Learning Long-Term Dependencies with
Gradient Descent is Difficult

* |EEE Trans. on Neural Networks 1994

Yoshua Bengio, Patrice Simard, Paolo Frasconi

* Presented by:

Matt Grimes , Ayse Naz Erkan

Recurrent Neural Networks - Definition

* A neural network with feedback. Provides

- Memory

— Context-sensitive processing of streams.

lllustration from Introduction to machine learning, E. Alpaydin 2005

Training algorithms for recurrent networks

Back-propagation through time (Rumelhart, Hinton, Williams,86)

Applies backprop to recurrent networks by unfolding them through N timesteps
and treating them like static networks (stores the activations of units while going
forward in time.)

Others, forward propagation algorithms

Computationally more expensive but local in time, can be applied for online
learning.

A variant for constrained recurrent networks

(Gori, Bengio, Mori, 89) (Mozer, 89)

Local in time, computational requirement proportional to number of weights.
However, has limited storage capabilities with general sequences.

From the dynamical systems perspective:

Three basic requirements to be able to learn relevant state
information

Feature wishlist

|. Be able to store information for an arbitrary
duration

- e.g. be able to learn constants

Feature wishlist

ll. Be resistant to noise, irrelevant input

Feature wishlist

Ill. System parameters should be trainable in a reasonable
amount of time

Problem

* “Storage” in recurrent neural nets via gradient-
based backprop is problematic due to the trade-
off between robust storage and efficient
learning.

Min task problem - A simple case

* Classify a sequence based on first L values.

* Decision is given at the end. Therefore, the system must
remember its state for an arbitrary amount of time. (1%
requirement)

* The value so Irrelevant
for detern] /\ Jce. (2"

. E .
requiremg LA R A . Pos el -

Min task problem

We are interested in the learning capabilities of the latching problem. The big question is :
Can latching subsystem propagate error information back to the subsystem that feeds it?

The ability to learn h,,...,h _is the measure of effectiveness of gradient info.
(3" requirement)

Subsystem that computes >
y . ; Latching subsystem
class info X,

h is the result of the computation that extracts class information.

A simple recurrent network candidate
solution

* Input:
h

t
* Output:
x, = tanh(a)

* Parameters: In the paper:

- Trainable input h,

@
h

—_ W t

o

Simple recurrent network candidate solution

* An attractor is an
invariant point a = a
t t-1

o For thetg%?no ous
case:

o Attractors at nonzero

soWﬁdﬁ@&%“

Simple recurrent network candidate solution

Non-autonomous case (input h # 0):

* Escape threshold h*:

- As long as Ih| < h*, neuron won't escape

attractor. the activation of your neuron
does not change.

* If Inl > h*, then the system may be pushed to
another attractor.

Experimental Results for the minimal task
problem

“Bigger noise (s) = harder to
learn”
r

JZ

Ly

Convergence density

1q
w, (initial weight) vs

S (noise variance)

L=3, T=20

Wo

“Longer noise sequence = harder to

Frequency of training
convergence vs T

S5=0.2

wi—41 DR

Discrete dynamical systems

* The basin of attraction of an attractor X

— A set of points a that converge to X under repeated

Discrete dynamical systems

* Map M is contracting on a set A If:

For any two points a, a,in A, || M(a,) —M(a) || < || a,

Discrete dynamical systems

* Xis a hyperbolic attractor that contracts on its
reduced attracting set I if:

- For all ain I', all eigenvalues of M"(a) < 1

Discrete dynamical systems

* The sphere of uncertainty of a point, if
contained in I', will shrink at each timestep
under no input.

Discrete dynamical systems

* A system in state ais robustly latched to X if
no input u will bump it out of I".

Discrete dynamical systems

* Let A be the maximum “shrinkage rate”.

* M'(a+u) will remain within a radius d of M'(a) as
long as

Discrete dynamical systems

* “Minimum shrinkage rate” = |M'|

da,
da,_,
da,
da,

I
<
S
!
A
[

da
da

vanishes as t

Effect of the gradient

The derivative of the cost C at time t with respect to the parameters of the system is

8C‘t=2 oC,0a, ~0C,0a,0a,
oW

“~oa 0W “<.0a,0a oW

0C,0a,
From the previous analysis, we know for term¥& withl —

oa.o

This means that even though there is a change in the state variable that allows the
system to change the basin of attractor, this would not be reflected in the gradient

info.

Effect of gradient

If B has not been trained enough for latching then the gradient of B's output
with respect to A's early output will be zero. A's early outputs can't influence
B's error at time T, B does not remember them.

On the other hand, if B has latched, then the terms in the gradient that refer to
the earlier states -the times when real input came, in other words what really
matters for training the classifier- have vanished according to the theorem. So

training A is very difficult.

Alternatives to gradient descent

* Stochastic search

— Simulated annealing

— Multi-grid random
search

* Curvature-weighted
gradient descent

- Quasi-newton

- Time-weighted QN

n
® I ‘If\f\lﬂf\'l‘f\ aVNU'd Y oV

Simulated Annealing

Metropolis criterion There are many

— Accept uphill steps annealing approaches:

Optimization by continuation

with probability:
PIOBEdIN ¢

P_=exp

-log posterior

* Dynamic selection
hyperrectangle

A deterministic annealing example

- Update dimensionsto from:
Matthew Brand and Aaron
keep acceptance rate

Hertzmann,

Multi-grid Random Search

* The problem isn't local minima, it's long
plateaus (small gradients)

* Multigrid random search == gradient descent
without the uphills.

Quasi-newton methods

* Newton update

- Uses Hessian H for more accurate update.
- Costly, O(NW?) (N = # examples)

— Could point to maximum if ||H|| < O

Quasi-Newton methods

* An alternative (Becker, LeCun 1989):

* Only use diagonal elements of Hessian
- H" in O(NW) time

— Separate equations for each weight

Aw

Aw.

l

—H

~10C(p)

ow,

—1

 9C(p)

0’ C(p)

ow’

l

ow,

Quasi-Newton methods

Some tweaks:
* n = learning rate

® u = Insurance against zero curvature

oC
Awi — T] X (p)
62C(p) . GWZ-
, | H
Gwi

“When curvature is low, take bigger
jumps”

Quasi-Newton methods

* Apply to our recurrent net by:

— Unfolding recurrent net into deep static net:

— Treating the unfolded weights as different variables.

- Keep them close to each other via some soft
constraint.

Awi

-2

A

o°C(p)

X

2
OWwW:
it

-

oC (p)

ow .

4

Quasi-Newton methods

* Compare with backprop/gradient descent:

Aw, = _Z n XaC(P)
g aZC(p) , 8‘/Vit
> |TH
ow,
Aw = -n3 oC(p)

, ow.
A

Discrete error propagation

* We're shoehorning a continuous solution
(gradient descent) into a binary problem

(latching): ,
CONIINUOUS discrete

C(y) ®y(x)=x

* How can we back-propagate error signals
across discrete functions?

Discrete error propagation

* Let y = sign(x)

r_ . =2
A ol =X 1A

0 if Ay=0

Ay
* Backpropagated

- oC
Ay=n|—m:
Oy

* Problem:

— not necessarilv -2. 2.

Discrete error propagation

0C
* Translate continuous gradient,g= into

discrete value Ay using a discrete stochastic
(

fU nction: 2 with probability 8§ — MIN
MAX — MIN
Ay(g) = TAX
—2 with probability >
| MAX — MIN
E(Ay(g)) = g

* Expectation quickly converges to g when

Results

3 problems:

* Latch problem

- Classify noisy sequence where the first L values
hover around a constant.

* 2-sequence problem
— Latch problem with non-constant first L values.
* Parity problem

- Is the sum of a sequence even or odd.

Results

* Simulated annealing

— Good: best overall error.

- Bad: requires ~10'° times more iterations than
other methods.

* Multigrid stochastic search

— Good: comparable speed to gradient-based
methods.

— Bad: comparable susceptibility to local minima.

Results

* Standard backprop

- Vanishing gradient problem, local minima.
* Time-weighted quasi-newton

— Same problems as backprop, just less bad.
* Discrete error propagation:

— Usually the fastest, error rate comparable to non-
annealing methods.

- Particularly good at parity problem: robust to local
minima?

End

Questions?

Appendix: Derivation of Newton update

E(w) = E(w0)+;—(w—w0) H(w—w)
dE

— = H(w—w)

dw ¢

w = w—H_ldi

