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Unsupervised Learning

The basics idea of unsupervised learning: Learn an energy function E(Y") such that
E(Y) issmall if Y is “similar” to the training samples, and E(Y") is large if Y is
“different” from the training samples. What we mean by “similar” and “different” is
somewhat arbitrary and must be defined for each problem.

Probabilistic unsupervised learning: Density
Estimation. Find a function f such f(Y)
approximates the empirical probability density of Y,
p(Y'), as well as possible.

Clustering: discover “clumps” of points

Embedding: discover low-dimensional manifold or
surface that is as close as possible to all the samples.

Compression/Quantization: discover a function that
for each input computes a compact “code” from which
the input can be reconstructed.
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Parametric Density Estimation

Use Maximum Likelihood: Given a model P(Y|W), find the parameter W that best
“explains” the training samples, i.e. the TV that maximizes the likelihood of the

training samples Y1, Y2, ...Y'*. Assuming that the total data likelihood factorizes into
Individual sample likelihoods:

P(YLY? YR IW) =] PYW)

Equivalently, find the T/ that minimizes the negative log likelihood.

L(W) = —log H P(Y'|W) =Y —logP(Y'|W)

)

This Is called parametric estimation because we assume that the family of possible
densities is parameterized by W'.
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Parametric Density Estimation

Assuming P(Y |WW) is the normalized exponential of an energy function:

. exp(—ﬁE(Y, W))
PY|W) = [exp(—BE(Y,W))dY

and after an irrelevant division by 3, we get the loss function:

LW)=Y)_ (E(Y’i,W) + %log/exp(—ﬁE(Y, W))dY)

)

The Maximum A Posteriori Estimate is similar but includes a penalty on W'

LW)=>" (E(Y@',W) + %log / exp(—BE(Y, W))dY) + H(W)

7
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Example: Univariate Gaussian

Maximum Likelihood: find the parameters

of a Gaussian that best “explains” the
training samples y!, v2, ....y".
negative log-likelihood of the data (one
dimension): L(m,v) =

Y, log A exp(— & (4 — m)?)

1 1, .
L =) ~(y' —m)® +log?2
(m,v) 5 U(y m)~ + log 27w

1

Minimize L(m,v) with respect to m and v.
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Example: Univariate Gaussian

Minimize L(m,v) with respect to m

aLéﬂﬂz,v) _ %Zl(yz —m) =0

_ 1 '
Hence, m = 5 > . ¢*

Now minimize L(m,v) with respect to v

OL(m,v) _ lz (_i(yz‘ —m) + l) —0

ov 2 V2 v

Hence v = & >, (y" — m)?

surprise-surprise: The maximum likelihood estimates of the mean and variance
of a Gaussian are the mean and variance of the samples.
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Example: Multi-variate Gaussian

Maximum Likelihood: find the parameters of a Gaussian that best “explains” the
training samples Y!, Y2, ...Y",
The negative log-likelihood of the data (M is a vector, V' is a matrix):

L(M,V) = Zlog(|27rV\ V2 exp(~1/2(Y = MYVTHYT — M)

L(M, V) = % SV = MYVLY = M) — log [V + log(2r)

1
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Multi-variate Gaussian (continued)

L(M,V) = % (Y= MYVTHY? = M) —log |V + log(2)

1

8LMV ZV B 0

Hence, M = + >, Y* Now minimize L(M, V') with respect to V ~1

TILY) LS (vt - My — by —v)

)

(using the fact al%gv“_/l_l| = V).
Hence V.= 5> .(Y'— M)(Y' — M)
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Non-Parametric Methods: Parzen Windows

The sample distribution can be seen as a

bunch of delta functions. Idea: make it
smooth.

Place a “bump” around each training
sample Y.

example: Gaussian bump

9:;(Y) = 2 exp(—K||Y — Y*||?) where Z
Is the Gaussian normalization constant.

The density is P(Y) = & ~7_; ¢;(Y)

It’s simple, but it’s expensive.
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