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Outline

@ What is behind Support Vector Machines?
~Constrained Optimization
~Lagrange Duality

@ Support Vector Machines in Detail
~Kernel Trick
~LIbSVM demo



Binary Classification Problem

@ Given: Training data generated according to the
distribution D

(xl,yl)""’(xp’ yp>69{n><{_191}

label label
space

@ Problem: Find a classifier (a function) A(x): R"—{-1,1}
such that it generalizes well on the test set obtained from
the same distribution D

@ Solution:
~Linear Approach: linear classifiers (e.g. Perceptron)
=Non Linear Approach: non-linear classifiers
(e.g. Neural Networks, SVM)



Linearly Separable Datao

@ Assume that the training data is linearly separable
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Linearly Separable Datao

@ Assume that the training data is linearly separable

abscissa on axis parallel to w

abscissa of origin 0'is b

X
e Then the classifieris:  h(x) = w.%+b  where weR", beR

@ Inference: sign(h(x)) € {—1,1]



Linearly Separable Datao

@ Assume that the training data is linearly separable

@ Margin p = m
@ Maximize margin o (or 20) so that:

For the closest points:  h(x) = w.X+b € {—1,1} 6



Optimization Problem

@ A Constrained Optimization Problem

min— ||
w 2

S.t..
y,(w.X+b) =1, i=1,...,m

label

1

@ Equivalent to maximizing the margin p = Tl
W

@ A convex optimization problem:
@ Objective Is convex

@ Constraints are affine hence convex



Optimization Problem

@ Compare:

@ With:

min — ||vT/||2 objective
w 2

S.t..
y.(w.x+b) =1, i=1,...,m

constraints

min Z( y,(w. x-l—b) %HVVHz

i=1
energy/errors L
ay/ regularization



Optimization: Some Theory

@ The problem:

min f,(x) objective function

A A

f.(x)<0, i=1,...,m = inequality constraints
h(x)=0, i=1,...,p = equality constraints

@ Solution of problem:  x°
~ Global (unique) optimum —if the problem is convex

~ Local optimum —if the problem is not convex



Optimization: Some Theory

@ Example: Standard Linear Program (LP)

. T
min Cc X
X

S.t.:

@ Example: Least Squares Solution of Linear Equations
(with L, norm regularization of the solution x)

l.e. Ridge Regression

. T
min x X
X

S.t.:

Ax=>b
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Big Picture

@ Constrained / unconstrained optimization
@ Hierarchy of objective function:
smooth = infinitely derivable

convex = has a global optimum

/o

/\

convex NON-CONveEX

smooth NnoN-smMooth smooth
SVM NN

NOoN-sMooth
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Toy Example:
Equality Constraint

@ Example 1: min  x,+x, =
st: x, +x,=2=0 =h,

A
Xy

@ At Optimal Solution: |V f(x°)=ATV ki, (x°)

Vh,

of
0x,

J0f
0x,

oh,
0x,
oh,
0x,
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Toy Example:

Equality Constraint

@ x IS not an optimal solution, if there exists s#0

such that
h(x+s)=0

fx+s) < flx)

@ Using first order Taylor's expansion

f(x+s)=f(x) = Vf(x)'s <0

ees) = ke + Vi (x)'s = Vi (x)'s =0 (1)

(2)

@ Such an s can exist only
when Vi,(x) and V f(x)

are not parallel

-
-,
R
V hl (x) \\‘ “///

V f(x)
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Toy Example:
Equality Constraint

@ Thus we have

Vf(xo):)\(l)vh1(xo>

@ The Lagrangian Lagrange multiplier or
dual variable for h,

L(x, Al)=f<x)_A1/hl<x)

@ Thus at the solution

VL(x" )=V f(xX°) =21V (x7) = 0

@ This Is Jjust a necessary (not a sufficient) condition”
x solution implies Vi, (x) || V f(x) »



Inequality Constraint

@ Example 2:

Toy Example:

mn X,tXx,

2 2
st.: 2—=x,=x, =20

f

Cy

0/

_[0x,
V[f= 5 f
0x,

dc,

0x
Ve=|_""
1 dc,

0Xx,
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Toy Example:
Inequality Constraint

@ xis not an optimal solution, if there exists s#0

such that
¢ (x+s) =0

fx+s) < f(x)

@ Using first order Taylor's expansion

c(x+s)=c,(x)+Ve,(x)'s =0 (1)

flx+s)=f(x) =V f(x)'s <0 (2)
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Toy Example:
Inequality Constraint

@ Case 1: Inactive constraint  ¢,(x) > 0
~ Any sufficiently small s
aslongas V f,(x) #0

~Thus s = —aV f(x)  where x>0

@ Case 2: Active constraint  ¢,(x) = 0
Ve, (x)'s=0 (1)
Vilx)s<0 (2

V7iix)=aVel(x), where A, =0 :/" _




Toy Example:
Inequality Constraint

@ Thus we have the Lagrangian (as before)

L(x,A)=f(x)=2¢c/(x)

Lagrange multiplier or
dual variable for ¢

@ The optimality conditions

V. L(x°,A))=V f(x")=A'Vc, (x°) =0 forsome A,=0

and

Complementarity

ATCI(XO) =0 condifion

either ¢,(x°) = 0 or A] =0

(active) (inactive) o



Same Concepts in a More
General Setting



Lagrange Function

@ The Problem

min f(x) objective function

S.t.:

f.(x)<0, i=1,....m m inequality constraints
h(x)=0, i=1,...,p p equality constraints

@ Standard tool for constrained optimization:
the Lagrange Function

L(x,A,v) —I—Z A*f )—I—;;/ihi(x)

.

dual variables or Lagrange multipliers 20




Lagrange Dual Function

@ Defined, for A, v asthe minimum value
of the Lagrange function over x

m inequality constraints g R"XR" R
p equality constraints

m P

g (A, v)=inf L(x,A,v)=inf | fo(x)+ 2 A, fi(x)+ 2, v,h(x)

HEL x€D i=1 i=1
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Lagrange Dual Function

@ Interpretation of Lagrange dual function:
~ Writing the original problem as unconstrained problem
but with hard indicators (penalties)

minimize (fo(ﬂ"‘i Io(fl-(X))Jer: [1(hi(x)))

X i=1

where satisfied satisfied
O US O O u=0
00 u>O w u0

\unso’rsfy unsatisfied

indicator functions ’



Lagrange Dual Function

@ Inferpretation of Lagrange dual function:
~ The Lagrange multipliers in Lagrange dual function can
be seen as “softer” version of indicator (penalty)
functions.

minimize (fo(x)-l—i Io(f,-(x))*'i ]1(hi<x>>)

X i=1 i=1

inf (f0<x>+iAifi<x)+ivihi(x>)

x€D i=1 i=1
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Lagrange Dual Function

@ Lagrange dual function gives a lower bound on optimal
value of the problem:

g(A,v)<p’

@ Proof: Let x be a feasible optimal point and let A=0.
Then we have:

24



Lagrange Dual Function

@ Lagrange dual function gives a lower bound on optimal
value of the problem:

g(A,v)<p

o

@ Proof: Let X be a feasible optimal point and let A=0.
Then we have:

=~

=
N
S
|
3
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Lagrange Dual Function

@ Lagrange dual function gives a lower bound on optimal
value of the problem:

g(A,v)<p

o

@ Proof: Let X be a feasible optimal point and let A=0.
Then we have:

fi(x) <0 i=1,...,m
h(x)=0 i=1,..,p
@ Thus .S

0
L(x,4,v) = fo(2)+ 2 A fi(3)+ 2 v (%) < £,(%)
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Lagrange Dual Function

@ Lagrange dual function gives a lower bound on optimal
value of the problem:

g(A,v)<p’

@ Proof: Let x be a feasible optimal point and let A=0.
Then we have:

. <0
LEAY) = o8+ DAL E+ 2 Vb () < £l

@ Hence

g(A,v)=infL(x,A,v) < L(x,A,v) < f,(%) 27

xeD




Sufficient Condition

alf (x°,A%,v%) isasaddle point, i.e. if

VxeR" VA=0, L(x" A, v)SL(x’, A%, v')<L(x,A% v’

e .. then (x°,A%,v’) is a solution of p’

28



Lagrange Dual Problem

@ Lagrange dual function gives a lower bound
on the optimal value of the problem.
@ We seek the “best” lower bound to minimize the objective:

maximize g(A, V)
s.t.: A=0

@ The dual optimal value and solution:
dO — g(AO, VO)

@ The Lagrange dual problem is convex
even if the original problem is not.

29



Primal / Dual Problems

@ Primal problem:

min f(x)
xeD
0 s.t..
p f.(x)<0, i=1,....m
h(x)=0, i=1,...,p

@ Dual problem:

max g(A,v)

dO A,V
s.t.: A=0

m 4

g(A:V):iZ]; f0<x>+z Alfi<x)+z Vihi(x)

i=1 i=1 30



Weak Duality

@ Weak duality theorem:

d’° < p’

@ Optimal duality gap:

p’—d =0

@ This bound is sometimes used to get an estimate on the
optimal value of the original problem that is difficult to
solve.



Strong Duality

@ Strong Duality:

d0=p0

@ Stfrong duality does not hold in general.

@ Slater's Condition: If x€D and it is strictly feasible:
fix)<0 for i=1,...m
hix)=0 for i=1,...p

@ Strong Duality theorem:

if Slater's condition holds and the problem is convex,
then strong duality is attained:

(A%, V") with d°=g(A°,v')=max g(A,v)=inf L(x,A°,v’)=p°
A,V X




Optimality Conditions:
First Order

@ Complementary slackness:
if strong duality holds, then at optimality (x”,A%,v?)

Af(x)=0 i=1,..m

@ Proof:
folx") = g(A%,v°)  (strong duality)

= i':lcf(fo(X)Jri Af]ﬂ-(%Hi1 V?hi(X>)

i=1 i
< fo(x?) x Vi, h(x)=0
Vi, f(x)<0,A.=0 »



Optimality Conditions:
First Order

@ Karush-Kuhn-Tucker (KKT) conditions
If the strong duality holds, then at opfimality:

f(x°) <0, i=1,...,m
h(x’)=0, i=1,..,p
A= 0, i=1,...,m

A f(x°) =0, i=1,....m

@ KKT condifions are
> necessary in general (local optimum)

> necessary and sufficient in case of convex problems

(global optimum)

34



What are Support Vector
Machines?

° Linear classifiers j é
s (Mostly) binary classifiers ¢

e Supervised training R

: _-..‘ -
i, Tl
T ¢
-

e
- & ., -
IO Lo
: N Bl
] sl

.- -‘

[}

» Good generalization with

explicit bounds



Main |ldeas Behind
Support Vector Machines

s
» Dual space S

. . |

> Maximal margin |
:|
|
i

s Linear classifiers = | g A
|
|
|
|
|
|
|

train

uonezijesausb

INn high-dimensional space '

e Kernel trick ﬂ,

using non-linear mapping



Quadratic Programming

T ) |, T
. ‘W x;‘}'b‘ min|w’ x +b|=1 min—{(w -w>
max min ol | Wb
w.h i 1A% — e |
y,((wx,)+b)=1
W wifQ ?
min —
-1 +1 w ;
'p
= (r)w3th)zl 1/2 s’
(=1)(w-14b)>1 . >
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Using the Lagrangian

= Combine target and
constraints

= Minimize over primal

= Maximize over dual

L{x,d)=f,(x) Z?\f

O(A)=minL(x A)

X

max Q(A),A>0
A

38




Dual Space

Lw,b,d)=w?/2=X,(3w+b—-1)=A,(-w=b-1)

minL(w,b,A) =<

w,b

)
A=A,
Ww=3A,—A,=24,

L 0)=0(],)==-2A1+24,

max Q) => A =A,=1/2,w=1,h=2

A

39



Strong Duality

" Primal and dual space optimization:
* Same result!

Primal ’ Dual
10



Duality Gap 4, <p,

= In a general case
= Strong duality is not true
= "Step 1-2-3" a lower bound, not a solution
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No Duality Gap Thanks to
Convexity

= Convex function 1
= Quadratic programming minz (w-w

= Convex set y((whx)+bh)=1
= Linear constraints

" No duality gap J=p.

42



Dual Form

" H
= Hessian matrix maxQ(A)=—0.51" HA+ f' A
A
= Gram matrix
« Lambd y A=0
al: at C A=0
= Support vector
. Sparse where, H%.;:yz.yj<xiT-xj>

[ is aunitvector

43



Non-linear separation of datasets

» Non-linear separation is impossible in

most problems

[lustration from Prof. Mohri's lecture notes 44



Non-separable datasets

» Solutions:

1) Nonlinear classifiers

+1 -1 +1
O—4—N—+—O0—>
-1 0 1

2) Increase dimensionality of dataset
and add a non-linear mapping ¢

x| _| x
A= e
X, |X
X
A2

2x,=1e2x°=1

———TT—4+—1+—
1 0 1 X
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Kernel Trick

- Kernel funCtion “similarity measure”
®* in the original space between 2 data samples

= Inner product
= In the feature space with increased dimension

46



Kernel Trick lllustrated

+1 -1 +1
e —|—B—1—e >
1 0 1
Wk X
[x] = e o - il
X ‘. 1+ P
| 1 |
e il e > ! il l
1 0 1 —\/5 0 V2 X,

K(xz.,xj.):(xz.xj%—l)2

2 2 2
(D(x,)D(x;))=2x,x,+x;x. +1=(x,x +1)]=K(x, x,) .

2]



Curse of Dimensionality Due to
the Non-Linear Mapping

= Primal space = Dual space

" Makes optimization * Can be avoided
much harder

| | | L T T
inini<d51(w)~@(w)\ maxQ(A)=—05A" HA+ f~ A

// A
w,b

T —_
y, (@ (w)D(x,))+b)=1 y A=0
A>0

where, H =y, y K(x, x)
[ isa unit vector
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Positive Symmetric Definite Kernels
(Mercer Condition)

= Dual form is convex
= His P.S.D. O(A)=—05A"HA+f"A
where, H =y.y K(x., x.)
= Kernel must be P.S.D. AREA T RS R

= Mercer kernels K(x, y)=[(xf p)+1]

* Polynomial
. _ —Ax=p) 2 (x=p)2
» Gaussian K(x,y)=e

49



Advantages of SVM

-Work very well...
= Error bounds easy to obtain:

» Generalization error small and predictable
SV
~ N

E,=E,  +E

rest rain generalization

~Fool-proof method:
* (Mostly) three kernels to choose from:
» Gaussian
* Linear and Polynomial
» Sigmoid

* Very small number of parameters to optimize

50



Limitations of SVM

= Size limitation:
* Size of kernel matrix is quadratic with the
number of training vectors
- Speed limitations:
* 1) During training:
very large quadratic programming problem
solved numerically
» Solutions:
* Chunking
» Sequential Minimal Optimization (SMO)
breaks QP problem info many small QP
problems solved analyfically
* Hardware implementations
» 2) During festing:
number of support vectors
* Solution: Online SVM !



