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Energy-Based Model for Decision-Making
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\”Complex Tasks: Inference is non-trivial
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What Questions Can a Model Answer?

@ 1. Classification & Decision Making:

» “which value of Y is most compatible with X?”
» Applications: Robot navigation,.....
» Training: give the lowest energy to the correct answer

& 2. Ranking:
» “Is Y1 or Y2 more compatible with X?”
» Applications: Data-mining....
» Training: produce energies that rank the answers correctly

& 3, Detection:

» “Is this value of Y compatible with X”?
» Application: face detection....
» Training: energies that increase as the image looks less like a face.

@ 4. Conditional Density Estimation:
» “What is the conditional distribution P(Y|X)?"
» Application: feeding a decision-making system
» Training: differences of energies must be just so.
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.Decision-Making versus Probabilistic Modeling

M

& Energies are uncalibrated

» The energies of two separately-trained systems cannot be combined
» The energies are uncalibrated (measured in arbitrary untis)

& How do we calibrate energies?

» We turn them into probabilities (positive numbers that sum to 1).
» Simplest way: Gibbs distribution
» Other ways can be reduced to Gibbs by a suitable redefinition of the

energy.
6_ 6 E (Y:X )
P(Y|X) =
( ‘ ) f € _/6 E (y :X ) j
P
Partition function Inverse temperature
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_Architecture and Loss Function

@ Family of energy functions E — { E(W’ Y, X) - W c W}
@ Trainingset S —= {(Xi’,Yi’) 1 =1...P}

@ Loss functional / Loss function L (E S ) L (W, S )
» Measures the quality of an energy function

& Training W$ = WIPIDW ﬁ(m S)
S

& Form of the loss functional
» invariant under permutations and repetitions of the samples

P
1 : .
L(E,S) =2 ) L', EW,Y, X)) + R(W).
izl/ \ ™~ AN
Energy surface Regularizer
Per-sample Desired ¢ given Xi

loss answer as Y varies

t New York University

Yann LeCun



Designing a L.oss Functional
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@ Correct answer has the lowest energy -> LOW LOSS

& Lowest energy is not for the correct answer -> HIGH LOSS
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Designing a L.oss Functional
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&@ Push down on the energy of the correct answer

& Pull up on the energies of the incorrect answers, particularly if they

are smaller than the correct one

Yann LeCun * New York University



rchitecture + Inference Algo + Loss Function =

B

E(W.,Y,X) -] Design an architecture: a particular form for E(W,Y,X).

¥ 2. Pick an inference algorithm for Y: MAP or conditional

distribution, belief prop, min cut, variational methods,
W gradient descent, MCMC, HMC.....

¥ 3. Pick a loss function: in such a way that minimizing it

* f with respect to W over a training set will make the inference
algorithm find the correct Y for a given X.
X

Y ial 4. Pick an optimization method.

& PROBLEM: What loss functions will make the machine approach

the desired behavior?
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Several Energy Surfaces can give the same answers
h—-———.._._.__A - ——

E—————— |

@ Both surfaces compute Y=X"2
@ MINy E(Y,X) = X2

& Minimum-energy inference gives us the same answer
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D(Gw(X),Y) ] [ -Y Gy (X) ] [ 4’.- - - --i }
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|
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@ Regression @ Binary Classification @ Multi-class
Classification

EOV,Y,X) = Sllow(X) - YIP.  E(W,Y,X) = —YGw(X),
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E(W,X,Y) = [|Giy, (X) = Gay, (V)] B(W.Y. X)

@ The Implicit Regression architecture

» allows multiple answers to have low [IIG’1W1 (X) — Gay, (y)||1]
energy.

» Encodes a constraint between X and Y T T
rather than an explicit functional ( 1l
relationship Gy, (X) o, (V)

» This is useful for many applications

1 f

» Example: sentence completion: “The
cat ate the {mouse,bird,homework,...}" | |

» [Bengio et al. 2003]
» But, inference may be difficult.

X Y
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Examples of Loss Functions: Energy Loss
e ————

@ Energy Loss Lenergy(Y%aE(ﬂ/ﬂ an%)) — E(I/Va Y%aX%)'
» Simply pushes down on the energy of the correct answer

\
\\o.
«33’ '
0* [| Net(X) - Net(Y) ||Ll
ergy f *
E(W,Y,X)
Neural Net Neural Net
1-6-6 1-6-6
|| Net(X) - Y ||L1 param Wx param Wy
A A

a A \ \

Neural Net ( input X X output Y )
ZE-EE;I;en b) <
) ( %Q.

4 (§)

’ S

Nag
C input X X output Y ) \)
(a) N
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Lyerceptron(Y', E(W, ¥, X")) = E(W,Y", X*) — min E(W,Y, X").

@ Perceptron Loss

» Pushes down on the energy of the correct answer
» Pulls up on the energy of the machine's answer
» Always positive. Zero when answer is correct

» No “margin”: technically does not prevent the energy surface from
being almost flat.

» Works pretty well in practice, particularly if the energy
parameterization does not allow flat surfaces.
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| Perceptron Loss for Binary Classification
e IS

Lyerceptron(Y', EOW, ¥, X")) = E(W,Y", X*) — min E(W,Y, X").

@ Energy: EW)Y X)=-YGw(X),

& Inference: Y* = argminy,e{_lal} — YGw(X) = Sigl’l(GW (X))

P
1 ; i i i
& Loss: Lperceptron(W, S) = 5 Z (s1gn(GW (X)) —-Y ) Gw (X").
i=1
) : G (X
@ Learning Rule: W —W+n(Y" —sign(Gw(X")) gvg/ ) :
@ If Gw(X) is linearin W: E(W, Y, X) = —“YEHFJT (X))

W — W+ (Y —sign(WT®(X7))) ®(X7)
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i Examples of Loss Functions: Generalized Margin Losses
[ —

@ First, we need to define the Most Offending Incorrect Answer

& Most Offending Incorrect Answer: discrete case

Definition 1 Let Y be a discrete variable. Then for a training sample (X', Y"), the

most offending incorrect answer Y is the answer that has the lowest energy among
all answers that are incorrect:

Vi = argminy ¢y, gy 2y E(W, Y, X1). (8)

@ Most Offending Incorrect Answer: continuous case
Definition 2 Let Y be a continuous variable. Then for a training sample (X', Y"), the

most offending incorrect answer Y is the answer that has the lowest energy among
all answers that are at least e away from the correct answer:

Y?! = argming ¢y 1y _yis E(W.Y, X"). 9)
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Energy: EI

Qum (EW,Y' X", E(W,Y" X")).

™~

& Generalized Margin Loss

» Qm increases with the
energy of the correct
answer

» Qm decreases with the
energy of the most
offending incorrect
answer

» whenever it is less than
the energy of the
correct answer plus a

margin m.

i i
Lmargm( 4 Y )
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— .
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Energy: E_
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_Examples of Generalized Margin Losses
RIS

Lhinge(W,Y*, X") = max (0,m + E(W,Y*, X*) — E(W,Y", X")),

& Hinge Loss

» With the linearly-parameterized binary
classifier architecture, we get linear SVM — |

Loss: L

Liog (W, Y X’i) — log (1 4 GE(W,W,X@)—E(W,?@',X‘@)) .

1.6

& Log Loss
» “soft hinge” loss

» With the linearly-parameterized binary o
classifier architecture, we get linear "
Logistic Regression

Loss: L

0.2

Yann LeCun * New York University




!l.I-lI---!El!EE!%EEE!EE;ﬁzﬁE5=Ei;F2:ﬁ=:5é;3=z:?=:::—;z:—:—=—:?:—————=—=======—=—————_:T:~"f7:E;'ﬁ::’{:5;i:;2:E?=;=;E5?5?§i§Z§?5EIEESQE!!!!--..........

| Examples of Margin Losses: Square-Square Loss
h—-———.—._._.__A -

Loq-sq(W, Y, X%) = EW,Y", X*)? + (max(0,m — E(W,Y", X")))"

& Square-Square Loss P st
» [LeCun-Huang 2005]

» Appropriate for positive energy
functions

energy
E(W,Y,X)

Learning Y = X2
[| Net(X) - Net(Y) ||L1
S
Neural Net Neural Net
1-6-6 1-6-6
A [
\ \
( input X X output Y )
(b)
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_Other Margin-Like Losses

& L.VQ2 Loss [Kohonen, Oja], Driancourt-Bottou 1991]

o EW,)Y!, X" — E(W,Y* X*
leqg(W,Yz,X")zmin(l,max((), URSPS URS ))),

SE(W, Y, X7)

@ Minimum Classification Error Loss [Juang, Chou, Lee 1997]
Linee W, Y', X") =0 (E(W,Y", X") — E(W,Y", X")),
o(x) = (1+e*)!

& Square-Exponential Loss [Osadchy, Miller, LeCun 2004]

qu—exp(m Y’&jX%) — E(VV, Y?:, X%)Q _|_ ’)/B_E(W’Yi?Xé)’
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’ egative Log-Likelihood Loss

m%-

& Conditional probability of the samples (assuming independence)

P

P!, YP X xPow) =] POy X W),
P P =1

—log | [ POV X", W) =) —log P(Y'| X', ).

i=1 i=1 |
e—ﬁE(W,Y:,Xz)

@ Gibbs distribution: ~ P(Y| X", W) = — X

fyey

P P
~log [ POV |X", W) = Y BEOV, Y, X) + log / e,
=1 =1 ye

@ We get the NLL loss by dividing by P and Beta:
P

Lan(W,S) = %Z (E(W, Y XT) + %log/

6—6E(W,y,xi)) .
i=1 yey

& Reduces to the perceptron loss when Beta->infinity
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Negative Log-Likelihood Loss

M%ﬁﬁ‘m,;; =

& Pushes down on the energy of the correct answer

& Pulls up on the energies of all answers in proportion to their probability

P

1 o1 ;
Lan(W,8) = > (E(W, Vi XY + 5 log/ ) e PEWy, X )) .
Y

=1

YV|XE W
8W 8W ( | b )3

8Lnu(W, Y“',Xi) B 8E(W, Y%',X“') / aE(W, Y, Xi)P
Yey oW
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Negative Log-Likelihood Loss: Binary Classification

& Binary Classifier Architecture:
P

1 . . i i i i
La(W,S) = 5> [—Y%GW(X%) + log (eY Gw(X") | o—Y'Gw(X >)} .

=1

[.’-HH(W 3 = Zlog (1 —+ 6_2Y GW(X )) ,

?,—1

@ Linear Binary Classifier Architecture

Lny(W,S) Z log (1 e YW (X! )>

z_l

@ Learning Rule: logistic regression
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at Makes a “Good” [

0.9 EC +m= EI ,~» ’
; . R A
i Loss Function 1 o |HP -
s — 0.7 R ,/,
|-_|J__ 0.6} ,\/" .
@ Good loss functions make the S os| e E_=E,
c _ ,/\
machine produce the correct Y+ I
0.3 P
answer ozl Lo HP,
» Avoid collapses and flat m¢°-1 -
energy Su rfaces O0 011 0i2 Oi3 0i4 0i5 016 0i7 0i8 0i9 1

Energy: E.
Sufficient Condition on the Loss
Let (X% Y") be the i*" training example and m be a positive margin. Min-
imizing the loss function L will cause the machine to satisfy E(W,Y*, X*) <
EW,Y,X") —m for all Y # Y, if there exists at least one point (e, e3) with
e1 + m < e such that for all points (e, e5) with e} +m > €, we have

Qr,(e1,e2) < Qg,i(€], €s),

where Qg ) 1s given by
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| What Make a ‘“Good’’ Loss Function

M&b

@@ Good and bad loss functions

Loss (equation #) | Formula Margin
energy loss EW,Y!, X?) none
perceptron EW,Y", X") —minyecy E(W,Y, X") 0
hinge max (0,m + E(W,Y", X*) — E(W,Y", X")) m
log log (1 4+ BWY X)) —BE(W,Y",X") ~ 0
LVQ2 min (M, max(0, E(W,Y*, X*) — E(W,Y", X")) 0
MCE (14 e~ (EOWYXD=EORYTXD) ) - >0
square-square E(W,Y" X")? — (maX(O, m — E(W, Y?, Xi)))2 m
square-exp E(W,Y?, X")? 4 ge” BEWY5XY) | >0
NLL/MMI E(W, Y X7 f élog ey e-ﬁE(Wﬂ;X ) >0
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( Advantages/Disadvantages of various losses

& Loss functions differ in how they pick the point(s) whose energy is
pulled up, and how much they pull them up

@ Losses with a log partition function in the contrastive term pull up all

the bad answers simultaneously.

» This may be good if the gradient of the contrastive term can be
computed efficiently

» This may be bad if it cannot, in which case we might as well use a
loss with a single point in the contrastive term

& Variational methods pull up many points, but not as many as with the

full log partition function.

& Efficiency of a loss/architecture: how many energies are pulled up for

a given amount of computation?
» The theory for this is to be developed
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Linear Machines: Regression with Mean Square

Linear Regression, Mean Square Loss:
W decision rule: y = W'X
W loss function: L(W,y", X*) = §(y' —W'X")?

roi oyein ! : - :
W gradient of loss: aLmaﬁr’x L — (i — W) X)X
W update rule: W(t 4+ 1) = W(t) +nt) (v — W(t)X)X"

W direct solution: solve linear system [Y°7_, X X[ = 37 4 X

T, LaCun: Machine Leaming and Patlem Hecopnition — p. 236
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Linear Machines: Perceptron

Perceptron:

W decision rule: y = F(W'X) (F' is the threshold function)
W loss function: L(TV,y', X') = (F(W'X") —y" )1 X"

Fogi iyt : : :
W gradient of loss: aL“;ﬁ_..’x ) = —(yf — F(W(#)' X)X’
W update rule: W(t +1) = W(t) +n(t)(y' — F(IW(t)' X)) X*

W direct solution: find T such that —y* F(TW'X*) < 0 Vi

Y. Lalun: Machine Leaming and Patiem Eecopnition — p. 336
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Linear Machines: Logistic Regression

Logistic Regression, Negative Log-Likelihood Loss function:

W decision rule: y = F(TW'X), with F'(a) = tanh(a) = % (sigmoid

function).

W loss function: L(TV, Y, X*:} = 2log(1 + EKP{—EI!:H”X?:))

roioyiny : :
W gradient of loss: E‘L“’;ﬁ_.—’x ) = _ (Y' —F(W'X))) X'

W update rule: W(t + 1) =W(¢) +n(t)(y* — F(W(t)' X)) X*

Y. LalCun: Machine Leaming and Patiem Eecopnition — . 436
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