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Unsupervised Learning

The basics idea of unsupervised learning: Learn an energy function E(Y ) such that
E(Y ) is small if Y is “similar” to the training samples, and E(Y ) is large if Y is
“different” from the training samples. What we mean by “similar” and “different” is
somewhat arbitrary and must be defined for each problem.

Probabilistic unsupervised learning: Density
Estimation. Find a function f such f(Y )
approximates the empirical probability density of Y ,
p(Y ), as well as possible.

Clustering: discover “clumps” of points

Embedding: discover low-dimensional manifold or
surface that is as close as possible to all the samples.

Compression/Quantization: discover a function that
for each input computes a compact “code” from which
the input can be reconstructed.
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Parametric Density Estimation

Use Maximum Likelihood: Given a model P (Y |W ), find the parameter W that best
“explains” the training samples, i.e. the W that maximizes the likelihood of the
training samples Y 1, Y 2, ...Y P . Assuming that the total data likelihood factorizes into
individual sample likelihoods:

P (Y 1, Y 2, ...Y P |W ) =
∏

i

P (Y i|W )

Equivalently, find the W that minimizes the negative log likelihood.

L(W ) = −log
∏

i

P (Y i|W ) =
∑

i

−logP (Y i|W )

This is called parametric estimation because we assume that the family of possible
densities is parameterized by W .
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Parametric Density Estimation

Assuming P (Y |W ) is the normalized exponential of an energy function:

P (Y |W ) =
exp(−βE(Y, W ))

∫

exp(−βE(Y, W ))dY

and after an irrelevant division by β, we get the loss function:

L(W ) =
∑

i

(

E(Y i, W ) +
1

β
log

∫

exp(−βE(Y, W ))dY

)

The Maximum A Posteriori Estimate is similar but includes a penalty on W :

L(W ) =
∑

i

(

E(Y i, W ) +
1

β
log

∫

exp(−βE(Y, W ))dY

)

+ H(W )
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Example: Univariate Gaussian

Maximum Likelihood: find the parameters
of a Gaussian that best “explains” the
training samples y1, y2, ....yP .

negative log-likelihood of the data (one
dimension): L(m, v) =

−
∑

i log 1√
2πv

exp(− 1
2v (yi − m)2)

L(m, v) =
1

2

∑

i

1

v
(yi − m)2 + log 2πv

Minimize L(m, v) with respect to m and v.
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Example: Univariate Gaussian

Minimize L(m, v) with respect to m

∂L(m, v)

∂m
=

1

2

∑

i

1

v
(yi − m) = 0

Hence, m = 1
P

∑

i yi

Now minimize L(m, v) with respect to v

∂L(m, v)

∂v
=

1

2

∑

i

(

−
1

v2
(yi − m)2 +

1

v

)

= 0

Hence v = 1
P

∑

i(y
i − m)2

surprise-surprise: The maximum likelihood estimates of the mean and variance
of a Gaussian are the mean and variance of the samples.
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Example: Multi-variate Gaussian

Maximum Likelihood: find the parameters of a Gaussian that best “explains” the
training samples Y 1, Y 2, ....Y P .
The negative log-likelihood of the data (M is a vector, V is a matrix):

L(M, V ) = −
∑

i

log
(

|2πV |−1/2 exp(−1/2(Y i − M)′V −1(Y i − M))
)

L(M, V ) =
1

2

∑

i

(Y i − M)′V −1(Y i − M) − log |V −1| + log(2π)
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Multi-variate Gaussian (continued)

L(M, V ) =
1

2

∑

i

(Y i − M)′V −1(Y i − M) − log |V −1| + log(2π)

∂L(M, V )

∂M
=

1

2

∑

i

V −1(Y i − M) = 0

Hence, M = 1
P

∑

i Y i Now minimize L(M, V ) with respect to V −1

∂L(M, V )

∂V −1
=

1

2

∑

i

(

(Y i − M)(Y i − M)′ − V
)

(using the fact ∂ log |V −1|
∂V −1 = V ′).

Hence V = 1
P

∑

i(Y
i − M)(Y i − M)′
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Non-Parametric Methods: Parzen Windows

The sample distribution can be seen as a
bunch of delta functions. Idea: make it
smooth.

Place a “bump” around each training
sample Y i.

example: Gaussian bump
gi(Y ) = 1

Z exp(−K||Y − Y i||2) where Z

is the Gaussian normalization constant.

The density is P (Y ) = 1
P ∼P

i=1 gi(Y )

It’s simple, but it’s expensive.
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