
MACHINE LEARNING AND

PATTERN RECOGNITION

Spring 2004, Lecture 5a

Architectures

Yann LeCun
The Courant Institute,
New York University
http://yann.lecun.com

Y. LeCun: Machine Learning and Pattern Recognition – p. 1/14

MAP/MLE Loss and Cross-Entropy

classification (y is scalar and discrete). Let’s denote E(y, X, W) = Ey(X, W)

MAP/MLE Loss Function:

L(W) =
1

P

P∑

i=1

[Eyi(Xi, W) +
1

β
log

∑

k

exp(−βEk(Xi, W))]

This loss can be written as

L(W) =
1

P

P∑

i=1

−
1

β
log

exp(−βEyi(Xi, W))∑
k exp(−βEk(Xi, W))

Y. LeCun: Machine Learning and Pattern Recognition – p. 2/14

Cross-Entropy and KL-Divergence

let’s denote P (j|X i, W) =
exp(−βEj(X

i,W))
P

k
exp(−βEk(Xi,W)) , then

L(W) =
1

P

P∑

i=1

1

β
log

1

P (yi|Xi, W)

L(W) =
1

P

P∑

i=1

1

β

∑

k

Dk(yi) log
Dk(yi)

P (k|Xi, W)

with Dk(yi) = 1 iff k = yi, and 0 otherwise.

example1: D = (0, 0, 1, 0) and P (.|Xi, W) = (0.1, 0.1, 0.7, 0.1). with β = 1,
Li(W) = log(1/0.7) = 0.3567

example2: D = (0, 0, 1, 0) and P (.|Xi, W) = (0, 0, 1, 0). with β = 1,
Li(W) = log(1/1) = 0

Y. LeCun: Machine Learning and Pattern Recognition – p. 3/14

Cross-Entropy and KL-Divergence

L(W) =
1

P

P∑

i=1

1

β

∑

k

Dk(yi) log
Dk(yi)

P (k|Xi, W)

L(W) is proportional to the cross-entropy between the conditional distribution
of y given by the machine P (k|X i, W) and the desired distribution over classes
for sample i, Dk(yi) (equal to 1 for the desired class, and 0 for the other
classes).

The cross-entropy also called Kullback-Leibler divergence between two
distributions Q(k) and P (k) is defined as:

∑

k

Q(k) log
Q(k)

P (k)

It measures a sort of dissimilarity between two distributions.

the KL-divergence is not a distance, because it is not symmetric, and it does not
satisfy the triangular inequality.

Y. LeCun: Machine Learning and Pattern Recognition – p. 4/14

Multiclass Classification and KL-Divergence

Assume that our discriminant module F (X, W)
produces a vector of energies, with one energy
Ek(X, W) for each class.

A switch module selects the smallest Ek to perform
the classification.

As shown above, the MAP/MLE loss below be seen
as a KL-divergence between the desired distribution
for y, and the distribution produced by the machine.

L(W) =
1

P

P∑

i=1

[Eyi(Xi, W)+
1

β
log

∑

k

exp(−βEk(Xi, W))]

Y. LeCun: Machine Learning and Pattern Recognition – p. 5/14

Multiclass Classification and Softmax

The previous machine: discriminant function with one
output per class + switch, with MAP/MLE loss

It is equivalent to the following machine: discriminant
function with one output per class + softmax + switch
+ log loss

L(W) =
1

P

P∑

i=1

1

β
− log P (yi|X, W)

with P (j|Xi, W) =
exp(−βEj(X

i,W))
P

k
exp(−βEk(Xi,W)) (softmax of

the −Ej’s).

Machines can be transformed into various equivalent
forms to factorize the computation in advantageous
ways.

Y. LeCun: Machine Learning and Pattern Recognition – p. 6/14

Multiclass Classification with a Junk Category

Sometimes, one of the categories is “none of the above”, how can we handle
that?

We add an extra energy wire E0 for the “junk” category which does not depend
on the input. E0 can be a hand-chosen constant or can be equal to a trainable
parameter (let’s call it w0).

everything else is the same.

Y. LeCun: Machine Learning and Pattern Recognition – p. 7/14

Mixtures of Experts

Sometimes, the function to be learned is consistent in restricted domains of the input
space, but globally inconsistent. Example: piecewise linearly separable function.

Solution: a machine composed of several
“experts” that are specialized on subdomains of
the input space.

The output is a weighted combination of the
outputs of each expert. The weights are produced
by a “gater” network that identifies which
subdomain the input vector is in.

F (X, W) =
∑

k ukF k(X, W k) with

uk = exp(−βGk(X,W 0))
P

k
exp(−βGk(X,W 0))

the expert weights uk are obtained by softmax-ing
the outputs of the gater.

example: the two experts are linear regressors, the
gater is a logistic regressor.

Y. LeCun: Machine Learning and Pattern Recognition – p. 8/14

Sequence Processing: Time-Delayed Inputs

The input is a sequence of vectors Xt.

simple idea: the machine takes a time
window as input

R = F (Xt, Xt−1, Xt−2, W)

Examples of use:
predict the next sample in a time
series (e.g. stock market, water
consumption)
predict the next character or word in a
text
classify an intron/exon transition in a
DNA sequence

Y. LeCun: Machine Learning and Pattern Recognition – p. 9/14

Sequence Processing: Time-Delay Networks

One layer produces a sequence for the next layer: stacked time-delayed layers.
layer1 X1

t = F 1(Xt, Xt−1, Xt−2, W
1)

layer2 X2
t = F 1(X1

t , X1
t−1, X

1
t−2, W

2)

cost Et = C(X1
t , Yt)

Examples:
predict the next sample in a time series with
long-term memory (e.g. stock market, water
consumption)
recognize spoken words
recognize gestures and handwritten
characters on a pen computer.

How do we train?

Y. LeCun: Machine Learning and Pattern Recognition – p. 10/14

Training a TDNN

Idea: isolate the minimal network that influences the energy at one particular time step
t.

in our example, this is influenced by 5 time
steps on the input.

train this network in isolation, taking those
5 time steps as the input.

Surprise: we have three identical replicas
of the first layer units that share the same
weights.

We know how to deal with that.

do the regular backprop, and add up the
contributions to the gradient from the 3
replicas

Y. LeCun: Machine Learning and Pattern Recognition – p. 11/14

Convolutional Module

If the first layer is a set of linear units with sigmoids, we can view it as performing a
sort of multiple discrete convolutions of the input sequence.

1D convolution operation:

S1
t =

∑T
j=1 W 1

j

′

Xt−j .

wjk j ∈ [1, T] is a convolution kernel

sigmoid X1
t = tanh(S1

t)

derivative: ∂E
∂w1

j
k

=
∑3

t=1
∂E
∂S1

t

Xt−j

Y. LeCun: Machine Learning and Pattern Recognition – p. 12/14

Simple Recurrent Machines

The output of a machine is fed back to some of its inputs Z. Zt+1 = F (Xt, Zt, W),
where t is a time index. The input X is not just a vector but a sequence of vectors Xt.

This machine is a dynamical system with
an internal state Zt.

Hidden Markov Models are a special case
of recurrent machines where F is linear.

Y. LeCun: Machine Learning and Pattern Recognition – p. 13/14

Unfolded Recurrent Nets and Backprop through time

To train a recurrent net: “unfold” it in time
and turn it into a feed-forward net with as
many layers as there are time steps in the
input sequence.

An unfolded recurrent net is a very “deep”
machine where all the layers are identical
and share the same weights.

∂E
∂W

=
∑

t
∂E
∂Zt

∂F (Xt,Zt,W)
∂W

This method is called back-propagation
through time.

examples of use: process control (steel mill,
chemical plant, pollution control....), robot
control, dynamical system modelling...

Y. LeCun: Machine Learning and Pattern Recognition – p. 14/14

	MAP/MLE Loss and Cross-Entropy
	Cross-Entropy and KL-Divergence
	Cross-Entropy and KL-Divergence
	Multiclass Classification and KL-Divergence
	Multiclass Classification and Softmax
	Multiclass Classification with a Junk Category
	Mixtures of Experts
	Sequence Processing: Time-Delayed Inputs
	Sequence Processing: Time-Delay Networks
	Training a TDNN
	Convolutional Module
	Simple Recurrent Machines
	Unfolded Recurrent Nets and Backprop through time

