Energy-Based Learning

Yann LeCun

The Courant Institute of Mathematical Sciences

New York University

http://yann.lecun.com

http://www.cs.nyu.edu/~yann

Energy-Based Model for Decision-Making

Model: Measures the compatibility between an observed variable X and a variable to be predicted Y through an energy function E(Y,X).

$$Y^* = \operatorname{argmin}_{Y \in \mathcal{Y}} E(Y, X).$$

- Inference: Search for the Y that minimizes the energy within a set y
- If the set has low cardinality, we can use exhaustive search.

Complex Tasks: Inference is non-trivial

(f)

(e)

(d)

What Questions Can a Model Answer?

1. Classification & Decision Making:

- "which value of Y is most compatible with X?"
- Applications: Robot navigation,.....
- Training: give the lowest energy to the correct answer

2. Ranking:

- "Is Y1 or Y2 more compatible with X?"
- Applications: Data-mining....
- Training: produce energies that rank the answers correctly

3. Detection:

- "Is this value of Y compatible with X"?
- Application: face detection....
- Training: energies that increase as the image looks less like a face.

4. Conditional Density Estimation:

- "What is the conditional distribution P(Y|X)?"
- Application: feeding a decision-making system
- Training: differences of energies must be just so.

Decision-Making versus Probabilistic Modeling

- Energies are uncalibrated
 - The energies of two separately-trained systems cannot be combined
 - The energies are uncalibrated (measured in arbitrary untis)
- How do we calibrate energies?
 - We turn them into probabilities (positive numbers that sum to 1).
 - Simplest way: Gibbs distribution
 - Other ways can be reduced to Gibbs by a suitable redefinition of the energy.

$$P(Y|X) = \frac{e^{-\beta E(Y,X)}}{\int_{y \in \mathcal{Y}} e^{-\beta E(y,X)}},$$
Partition function Inverse temperature

Architecture and Loss Function

Family of energy functions
$$\mathcal{E} = \{ E(W, Y, X) : W \in \mathcal{W} \}.$$

$$ullet$$
 Training set $\hat{\mathcal{S}} = \{(X^i, Y^i) : i = 1 \dots P\}$

Loss functional / Loss function

$$\mathcal{L}(E,\mathcal{S})$$
 $\mathcal{L}(W,\mathcal{S})$

- Measures the quality of an energy function
- **Training**

$$W^* = \min_{W \in \mathcal{W}} \mathcal{L}(W, \mathcal{S}).$$

- Form of the loss functional
 - invariant under permutations and repetitions of the samples

$$\mathcal{L}(E,\mathcal{S}) = \frac{1}{P} \sum_{i=1}^{P} L(Y^i, E(W, \mathcal{Y}, X^i)) + R(W).$$
 Energy surface Per-sample Desired for a given Xi loss answer as Y varies

Designing a Loss Functional

- Correct answer has the lowest energy -> LOW LOSS
- Lowest energy is not for the correct answer -> HIGH LOSS

Yann LeCun

New York University

Designing a Loss Functional

- Push down on the energy of the correct answer
- **■** Pull up on the energies of the incorrect answers, particularly if they are smaller than the correct one

Yann LeCun

↑ New York University

Architecture + Inference Algo + Loss Function = Model

- **1. Design an architecture:** a particular form for E(W,Y,X).
- **2. Pick an inference algorithm for Y:** MAP or conditional distribution, belief prop, min cut, variational methods, gradient descent, MCMC, HMC.....
- **3. Pick a loss function:** in such a way that minimizing it with respect to W over a training set will make the inference algorithm find the correct Y for a given X.
- 4. Pick an optimization method.

■ PROBLEM: What loss functions will make the machine approach the desired behavior?

Several Energy Surfaces can give the same answers

- Both surfaces compute Y=X^2
- \blacksquare MINy E(Y,X) = X^2
- Minimum-energy inference gives us the same answer

Simple Architectures

- Regression
- $E(W, Y, X) = \frac{1}{2}||G_W(X) Y||^2.$ $E(W, Y, X) = -YG_W(X),$
- **Binary Classification**

$$E(W, Y, X) = -YG_W(X),$$

Multi-class Classification

Simple Architecture: Implicit Regression

$$E(W, X, Y) = ||G_{1_{W_1}}(X) - G_{2_{W_2}}(Y)||_1,$$

- The Implicit Regression architecture
 - allows multiple answers to have low energy.
 - Encodes a constraint between X and Y rather than an explicit functional relationship
 - This is useful for many applications
 - Example: sentence completion: "The cat ate the {mouse,bird,homework,...}"
 - ▶ [Bengio et al. 2003]
 - But, inference may be difficult.

Examples of Loss Functions: Energy Loss

- Energy Loss $L_{energy}(Y^i, E(W, \mathcal{Y}, X^i)) = E(W, Y^i, X^i).$
 - Simply pushes down on the energy of the correct answer

Examples of Loss Functions: Perceptron Loss

$$L_{perceptron}(Y^i, E(W, \mathcal{Y}, X^i)) = E(W, Y^i, X^i) - \min_{Y \in \mathcal{Y}} E(W, Y, X^i).$$

Perceptron Loss

- Pushes down on the energy of the correct answer
- Pulls up on the energy of the machine's answer
- Always positive. Zero when answer is correct
- No "margin": technically does not prevent the energy surface from being almost flat.
- ► Works pretty well in practice, particularly if the energy parameterization does not allow flat surfaces.

Perceptron Loss for Binary Classification

$$L_{perceptron}(Y^i, E(W, \mathcal{Y}, X^i)) = E(W, Y^i, X^i) - \min_{Y \in \mathcal{Y}} E(W, Y, X^i).$$

- Energy: $E(W, Y, X) = -YG_W(X),$
- Inference: $Y^* = \operatorname{argmin}_{Y \in \{-1,1\}} YG_W(X) = \operatorname{sign}(G_W(X)).$
- Loss: $\mathcal{L}_{perceptron}(W, \mathcal{S}) = \frac{1}{P} \sum_{i=1}^{P} \left(sign(G_W(X^i)) Y^i \right) G_W(X^i).$
- Learning Rule: $W \leftarrow W + \eta \left(Y^i \text{sign}(G_W(X^i)) \right) \frac{\partial G_W(X^i)}{\partial W},$
- **If Gw(X) is linear in W:** $E(W, Y, X) = -YW^T\Phi(X)$

$$W \leftarrow W + \eta \left(Y^i - \text{sign}(W^T \Phi(X^i)) \right) \Phi(X^i)$$

Examples of Loss Functions: Generalized Margin Losses

First, we need to define the Most Offending Incorrect Answer

Most Offending Incorrect Answer: discrete case

Definition 1 Let Y be a discrete variable. Then for a training sample (X^i, Y^i) , the **most offending incorrect answer** \bar{Y}^i is the answer that has the lowest energy among all answers that are incorrect:

$$\bar{Y}^i = \operatorname{argmin}_{Y \in \mathcal{Y} and Y \neq Y^i} E(W, Y, X^i). \tag{8}$$

Most Offending Incorrect Answer: continuous case

Definition 2 Let Y be a continuous variable. Then for a training sample (X^i, Y^i) , the **most offending incorrect answer** \bar{Y}^i is the answer that has the lowest energy among all answers that are at least ϵ away from the correct answer:

$$\bar{Y}^i = \operatorname{argmin}_{Y \in \mathcal{Y}, ||Y - Y^i|| > \epsilon} E(W, Y, X^i). \tag{9}$$

Examples of Loss Functions: Generalized Margin Losses

$$L_{\text{margin}}(W, Y^i, X^i) = Q_m \left(E(W, Y^i, X^i), E(W, \bar{Y}^i, X^i) \right).$$

Generalized Margin Loss

- Qm increases with the energy of the correct answer
- Qm decreases with the energy of the most offending incorrect answer
- whenever it is less than the energy of the correct answer plus a margin m.

Examples of Generalized Margin Losses

$$L_{\text{hinge}}(W, Y^{i}, X^{i}) = \max(0, m + E(W, Y^{i}, X^{i}) - E(W, \bar{Y}^{i}, X^{i})),$$

Hinge Loss

With the linearly-parameterized binary classifier architecture, we get linear SVM

$$L_{\log}(W, Y^i, X^i) = \log\left(1 + e^{E(W, Y^i, X^i) - E(W, \bar{Y}^i, X^i)}\right).$$

Log Loss

- "soft hinge" loss
- With the linearly-parameterized binary classifier architecture, we get linear Logistic Regression

Examples of Margin Losses: Square-Square Loss

$$L_{\text{sq-sq}}(W, Y^{i}, X^{i}) = E(W, Y^{i}, X^{i})^{2} + (\max(0, m - E(W, \bar{Y}^{i}, X^{i})))^{2}.$$

- Square-Square Loss
 - ▶ [LeCun-Huang 2005]
 - Appropriate for positive energy functions

Learning $Y = X^2$

Other Margin-Like Losses

LVQ2 Loss [Kohonen, Oja], Driancourt-Bottou 1991]

$$L_{\text{lvq2}}(W, Y^i, X^i) = \min\left(1, \max\left(0, \frac{E(W, Y^i, X^i) - E(W, \bar{Y}^i, X^i)}{\delta E(W, \bar{Y}^i, X^i)}\right)\right),$$

Minimum Classification Error Loss [Juang, Chou, Lee 1997]

$$L_{\text{mce}}(W, Y^{i}, X^{i}) = \sigma \left(E(W, Y^{i}, X^{i}) - E(W, \bar{Y}^{i}, X^{i}) \right),$$

$$\sigma(x) = (1 + e^{-x})^{-1}$$

Square-Exponential Loss [Osadchy, Miller, LeCun 2004]

$$L_{\text{sq-exp}}(W, Y^i, X^i) = E(W, Y^i, X^i)^2 + \gamma e^{-E(W, \bar{Y}^i, X^i)}$$

Negative Log-Likelihood Loss

Conditional probability of the samples (assuming independence)

$$P(Y^{1},...,Y^{P}|X^{1},...,X^{P},W) = \prod_{i=1}^{P} P(Y^{i}|X^{i},W).$$

$$-\log \prod_{i=1}^{P} P(Y^{i}|X^{i},W) = \sum_{i=1}^{P} -\log P(Y^{i}|X^{i},W).$$

Gibbs distribution: $i=1 \\ P(Y|X^i,W) = \frac{e^{-\beta E(W,Y,X^i)}}{\int_{y\in\mathcal{Y}} e^{-\beta E(W,y,X^i)}}.$

$$-\log \prod_{i=1}^{P} P(Y^{i}|X^{i}, W) = \sum_{i=1}^{P} \beta E(W, Y^{i}, X^{i}) + \log \int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^{i})}.$$

We get the NLL loss by dividing by P and Beta:

$$\mathcal{L}_{\text{nll}}(W, \mathcal{S}) = \frac{1}{P} \sum_{i=1}^{P} \left(E(W, Y^i, X^i) + \frac{1}{\beta} \log \int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^i)} \right).$$

Reduces to the perceptron loss when Beta->infinity

Negative Log-Likelihood Loss

- Pushes down on the energy of the correct answer
- Pulls up on the energies of all answers in proportion to their probability

$$\mathcal{L}_{\text{nll}}(W, \mathcal{S}) = \frac{1}{P} \sum_{i=1}^{P} \left(E(W, Y^i, X^i) + \frac{1}{\beta} \log \int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^i)} \right).$$

$$\frac{\partial L_{\text{nll}}(W, Y^i, X^i)}{\partial W} = \frac{\partial E(W, Y^i, X^i)}{\partial W} - \int_{Y \in \mathcal{Y}} \frac{\partial E(W, Y, X^i)}{\partial W} P(Y|X^i, W),$$

Negative Log-Likelihood Loss: Binary Classification

Binary Classifier Architecture:

$$\mathcal{L}_{\text{nll}}(W, \mathcal{S}) = \frac{1}{P} \sum_{i=1}^{P} \left[-Y^{i} G_{W}(X^{i}) + \log \left(e^{Y^{i} G_{W}(X^{i})} + e^{-Y^{i} G_{W}(X^{i})} \right) \right].$$

$$\mathcal{L}_{\text{nll}}(W, \mathcal{S}) = \frac{1}{P} \sum_{i=1}^{P} \log \left(1 + e^{-2Y^{i} G_{W}(X^{i})} \right),$$

Linear Binary Classifier Architecture:

$$\mathcal{L}_{\text{nll}}(W, \mathcal{S}) = \frac{1}{P} \sum_{i=1}^{P} \log \left(1 + e^{-2Y^i W^T \Phi(X^i)} \right).$$

Learning Rule: logistic regression

What Makes a "Good" Loss Function

- Good loss functions make the machine produce the correct answer
 - Avoid collapses and flat energy surfaces

Sufficient Condition on the Loss

Let (X^i, Y^i) be the i^{th} training example and m be a positive margin. Minimizing the loss function L will cause the machine to satisfy $E(W, Y^i, X^i) < E(W, Y, X^i) - m$ for all $Y \neq Y^i$, if there exists at least one point (e_1, e_2) with $e_1 + m < e_2$ such that for all points (e'_1, e'_2) with $e'_1 + m \geq e'_2$, we have

$$Q_{[E_y]}(e_1, e_2) < Q_{[E_y]}(e'_1, e'_2),$$

where $Q_{[E_u]}$ is given by

$$L(W, Y^i, X^i) = Q_{[E_u]}(E(W, Y^i, X^i), E(W, \bar{Y}^i, X^i)).$$

What Make a "Good" Loss Function

Good and bad loss functions

Loss (equation #)	Formula	Margin
energy loss	$E(W, Y^i, X^i)$	none
perceptron	$E(W, Y^i, X^i) - \min_{Y \in \mathcal{Y}} E(W, Y, X^i)$	0
hinge	$\max(0, m + E(W, Y^i, X^i) - E(W, \bar{Y}^i, X^i))$	m
log	$\log\left(1 + e^{E(W,Y^i,X^i) - E(W,\bar{Y}^i,X^i)}\right)$	> 0
LVQ2	$\min \left(M, \max(0, E(W, Y^i, X^i) - E(W, \bar{Y}^i, X^i)\right)$	0
MCE	$\left(1 + e^{-\left(E(W,Y^{i},X^{i}) - E(W,\bar{Y}^{i},X^{i})\right)}\right)^{-1}$	> 0
square-square	$E(W, Y^i, X^i)^2 - (\max(0, m - E(W, \bar{Y}^i, X^i)))^2$	m
square-exp	$E(W, Y^{i}, X^{i})^{2} + \beta e^{-E(W, \bar{Y}^{i}, X^{i})}$	> 0
NLL/MMI	$E(W, Y^i, X^i) + \frac{1}{\beta} \log \int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^i)}$	> 0
MEE	$E(W, Y^{i}, X^{i}) + \frac{1}{\beta} \log \int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^{i})} $ $1 - e^{-\beta E(W, Y^{i}, X^{i})} / \int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^{i})} $	> 0

Advantages/Disadvantages of various losses

- Loss functions differ in how they pick the point(s) whose energy is pulled up, and how much they pull them up
- Losses with a log partition function in the contrastive term pull up all the bad answers simultaneously.
 - This may be good if the gradient of the contrastive term can be computed efficiently
 - This may be bad if it cannot, in which case we might as well use a loss with a single point in the contrastive term
- Variational methods pull up many points, but not as many as with the full log partition function.
- Efficiency of a loss/architecture: how many energies are pulled up for a given amount of computation?
 - The theory for this is to be developed

Linear Machines: Regression with Mean Square

Linear Regression, Mean Square Loss:

- decision rule: y = W'X
- loss function: $L(W, y^i, X^i) = \frac{1}{2}(y^i W'X^i)^2$
- **gradient** of loss: $\frac{\partial L(W, y^i, X^i)}{\partial W}' = -(y^i W(t)'X^i)X^i$
- update rule: $W(t+1) = W(t) + \eta(t)(y^i W(t)'X^i)X^i$
- \blacksquare direct solution: solve linear system $[\sum_{i=1}^P X^i X^{i'}]W = \sum_{i=1}^P y^i X^i$

Linear Machines: Perceptron

Perceptron:

- decision rule: y = F(W'X) (F is the threshold function)
- loss function: $L(W, y^i, X^i) = (F(W'X^i) y^i)W'X^i$
- \blacksquare gradient of loss: $\frac{\partial L(W,y^i,X^i)}{\partial W}' = -(y^i F(W(t)'X^i))X^i$
- update rule: $W(t+1) = W(t) + \eta(t)(y^i F(W(t)'X^i))X^i$
- direct solution: find W such that $-y^i F(W'X^i) < 0 \quad \forall i$

Linear Machines: Logistic Regression

Logistic Regression, Negative Log-Likelihood Loss function:

- decision rule: y = F(W'X), with $F(a) = \tanh(a) = \frac{1 \exp(a)}{1 + \exp(a)}$ (sigmoid function).
- loss function: $L(W, y^i, X^i) = 2 \log(1 + \exp(-y^i W' X^i))$
- gradient of loss: $\frac{\partial L(W, y^i, X^i)}{\partial W}' = -(Y^i F(W'X)))X^i$
- update rule: $W(t+1) = W(t) + \eta(t)(y^i F(W(t)'X^i))X^i$