqslant 1, \quad i=1, \ldots, m \\
& \text { label input }
\end{aligned}
$$

- Equivalent to maximizing the margin $\rho=\frac{1}{\|\vec{w}\|}$
- A convex optimization problem:
- Objective is convex
- Constraints are affine hence convex

Optimization Problem

- Compare:

$$
\begin{aligned}
& \min \frac{1}{2}\|\vec{w}\|^{2} \quad \text { objective } \\
& \text { s.t.: } \\
& y_{i}\left(\vec{w} \cdot \vec{x}_{i}+b\right) \geqslant 1, \quad i=1, \ldots, m \\
& \quad \text { constraints }
\end{aligned}
$$

- With:

$$
\min _{w}\left(\sum_{i=1}^{p} \frac{\left(-y_{i}\left(\vec{w} \cdot \vec{x}_{i}+b\right)\right)}{\text { energy/errors }}+\frac{\lambda}{2}\|\vec{w}\|^{2}\right)
$$

Optimization: Some Theory

- The problem:

$$
\begin{aligned}
& \min _{x} f_{0}(x) \longleftarrow \text { objective function } \\
& \text { s.t.: } \\
& f_{i}(x) \leqslant 0, \quad i=1, \ldots, m \leftarrow \text { inequality constraints } \\
& h_{i}(x)=0, \quad i=1, \ldots, p \leftarrow \text { equality constraints }
\end{aligned}
$$

- Solution of problem: x^{o}
\rightarrow Global (unique) optimum - if the problem is convex
- Local optimum - if the problem is not convex

Optimization: Some Theory

- Example: Standard Linear Program (LP)

$$
\begin{aligned}
& \min _{x} c^{T} x \\
& \text { s.t. }: \\
& A x=b \\
& x \geqslant 0
\end{aligned}
$$

- Example: Least Squares Solution of Linear Equations (with L_{2} norm regularization of the solution x)
i.e. Ridge Regression

$$
\begin{aligned}
& \min _{x} x^{T} x \\
& \text { s.t. }: \\
& A x=b
\end{aligned}
$$

Big Picture

- Constrained / unconstrained optimization
- Hierarchy of objective function:
smooth = infinitely derivable convex = has a global optimum

Toy Example: Equality Constraint

- Example 1: $\quad \min x_{1}+x_{2} \quad \equiv f$

$$
\begin{aligned}
& \nabla f=\binom{\frac{\partial f}{\partial x_{1}}}{\frac{\partial f}{\partial x_{2}}} \\
& \nabla h_{1}=\binom{\frac{\partial h_{1}}{\partial x_{1}}}{\frac{\partial h_{1}}{\partial x_{2}}}
\end{aligned}
$$

- At Optimal Solution: $\quad \nabla f\left(x^{o}\right)=\lambda_{1}^{o} \nabla h_{1}\left(x^{o}\right)$

Toy Example: Equality Constraint

- x is not an optimal solution, if there exists $s \neq 0$ such that

$$
\begin{aligned}
& h_{1}(x+s)=0 \\
& f(x+s)<f(x)
\end{aligned}
$$

- Using first order Taylor's expansion

$$
\begin{align*}
& h_{1}(x+s)=h_{1}(x)+\nabla h_{1}(x)^{T} s=\nabla h_{1}(x)^{T} s=0 \tag{1}\\
& f(x+s)-f(x)=\nabla f(x)^{T} s<0 \tag{2}
\end{align*}
$$

- Such an s can exist only when $\nabla h_{1}(x)$ and $\nabla f(x)$ are not parallel

Toy Example: Equality Constraint

- Thus we have

$$
\nabla f\left(x^{o}\right)=\lambda_{1}^{o} \nabla h_{1}\left(x^{o}\right)
$$

- The Lagrangian dual variable for $\quad h_{1}$

$$
L\left(x, \lambda_{1}\right)=f(x)-\lambda_{1} h_{1}(x)
$$

- Thus at the solution

$$
\nabla_{x} L\left(x^{o}, \lambda_{1}^{o}\right)=\nabla f\left(x^{o}\right)-\lambda_{1}^{o} \nabla h_{1}\left(x^{o}\right)=0
$$

- This is just a necessary (not a sufficient) condition" x solution implies $\nabla h_{1}(x) \| \nabla f(x)$

Toy Example: Inequality Constraint

- Example 2: $\quad \min x_{1}+x_{2} \quad \equiv f$

Toy Example: Inequality Constraint

- x is not an optimal solution, if there exists $s \neq 0$ such that

$$
\begin{aligned}
& c_{1}(x+s) \geqslant 0 \\
& f(x+s)<f(x)
\end{aligned}
$$

- Using first order Taylor's expansion

$$
\begin{align*}
& c_{1}(x+s)=c_{1}(x)+\nabla c_{1}(x)^{T} s \geqslant 0 \tag{1}\\
& f(x+s)-f(x)=\nabla f(x)^{T} s<0 \tag{2}
\end{align*}
$$

Toy Example: Inequality Constraint

- Case 1: Inactive constraint $\quad c_{1}(x)>0$
\rightarrow Any sufficiently small s as long as $\nabla f_{1}(x) \neq 0$
\rightarrow Thus $s=-\alpha \nabla f(x) \quad$ where $\alpha>0$
- Case 2: Active constraint $\quad c_{1}(x)=0$

$$
\begin{align*}
& \nabla c_{1}(x)^{T} s \geqslant 0 \tag{1}\\
& \nabla f(x)^{T} s<0 \tag{2}
\end{align*}
$$

$$
\nabla f(x)=\lambda_{1} \nabla c_{1}(x), \quad \text { where } \lambda_{1} \geqslant 0
$$

Toy Example: Inequality Constraint

- Thus we have the Lagrangian (as before)

$$
L\left(x, \lambda_{1}\right)=f(x)-\lambda_{1} c_{1}(x)
$$

- The optimality conditions

$$
\nabla_{x} L\left(x^{o}, \lambda_{1}^{o}\right)=\nabla f\left(x^{o}\right)-\lambda_{1}^{o} \nabla c_{1}\left(x^{o}\right)=0 \quad \text { for some } \quad \lambda_{1} \geqslant 0
$$

and

$$
\begin{array}{cl}
\lambda_{1}^{o} c_{1}\left(x^{o}\right)=0 \longleftarrow & \begin{array}{l}
\text { Complementarity } \\
\text { condition }
\end{array} \\
\text { either } c_{1}\left(x^{o}\right)=0 & \text { or } \lambda_{1}^{o}=0 \\
& \text { (active) } \\
\text { (inactive) }
\end{array}
$$

Same Concepts in a More General Setting

Lagrange Function

- The Problem

$$
\begin{array}{ll}
\min _{x} f_{0}(x) & \text { objective function } \\
\text { s.t.: } & \\
f_{i}(x) \leqslant 0, \quad i=1, \ldots, m & m \text { inequality constraints } \\
h_{i}(x)=0, \quad i=1, \ldots, p & p \text { equality constraints }
\end{array}
$$

- Standard tool for constrained optimization: the Lagrange Function

$$
L(x, \lambda, v)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} v_{i} h_{i}(x)
$$

Lagrange Dual Function

- Defined, for λ, v as the minimum value of the Lagrange function over x
m inequality constraints p equality constraints

$$
g: \mathfrak{R}^{m} \times \mathfrak{R}^{p} \rightarrow \mathfrak{R}
$$

$g(\lambda, v)=\inf _{x \in D} L(x, \lambda, v)=\inf _{x \in D}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{1} f_{i}(x)+\sum_{i=1}^{p} v_{i} h_{i}(x)\right)$

Lagrange Dual Function

- Interpretation of Lagrange dual function:
\rightarrow Writing the original problem as unconstrained problem but with hard indicators (penalties)

$$
\underset{x}{\operatorname{minimize}}\left(f_{0}(x)+\sum_{i=1}^{m} I_{0}\left(f_{i}(x)\right)+\sum_{i=1}^{p} I_{1}\left(h_{i}(x)\right)\right)
$$

where

$$
I_{0}(u)=\left\{\begin{array}{cc}
\left\{\begin{array}{cc}
0 & \text { satisfied } \\
\infty & u>0
\end{array}\right\} \quad I_{1}(u)=\left\{\begin{array}{cc}
0 & u=0 \\
\infty & u \neq 0
\end{array}\right\} \\
\text { unsatisfied }
\end{array}\right\}
$$

Lagrange Dual Function

- Interpretation of Lagrange dual function:
- The Lagrange multipliers in Lagrange dual function can be seen as "softer" version of indicator (penalty) functions.
$\underset{x}{\operatorname{minimize}}\left(f_{0}(x)+\sum_{i=1}^{m} I_{0}\left(f_{i}(x)\right)+\sum_{i=1}^{p} I_{1}\left(h_{i}(x)\right)\right)$

$$
\inf _{x \in D}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} v_{i} h_{i}(x)\right)
$$

Lagrange Dual Function

- Lagrange dual function gives a lower bound on optimal value of the problem:

$$
g(\lambda, \nu) \leqslant p^{o}
$$

- Proof: Let \hat{x} be a feasible optimal point and let $\lambda \geqslant 0$. Then we have:

$$
\begin{array}{ll}
f_{i}(\hat{x}) \leqslant 0 & i=1, \ldots, m \\
h_{i}(\hat{x})=0 & i=1, \ldots, p
\end{array}
$$

Lagrange Dual Function

- Lagrange dual function gives a lower bound on optimal value of the problem:

$$
g(\lambda, \nu) \leqslant p^{o}
$$

- Proof: Let \hat{x} be a feasible optimal point and let $\lambda \geqslant 0$. Then we have:

$$
\begin{array}{ll}
f_{i}(\hat{x}) \leqslant 0 & i=1, \ldots, m \\
h_{i}(\hat{x})=0 & i=1, \ldots, p
\end{array}
$$

- Thus

$$
L(\hat{x}, \lambda, v)=f_{0}(\hat{x})+\sum_{i=1}^{m} \lambda_{i} f_{i}(\hat{x})+\sum_{i=1}^{p} v_{i} h_{i}(\hat{x}) \leqslant f_{0}(\hat{x})
$$

Lagrange Dual Function

- Lagrange dual function gives a lower bound on optimal value of the problem:

$$
g(\lambda, v) \leqslant p^{o}
$$

- Proof: Let \hat{x} be a feasible optimal point and let $\lambda \geqslant 0$. Then we have:
- Thus

$$
\begin{array}{cc}
f_{i}(\hat{x}) \leqslant 0 & i=1, \ldots, m \\
h_{i}(\hat{x})=0 & i=1, \ldots, p \\
& \leqslant \leqslant \\
L(\hat{x}, \lambda, v)=f_{0}(\hat{x})+\sum_{i=1}^{m} \lambda_{i} f_{i}(\hat{x})+\sum_{i=1}^{p} v_{i} h_{i}(\hat{x}) \leqslant f_{0}(\hat{x})
\end{array}
$$

Lagrange Dual Function

- Lagrange dual function gives a lower bound on optimal value of the problem:

$$
g(\lambda, v) \leqslant p^{o}
$$

- Proof: Let \hat{x} be a feasible optimal point and let $\lambda \geqslant 0$. Then we have:
- Thus

$$
\begin{array}{cl}
f_{i}(\hat{x}) \leqslant 0 & i=1, \ldots, m \\
h_{i}(\hat{x})=0 & i=1, \ldots, p \\
& \leqslant 0 \\
L(\hat{x}, \lambda, v)=f_{0}(\hat{x})+\sum_{i=1}^{m} \lambda_{i} f_{i}(\hat{x})+\sum_{i=1}^{p} v_{i} h_{i}(\hat{x}) \leqslant f_{0}(\hat{x})
\end{array}
$$

- Hence

$$
g(\lambda, v)=\inf _{x \in D} L(x, \lambda, v) \leqslant L(\hat{x}, \lambda, v) \leqslant f_{0}(\hat{x})
$$

Sufficient Condition

- If $\left(x^{o}, \lambda^{o}, \nu^{o}\right)$ is a saddle point, i.e. if

$$
\forall x \in \mathfrak{R}^{n}, \quad \forall \lambda \geqslant 0, \quad L\left(x^{o}, \lambda, v\right) \leqslant L\left(x^{o}, \lambda^{o}, v^{o}\right) \leqslant L\left(x, \lambda^{o}, v^{o}\right)
$$

- ... then $\left(x^{o}, \lambda^{o}, \nu^{o}\right)$ is a solution of p^{o}

Lagrange Dual Problem

- Lagrange dual function gives a lower bound on the optimal value of the problem.
- We seek the "best" lower bound to minimize the objective:

$$
\begin{aligned}
& \text { maximize } g(\lambda, v) \\
& \text { s.t.: } \quad \lambda \geqslant 0
\end{aligned}
$$

- The dual optimal value and solution:

$$
d^{o}=g\left(\lambda^{o}, v^{o}\right)
$$

- The Lagrange dual problem is convex even if the original problem is not.

Primal / Dual Problems

- Primal problem:

$$
\begin{array}{ll}
& \min _{x \in D} f_{0}(x) \\
p^{o} \quad & \text { s.t. }: \\
& f_{i}(x) \leqslant 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

- Dual problem:

$$
\begin{array}{ll}
\max _{\lambda, v} & g(\lambda, v) \\
\text { s.t.: } & \lambda \geqslant 0 \\
g(\lambda, v)=\inf _{x \in D}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{1} f_{i}(x)+\sum_{i=1}^{p} v_{i} h_{i}(x)\right)
\end{array}
$$

Weak Duality

- Weak duality theorem:

$$
d^{o} \leqslant p^{o}
$$

- Optimal duality gap:

$$
p^{o}-d^{o} \geqslant 0
$$

- This bound is sometimes used to get an estimate on the optimal value of the original problem that is difficult to solve.

Strong Duality

- Strong Duality:

$$
d^{o}=p^{o}
$$

- Strong duality does not hold in general.
- Slater's Condition: If $x \in D$ and it is strictly feasible:

$$
\begin{array}{ll}
f_{i}(x)<0 & \text { for } i=1, \ldots m \\
h_{i}(x)=0 & \text { for } i=1, \ldots p
\end{array}
$$

- Strong Duality theorem:
if Slater's condition holds and the problem is convex, then strong duality is attained:
$\exists\left(\lambda^{o}, \nu^{o}\right) \quad$ with $\quad d^{o}=g\left(\lambda^{o}, v^{o}\right)=\max g(\lambda, v)=\inf L\left(x, \lambda^{o}, v^{o}\right)=p^{o}$

Optimality Conditions: First Order

- Complementary slackness:
if strong duality holds, then at optimality $\left(x^{o}, \lambda^{o}, v^{o}\right)$

$$
\lambda_{i}^{o} f_{i}\left(x^{o}\right)=0 \quad i=1, \ldots m
$$

- Proof:

$$
\begin{aligned}
& f_{0}\left(x^{o}\right)=g\left(\lambda^{o}, v^{o}\right) \quad \text { (strong duality) } \\
&=\inf _{x}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{o} f_{i}(x)+\sum_{i=1}^{p} v_{i}^{o} h_{i}(x)\right) \\
& \leqslant f_{0}\left(x^{o}\right)+\sum_{i=1}^{m} \lambda_{i}^{o} f_{i}\left(x^{o}\right)+\sum_{i=1}^{p} v_{i}^{o} h_{i}\left(x^{o}\right) \\
& \leqslant f_{0}\left(x^{o}\right) \quad \forall i \\
& \forall i, f_{i}(x) \leqslant 0, \lambda_{i} \geq 0
\end{aligned}
$$

Optimality Conditions: First Order

- Karush-Kuhn-Tucker (KKT) conditions If the strong duality holds, then at optimality:

$$
\begin{aligned}
& f_{i}\left(x^{o}\right) \leqslant 0, i=1, \ldots, m \\
& h_{i}\left(x^{o}\right)=0, \quad i=1, \ldots, p \\
& \lambda_{i}^{o} \geqslant 0, \quad i=1, \ldots, m \\
& \lambda_{i}^{o} f_{i}\left(x^{o}\right)=0, \quad i=1, \ldots, m \\
& \nabla f_{0}\left(x^{o}\right)+\sum_{i=1}^{m} \lambda_{i}^{o} \nabla f_{i}\left(x^{o}\right)+\sum_{i=1}^{p} v_{i}^{o} \nabla h_{i}\left(x^{o}\right)=0
\end{aligned}
$$

- KKT conditions are
\rightarrow necessary in general (local optimum)
\rightarrow necessary and sufficient in case of convex problems (global optimum)

What are Support Vector Machines?

- Linear classifiers
- (Mostly) binary classifiers
- Supervised training
- Good generalization with explicit bounds

Main Ideas Behind Support Vector Machines

- Maximal margin
- Dual space
- Linear classifiers
in high-dimensional space using non-linear mapping
- Kernel trick

Quadratic Programming

$$
\max _{w, b}^{\min } \frac{\left|\boldsymbol{w}^{T} \boldsymbol{x}_{\boldsymbol{i}}+b\right|}{\|\boldsymbol{w}\|} \stackrel{\min _{i}\left|\boldsymbol{w}^{T} \boldsymbol{x}_{\boldsymbol{i}}+b\right|=1}{\min _{w, b}^{2}\left\langle\boldsymbol{w}^{T} \cdot \boldsymbol{w}\right\rangle} \begin{gathered}
y_{i}\left(\left\langle\boldsymbol{w}^{T} \cdot \boldsymbol{x}_{\boldsymbol{i}}\right\rangle+b\right) \geq 1
\end{gathered}
$$

Using the Lagrangian

- Combine target and constraints
- Minimize over primal
- Maximize over dual

Dual Space

$$
\begin{aligned}
& \min _{w} \frac{w^{2}}{2} \\
& (+1)(w \cdot 3+b) \geqslant 1 \\
& (-1)(w \cdot 1+b) \geqslant 1
\end{aligned}
$$

Strong Duality

- Primal and dual space optimization:
- Same result!

Duality Gap $d_{0}<p_{0}$

- In a general case
- Strong duality is not true
- "Step 1-2-3" a lower bound, not a solution

No Duality Gap Thanks to Convexity

- Convex function
- Quadratic programming

$$
\begin{gathered}
\min \frac{1}{2}\left\langle\boldsymbol{w}^{T} \cdot \boldsymbol{w}\right\rangle \\
y_{i}\left(\left\langle\boldsymbol{w}^{T} \cdot \boldsymbol{x}_{\boldsymbol{i}}\right\rangle+b\right) \geq 1
\end{gathered}
$$

- Convex set
- Linear constraints
- No duality gap

Dual Form

- H
- Hessian matrix
- Gram matrix
- Lambda
- Support vector
- Sparse

$$
\begin{gathered}
\underset{\lambda}{\max } Q(\boldsymbol{\lambda})=-0.5 \boldsymbol{\lambda}^{T} \boldsymbol{H} \boldsymbol{\lambda}+\boldsymbol{f}^{T} \boldsymbol{\lambda} \\
\boldsymbol{y}^{T} \boldsymbol{\lambda}=0 \\
\boldsymbol{\lambda} \geq 0
\end{gathered}
$$

$$
\text { where, } H_{i j}=y_{i} y_{j}\left\langle\boldsymbol{x}_{\boldsymbol{i}}^{T} \cdot \boldsymbol{x}_{j}\right\rangle
$$

f is a unit vector

Non-linear separation of datasets

- Non-linear separation is impossible in most problems

Non-separable datasets

- Solutions:

1) Nonlinear classifiers

2) Increase dimensionality of datase \dagger and add a non-linear mapping $\boldsymbol{\Phi}$

$$
[x] \quad \rightarrow\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x \\
x^{2}
\end{array}\right]
$$

Kernel Trick

- Kernel function
- in the original space
"similarity measure"
between 2 data samples
- Inner product
- In the feature space with increased dimension

Kernel Trick Illustrated

$$
\left\langle\boldsymbol{\Phi}\left(x_{i}\right) \cdot \boldsymbol{\Phi}\left(x_{j}\right)\right\rangle=2 \mathrm{x}_{i} x_{j}+x_{i}^{2} x_{j}^{2}+1=\left(x_{i} x_{j}+1\right)^{2}=\boldsymbol{K}\left(x_{i}, x_{j}\right)
$$

Curse of Dimensionality Due to the Non-Linear Mapping

- Primal space
- Makes optimization much harder

$$
\begin{gathered}
\min \frac{1}{2}\left\langle\boldsymbol{\Phi}^{T}(\boldsymbol{w}) \cdot \boldsymbol{\Phi}(\boldsymbol{w})\right\rangle \\
y_{i}\left(\left\langle\boldsymbol{\Phi}^{T}(\boldsymbol{w}) \cdot \boldsymbol{\Phi}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)\right\rangle+b\right) \geq 1
\end{gathered}
$$

- Dual space
- Can be avoided

$$
\begin{gathered}
\max _{\lambda} Q(\boldsymbol{\lambda})=-0.5 \boldsymbol{\lambda}^{T} \boldsymbol{H} \boldsymbol{\lambda}+\boldsymbol{f}^{T} \boldsymbol{\lambda} \\
\boldsymbol{y}^{T} \boldsymbol{\lambda}=0 \\
\boldsymbol{\lambda} \geq 0 \\
\text { where, } H_{i j}=y_{i} y_{j} \boldsymbol{K}\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{x}_{j}\right) \\
\boldsymbol{f} \text { is a unit vector }
\end{gathered}
$$

Positive Symmetric Definite Kernels (Mercer Condition)

- Dual form is convex
- H is P.S.D.
- Kernel must be P.S.D.

$$
\begin{aligned}
& Q(\boldsymbol{\lambda})=-0.5 \boldsymbol{\lambda}^{T} \boldsymbol{H} \boldsymbol{\lambda}+\boldsymbol{f}^{T} \boldsymbol{\lambda} \\
& \text { where, } H_{i j}=y_{i} y_{j} K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{\boldsymbol{j}}\right)
\end{aligned}
$$

- Mercer kernels

$$
\begin{aligned}
& K(\boldsymbol{x}, \boldsymbol{y})=\left[\left\langle\boldsymbol{x}^{T} \boldsymbol{y}\right\rangle+1\right]^{p} \\
& K(\boldsymbol{x}, \boldsymbol{y})=\mathrm{e}^{-(\boldsymbol{x}-\boldsymbol{y})^{T} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{y}) / 2}
\end{aligned}
$$

- Polynomial
- Gaussian

Advantages of SVM

\rightarrow Work very well...
\rightarrow Error bounds easy to obtain:

- Generalization error small and predictable

$$
E_{\text {test }}=E_{\text {train }}+E_{\text {generalization }} \sim \frac{|S V|}{N}
$$

\rightarrow Fool-proof method:

- (Mostly) three kernels to choose from:
- Gaussian
- Linear and Polynomial
- Sigmoid
- Very small number of parameters to optimize

Limitations of SVM

-Size limitation:

- Size of kernel matrix is quadratic with the number of training vectors
-Speed limitations:
- 1) During training:
very large quadratic programming problem
solved numerically
- Solutions:
- Chunking
- Sequential Minimal Optimization (SMO) breaks QP problem into many small QP problems solved analytically
- Hardware implementations
- 2) During testing: number of support vectors
- Solution: Online SVM

