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Maximum Margin ClassifiersMaximum Margin Classifiers
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OutlineOutline

What is behind Support Vector Machines?

Constrained Optimization

Lagrange Duality

Support Vector Machines in Detail

Kernel Trick

LibSVM demo
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Binary Classification ProblemBinary Classification Problem

Given: Training data generated according to the 
distribution D

Problem: Find a classifier (a function)                     
such that it generalizes well on the test set obtained from 
the same distribution D

Solution:
Linear Approach: linear classifiers (e.g. Perceptron)
Non Linear Approach: non-linear classifiers 
(e.g. Neural Networks, SVM)

x1, y1 , , x p , y p∈ℜ
n×{−1,1}

h x :ℜn{−1,1 }

input label input
space

label
space
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Linearly Separable DataLinearly Separable Data

Assume that the training data is linearly separable

x1

x2
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Linearly Separable DataLinearly Separable Data

Assume that the training data is linearly separable

Then the classifier is: 

Inference: 

h x  = w .xb where w∈ℜn ,b∈ℜ

sign h  x  ∈ {−1,1}

w .xb=0

w

abscissa on axis parallel to 

abscissa of origin 0 is b 

w

x1

x2
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Linearly Separable DataLinearly Separable Data

Assume that the training data is linearly separable

w

Margin 

Maximize margin ρ (or 2ρ) so that:

For the closest points:  h x  = w .xb ∈ {−1,1 }

 = 1
∥w∥

w .xb=1

w .xb=−1

= 1
∥w∥

2= 2
∥w∥

w .xb=0 w .xb=0

x1

x2
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input

Optimization ProblemOptimization Problem

A Constrained Optimization Problem

min
w

1
2
∥w∥2

s.t. :
yi  w . xib  1, i=1, , m

Equivalent to maximizing the margin 

A convex optimization problem:

Objective is convex

Constraints are affine hence convex

 = 1
∥w∥

label
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Optimization ProblemOptimization Problem

min
w

1
2
∥w∥2

s.t. :
yi  w . xib  1, i=1, , m

constraints

Compare:

With:

min
w ∑i=1

p

−yi  w . xib

2
∥w∥2

objective

regularizationenergy/errors
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Optimization: Some TheoryOptimization: Some Theory

The problem:
min

x
f 0 x 

s.t. :
f i  x 0, i=1, , m
hi x =0 , i=1, , p

objective function

inequality constraints

equality constraints

Solution of problem: 

Global (unique) optimum – if the problem is convex

Local optimum – if the problem is not convex

x o



 10

Optimization: Some TheoryOptimization: Some Theory

Example: Standard Linear Program (LP)
min

x
cT x

s.t. :
Ax=b
x0

Example: Least Squares Solution of Linear Equations
(with L2 norm regularization of the solution x)
i.e. Ridge Regression

min
x

xT x

s.t. :
Ax=b
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Big PictureBig Picture
Constrained / unconstrained optimization

Hierarchy of objective function:

smooth = infinitely derivable

convex = has a global optimum

convex                                    non-convex

smooth      non-smooth              smooth     non-smooth

f 0

SVM NN
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Toy Example:Toy Example:
Equality ConstraintEquality Constraint

Example 1: min x1x2 ≡ f
s.t. : x1

2x2
2−2=0 ≡h1

x1

x 2

∇ f

∇ f

∇ f

∇ h1

∇ h1 ∇ h1

−1,−1

At Optimal Solution: ∇ f  xo=1
o∇ h1 x

o

∇ f =∂ f
∂ x1

∂ f
∂ x2


∇ h1=∂h1

∂ x1

∂h1

∂ x2
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   is not an optimal solution, if there exists 
such that

h1 xs = 0
f  xs  f  x 

x s≠0

Using first order Taylor's expansion

h1 xs = h1 x ∇ h1x 
T s = ∇ h1 x 

T s = 0 1

f  xs− f  x  = ∇ f  x T s  0 2

Such an     can exist only 

when                and             

are not parallel

s
∇ h1x  ∇ f x

∇ f  x

∇ h1 x

Toy Example:Toy Example:
Equality ConstraintEquality Constraint

s
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Thus we have
∇ f  xo=1

o∇ h1 x
o

The Lagrangian

L x ,1= f  x−1 h1 x

This is just a necessary (not a sufficient) condition”
x solution implies 

Thus at the solution

∇ x L xo ,1
o=∇ f  xo−1

o∇ h1x
o = 0

Lagrange multiplier or 
dual variable for h1

Toy Example:Toy Example:
Equality ConstraintEquality Constraint

∇ h1x  ∥ ∇ f x 
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Toy Example:Toy Example:
Inequality ConstraintInequality Constraint

Example 2: min x1x2 ≡ f
s.t. : 2−x1

2−x2
2  0 ≡c1

x1

x2

∇ f

∇ f

∇ f

∇ c1

∇ c1
∇ c1

−1,−1

∇ f =∂ f
∂ x1

∂ f
∂ x2


∇ c1=∂ c1

∂ x1

∂ c1

∂ x2
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Toy Example:Toy Example:
Inequality ConstraintInequality Constraint

x1

x2

∇ c1

−1,−1

∇ f

∇ f

s

s

   is not an optimal solution, if there exists 
such that
x

c1 xs  0
f  xs  f  x 

Using first order Taylor's expansion

c1 xs = c1x ∇ c1 x 
T s  0 1

f  xs− f  x  = ∇ f  x T s  0 2

s≠0
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Toy Example:Toy Example:
Inequality ConstraintInequality Constraint

Case 1: Inactive constraint
Any sufficiently small s 
as long as

Thus

c1 x   0

∇ c1 x
T s  0 1

∇ f  xT s  0 2

∇ f 1 x ≠ 0

s =−∇ f  x where 0

Case 2: Active constraint c1 x  = 0

∇ f  x = 1∇ c1 x , where 10

x1

∇ c1

−1,−1

∇ f

∇ f

s

s

∇ f  x 

∇ c1 x

Case 2: Active constraint

s
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Thus we have the Lagrangian (as before)

The optimality conditions

L  x ,1= f  x −1 c1x 

  and

∇ x L x o ,1
o=∇ f  xo−1

o∇ c1 x
o = 0 for some 10

Lagrange multiplier or 
dual variable for c1

Toy Example:Toy Example:
Inequality ConstraintInequality Constraint

1
o c1 x

o = 0 Complementarity 
condition

either c1 x
o = 0 or 1

o = 0
(active) (inactive)
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Same Concepts in a More Same Concepts in a More 
General SettingGeneral Setting
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Lagrange FunctionLagrange Function
The Problem

min
x

f 0 x

s.t. :
f i  x0, i=1, , m
hi x =0 , i=1, , p

L x , ,= f 0x∑
i=1

m

i f i x∑
i=1

p

i hi x

Standard tool for constrained optimization:
the Lagrange Function

dual variables or Lagrange multipliers

m inequality constraints
p equality constraints

objective function
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Lagrange Dual FunctionLagrange Dual Function

Defined, for           as the minimum value 
of the Lagrange function over x

m inequality constraints
p equality constraints

g  ,=inf
x∈D

Lx , ,=inf
x∈D f 0x∑

i=1

m

1 f i x ∑
i=1

p

i hi x

g :ℜm×ℜ pℜ

 ,
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unsatisfied

Lagrange Dual FunctionLagrange Dual Function

Interpretation of Lagrange dual function: 
Writing the original problem as unconstrained problem
but with hard indicators (penalties)

minimize
x  f 0 x ∑

i=1

m

I 0 f i x∑
i=1

p

I 1hi x 
I 0u={0 u0

∞ u0} I 1 u ={0 u=0
∞ u≠0}

  where

indicator functions

unsatisfied

satisfiedsatisfied
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Lagrange Dual FunctionLagrange Dual Function

Interpretation of Lagrange dual function: 
The Lagrange multipliers in Lagrange dual function can 
be seen as “softer” version of indicator (penalty) 
functions.

minimize
x  f 0 x ∑

i=1

m

I 0  f i x∑
i=1

p

I 1hi x 
inf
x∈D  f 0x∑

i=1

m

i f i x∑
i=1

p

i hi x 
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Lagrange Dual FunctionLagrange Dual Function

Lagrange dual function gives a lower bound on optimal 
value of the problem:

g  ,po

Proof: Let     be a feasible optimal point and let        . 
  Then we have:

x 0

f i  x   0 i=1, , m
hi  x  = 0 i=1, , p
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Lagrange Dual FunctionLagrange Dual Function

Lagrange dual function gives a lower bound on optimal 
value of the problem:

g  , po

Proof: Let     be a feasible optimal point and let        . 
  Then we have:

x 0

Thus

L  x , , = f 0 x∑
i=1

m

i f i x∑
i=1

p

i hi x   f 0 x

f i  x   0 i=1, , m
hi  x = 0 i=1, , p
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Lagrange Dual FunctionLagrange Dual Function

Lagrange dual function gives a lower bound on optimal 
value of the problem:

g  , po

Proof: Let     be a feasible optimal point and let        . 
  Then we have:

x 0

Thus

L  x , , = f 0 x∑
i=1

m

i f i x∑
i=1

p

i hi x   f 0 x

.  0

f i  x   0 i=1, , m
hi  x = 0 i=1, , p
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Lagrange Dual FunctionLagrange Dual Function

Lagrange dual function gives a lower bound on optimal 
value of the problem:

g  , = inf
x∈D

Lx , ,  L  x , ,  f 0  x 

g  , po

Proof: Let     be a feasible optimal point and let        . 
  Then we have:

x 0

Thus

L  x , , = f 0 x∑
i=1

m

i f i x∑
i=1

p

i hi  x  f 0 x 

Hence

.  0

f i  x  0 i=1, ,m
hi x = 0 i=1, , p
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Sufficient ConditionSufficient Condition

If                      is a saddle point, i.e. ifxo ,o ,o

∀ x∈ℜn , ∀0, L xo , ,Lxo ,o ,oLx ,o ,o

... then                      is a solution of poxo ,o ,o

xo
x

o ,o

 ,

L x , ,
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Lagrange Dual ProblemLagrange Dual Problem

Lagrange dual function gives a lower bound 
on the optimal value of the problem.
We seek the “best” lower bound to minimize the objective:

maximize g  ,
s.t. : 0

The dual optimal value and solution:

The Lagrange dual problem is convex 
even if the original problem is not.

d o = g o ,o
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Primal / Dual ProblemsPrimal / Dual Problems

Primal problem:
min
x∈D

f 0 x

s.t. :
f i  x0, i=1, , m
hi x =0 , i=1, , p

Dual problem:

max
 ,

g  ,

s.t. : 0

po

do

g  ,=inf
x∈D f 0x ∑

i=1

m

1 f i x∑
i=1

p

i hi x
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Weak DualityWeak Duality

Weak duality theorem:

d o  po

Optimal duality gap:

po − do  0

This bound is sometimes used to get an estimate on the 
optimal value of the original problem that is difficult to 
solve.
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Strong DualityStrong Duality

Slater's Condition: If             and it is strictly feasible:x∈D

Strong Duality theorem: 
if Slater's condition holds and the problem is convex,
then strong duality is attained:

f i x  0 for i=1,m
hi x = 0 for i=1, p

d o = po
Strong Duality:

Strong duality does not hold in general.

∃o ,o with d o=g o ,o=max
 ,

g  ,=inf
x

L x ,o ,o= po
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Optimality Conditions:Optimality Conditions:
First OrderFirst Order

Complementary slackness: 
if strong duality holds, then at optimality

i
o f i x

o = 0 i=1,m

Proof:
f 0 x

o = g o ,o

= inf
x  f 0 x∑

i=1

m

i
o f i x∑

i=1

p

i
o hi x

 f 0 x
o∑

i=1

m

i
o f i x

o∑
i=1

p

i
o hi x

o

 f 0x
o

xo ,o ,o

∀ i , f i x0,i≥0

∀ i , hi x = 0

(strong duality)
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Optimality Conditions:Optimality Conditions:
First OrderFirst Order

Karush-Kuhn-Tucker (KKT) conditions 
If the strong duality holds, then at optimality:

f i x
o  0, i=1, , m

hi x
o = 0, i=1, , p
i

o  0, i=1, ,m
i

o f ix
o = 0, i=1, , m

∇ f 0 x
o∑

i=1

m

i
o∇ f ix

o∑
i=1

p

i
o∇ hix

o = 0

KKT conditions are
➔ necessary in general (local optimum)
➔ necessary and sufficient in case of convex problems

(global optimum)
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What are Support Vector What are Support Vector 
Machines?Machines?

Linear classifiers

(Mostly) binary classifiers

Supervised training

Good generalization with

explicit bounds
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Main Ideas BehindMain Ideas Behind
Support Vector MachinesSupport Vector Machines

Maximal margin

Dual space

Linear classifiers

in high-dimensional  space

using non-linear mapping

Kernel trick
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Quadratic ProgrammingQuadratic Programming
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Using the LagrangianUsing the Lagrangian
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Dual SpaceDual Space
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Strong DualityStrong Duality



 41

Duality GapDuality Gap
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No Duality Gap Thanks to No Duality Gap Thanks to 
ConvexityConvexity
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Dual FormDual Form



Illustration from Prof. Mohri's lecture notes 44

Non-linear separation of datasetsNon-linear separation of datasets

Non-linear separation is impossible in 

most problems
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Non-separable datasetsNon-separable datasets

Solutions:
1) Nonlinear classifiers 2) Increase dimensionality of dataset

and add a non-linear mapping Ф
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Kernel TrickKernel Trick
“similarity measure” 
between 2 data samples
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Kernel Trick IllustratedKernel Trick Illustrated
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Curse of Dimensionality Due to Curse of Dimensionality Due to 
the Non-Linear Mappingthe Non-Linear Mapping
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Positive Symmetric Definite Kernels Positive Symmetric Definite Kernels 
(Mercer Condition)(Mercer Condition)
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Advantages of SVMAdvantages of SVM
Work very well...

Error bounds easy to obtain:

Generalization error small and predictable

Fool-proof method:

(Mostly) three kernels to choose from:

Gaussian

Linear and Polynomial

Sigmoid

Very small number of parameters to optimize
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Limitations of SVMLimitations of SVM
Size limitation:

Size of kernel matrix is quadratic with the 
number of training vectors

Speed limitations:
1) During training:
very large quadratic programming problem 
solved numerically

Solutions:
Chunking
Sequential Minimal Optimization (SMO)
breaks QP problem into many small QP 
problems solved analytically
Hardware implementations

2) During testing:
number of support vectors

Solution: Online SVM


