MACHINE LEARNING AND
PATTERN RECOGNITION
Fall 2005, Lecture 2:

Energy-Based Models and Loss Functions,

[Linear Machines
Yann LeCun

The Courant Institute,
New York University

http://yann.lecun.com

Yann LeCun

Linear Machines: Regression with Mean Square

Linear Regression, Mean Square Loss:
W decision rule: y = W'X
W loss function: L(W, 3", X*) = 3(y' — W'X")?

aL(wy',xH'

¥ gradient of loss: o = —(y' — W) X)X*
W update rule: W(t+ 1) = W(t) +nt) (y' — W(t)X)X*

W direct solution: solve linear system [Y°7_, X X[= 374X

Y. Lol un: Machine Leaming and Pallem Recopnition — p. 236

Yann LeCun t New York University

Linear Machines: Perceptron

Perceptron:

W decision rule: y = F(W'X) (¥ is the threshold function)
B loss function: L(W,y', X?) = (F(W'X") —y') W'X?

rod vyt - : -
W gradient of loss: aL(gﬁ_ﬁx = —(y* — F(W() X)) X*
W update rule: W(t +1) = W(t) +n(t)(y' — F(IW(t)' X)) X*

W direct solution: find W such that —y* F(IW'X*) <0 Vi

Y. Lalun: Machine Leaming and Patiem Eecopnition — p. 336

Yann LeCun t New York University

Linear Machines: Logistic Regression

Logistic Regression, Negative Log-Likelihood Loss function:

B decision rule: y = F(TW'X), with F'(a) = tanh(a) = % (sigmoid

function).

W loss function: L(1V, yi,Xi} = 2log(1 + EKP{—EI!:H”X?:))

rodoyiy : !
W gradient of loss: E‘L”;ﬁ,’x) = _ (Y' - F(W'X))) X'

W update rule: W(t + 1) = W(¢) +n(t)(y* — F(W(t)' X)) X*

Y. Lalun: Machine Leaming and Patiem Hecognition — . 436

Yann LeCun t New York University

General Gradient-Based Supervised Learning Machine

Neural Nets, and many other models:

W decision rule: y = F'(1W, X), where F'is some function, and 'V some parameter
vector.

W loss function: L(TW,y', X*) = D(y*, F(W, X)), where D(y, f) measures the
“discrepancy” between A and B.

aL[W,y*',x‘j’ _ aD(y’ . f OF (W, X"
AW — af AW

@ gradient of loss:

W update rle: Wt + 1) = W(t) — n(t) 3-‘5‘5';#* f BFKST:;,FX"']

Three Questions:
¥ What architecture F'(11, X).

¥ What loss Function L(TV, %, X*).
“ What optimization method.

Y, LeCun: Machine Leaming and Patiem Heoopnilion — p 5036

Yann LeCun t New York University

A Model is Designed and trained to Answer Questions

e == == —_— e S

@@ Example: X is an image from a camera; Y is a discrete

Goodness variable e.g. Y in {animal, human, plane, truck, car}.

* ¥ 1. Best Guess for Y: which category best describes X?

¥ 2. Ranking on Y: Is X more a car than an airplane?
model ¥ 3. Distribution on Y: give an estimate of P(animal | X)

¥ 4. Best Guess for X: among all images of airplane, give me

* f the best one.
X Y

& 5. Ranking on X: is this image more of a truck than that one?

& 6. Distribution on X: among all images of airplanes, how

(input) (label)

likely is this one?

For each question, a different learning strategy is required

Yann LeCun * New York University

0 not answer a more complex question than necessary

¥ 1. Best Guess for Y: which category best describes X?

¥ 2. Ranking on Y: Is X more a car than an airplane?

¥ 3. Distribution on Y: give an estimate of P(animal | X)

¥ 4. Best Guess for X: among all images of airplane, give me the best one.
& 5. Ranking on X: is this image more of a truck than that one?

¥ 6. Distribution on X: among all images of airplanes, how likely is this one?

@@ The questions are in increasing order of complexity.

i@ The machine should be designed and trained to answer the simplest

question possible.

Yann LeCun t New York University

What is a model?

e ==

& A model measures the goodness of a combination of

observed variables (X) and variables to be predicted (Y).

Goodness & Probabilistic approaches compute the distribution P(YIX),

* and choose the Y that maximizes it.
& Sometimes, we do not need probabilities.
contrast ¥ Example: driving a robot. When the robot faces an
function obstacle, it MUST turn left of right. Computing a
distribution of steering angles is of little use.
* fY ¥ Question: why estimate the whole distribution P(YI[X)
X

when we are only interested in picking the best value of Y?

(input) (label)

Yann LeCun t New York University

m

nergy-Based Models

wi—i;e{r —

E(W,Y,X) @ E(W,Y,X): is a scalar energy function (a.k.a. Contrast
* function) that measures the “compatibility” between Y and X.
¥ W is the parameter to be learned.
W & MAP Inference: Given an input X, find the value of Y that
minimizes the energy:
* f Y = argminyE{Y}E(m y:X)
X Y

¥ Probabilistic Prediction: Given an input X, compute the

E(W,Y.,X)

A

conditional distribution over Y (Gibbs Distribution):
exp (—BEW,Y, X))
> yetyvy &Xp (—BE(W,y, X))

P(Y|X) =

» @ For decision making, we need no normalization.
Y

ol ¥ —

Yann LeCun t New York University

MAP Inference with Energy-Based Models

€(+,,5)

v i
¥ mwm (v, % %) E(w,Y,x)

Yann LeCun

Examples of EBM: Regressor

E(M 7, X)

D (R’ Y) W X and Y are vectors or other entities
® Energy: E(W,Y, X) = D(Y,G(W, X))

where D(Y, R) is a distance or dissimilarity
measure.

-

W Best output: Y
G(W, X).

miny E(W,Y, X) =

Y. LeCun: Machine Learning and Pattern Recognition — p, 512

Yann LeCun t New York University

Examples of EBM Regressor: Linear Regression

E(v,y,x)

m = X and Y are vectors

B Energy: E(W,Y,X) = ||[Y — W' X)||°
W Best output: Y = miny E(W,Y, X) = W'X.

Y. LeCun: Machine Learning and Pattern Recognition — p, 63

Yann LeCun t New York University

Examples of EBM: Classifier

E(V % x)
' _‘ W Y is a discrete variable, {V'} = {1,2, 3}.
T | ® Energy: E(W,Y, X) = Y, Gx(W, X)d(k,Y),
! where 6(k,Y) = 1 iff £ = Y and 0 otherwise.
5 W G (W, X), the k-th component of the output
; vector of G(W, X)) is interpreted as the “cost” of
; classifying X into category k.
W Best output: Y = minyeqy} E(W,Y, X) =
—-i——- miﬂ,{,; Gk(['{-’r,X).

X Yeli

Y. LeCun: Machine Learning and Pattern Recognition — p, 3/3

t New York University

Yann LeCun

Examples of EBM Classifier: Perceptron

W Y is a discrete variable, {Y'} = {—1, +1}.
B Energy: E(W,Y,X)=-YW'X.

W Best output: Y = sign(W’'X), where
sign(R) = +1iff R > 0 and —1 otherwise.

Y. LeCun: Machine Learning and Pattern Recognition - p, 42

Yann LeCun t New York University

Linear Machines

™ The learning algorithms we have seen so far
(perceptron, linear regression) are of that form,
with the assumption that G(W, X') only depends
on the dot product of W and X.

W In other words, The £ function of 2-class linear
classifiers can be written as:

E(Y,X,W) = D(Y, f(W'X))

where W’ X is the dot product of vectors W and
X, and f is a monotonically increasing scalar
function.

™ in the following, we assume Y = —1 for class 1,
and Y = +1 for class 2.

Y. LeCun: Machine Leaming and Pattern Recognition — p. 15/3

Yann LeCun t New York University

Training Energy-Based Models

- @ To train an EBM, we minimize a loss function,
E(u,*!,i‘) & “Q{ which is an average over training samples of a

ye thaf Sm per-sample loss function L(1W,Y", X*):

f}
L(W,S) = % S LW, YY, X)
i=1

—

Y y A } _ _ _
N W The loss function must be designed so that min-
Trainine &mpk (X",)"‘] imizing it with respect to W will make the ma-
chine approach the desired behavior.

To ensure this, we pick loss functions that, for a given training input X, will drive the

energies E(W,Y?, X*) associated with the desired output Y* to be lower than the

energies associated with all other (undesired) outputs values E(W,Y, X*) for all

Y#Y,Y e{Y}

Y. LeCun: Machine Learning and Pattern Recognition — p, 82

Yann LeCun t New York University

Form of the Loss Function

W We assume that the per-sample loss function L(W,Y", X*) has a lower bound
over W forall Y?, X".

W We assume that L depends on X only indirectly through the set of energies
{EWW,Y,X"),Y € {Y}}.

W For example, if {Y }is the set of integers between 0 and k& — 1 (as would be the
case for a classifier with k categories), the per-sample loss for sample (X%, Y?)
should be of the form:

L(W,Y%, X)) = L(Y?, E(W,0,X%), E(W,1,X%),..., E(W,k—1,X%)

W With this assumption, we separate the choice of the loss function from the
details of the internal structure of the machine, and limit the discussion to how
minimizing the loss function affects the energies.

Y. LeCun: Machine Learning and Pattern Recognition — p, 9/2

Yann LeCun t New York University

Examples of Loss: Energy Loss

Energy Loss, the simplest of all losses: Lenergy (W, Y, X*) = E(W,Y", X*). This
loss only works if F(W,Y">X") has a special form which guarantess that making

E(W,Y*, X*) lower will automatically make E(W,Y, X*) for Y # Y larger than the
minimum.

E(‘H .j Yl xq

/

1,1&\
J

2
W
&0 Example: if E(W,Y, X) is quadratic in Y/, as is the case

for regression with squared error: E(W,Y, X) = ||Y —

G(W, X)||?,

Let W (1) is the parameter before a learning update, and
- ——m V(2) the parameter after the learning update, and let
Y Y Y ¥ = miny E(W(1),Y, X). Then,

Troiniogy Sample (X%, y4)
EW(2),Y, X")-—EW(?2),Y,X')< EW(Q1),Y, X")-—EW(1),Y,X*

Y. LeCun: Machine Leaming and Pattern Recognition — p. 10/2

Yann LeCun t New York University

Linear Regression

Linear regression uses the Energy loss

Yann LeCun

B R=W'X
B E(W,Y,X)=D(Y,R) = 3|[Y — R|]?
B L(W,Y: X)) = D(Y!, W' X?)

m 0L _ OD(Y',R) 9R

oW R oW
oL _ OD(Y',R)9(W'X") _ i\ Vi
B 57 = "R i = (R-Y")X

B descent: W — W +n(Y* — R) X"

Y. LeCun: Machine Leaming and Pattern Recognition — p. 16/2

t New York University

Examples of Loss: Perceptron Loss

Perceptron Loss:

Losicenison W, ¥ XY= E(W, ¥, X*) — ng{i?f} E(W,Y, X"

)

e

\-K“ Adjust W so that E(W,Y*, X*) gets smaller, while
LL Y = miny¢yy E(W,Y, X") gets bigger (or more
“(g precisely, so that the difference decreases).

This algorithm makes no update whenever the energy
of the desired Y is lower than all the others.

¥. LeCun: Machine Leaming and Pattern Recognition — p. 11/3

Yann LeCun * New York University

Perceptron

Lperceptmn(W:- Y?:: Xl) - E(EV'} Yi& Xt) o YIII{ig} E(va Yﬂ Xt)
=

{Y}={-1,+41}.

B R=WX

mEYXW)=D(Y,R)=-YR

Y € {-1,+1}, hence miny —Y R = —sign(R)R
where sign(R) = 1iff R > 0, and —1 otherwise.

m L(W, Y X?) = —(Y? —sign(R))R

m 9L _ 0—(Y'—sign(R))R OR
oW R oW
m 2L — (V¢ _sign(W'X%)) X!
L M descent: W — W + H(Yi = Sign(ﬁﬂX'ﬁ))Xﬁ

Y. LeCum: Machine Leaming and Paitern Recognition — p. 17/2

Yann LeCun t New York University

Examples of Loss: Log-Likelihood Loss

Log-Likelihood Loss:

L”[I/V,Y":',Xi):E(HﬁYi,Xi)+%log Z exp(—BE(W,Y, X"))

ye{Y}

where /7 1s a positive constant.

- The function F3({Y'}) = é log (Zye{r} exp(—BE(W,Y, Xi))) is called the free
energy of the ensemble {Y } for temperature 1//3.

- We define Z3({Y'}) = Z}’e{}’} exp(—BE(W,Y, X")) as the partition function of
ensemble {Y }.

- Interesting property # 1: F3({Y}) = élog Z3({Y})

- Interesting property # 2: limg_.o, Fg({Y'}) = miny vy E(W,Y, X")

For very large /3, the log-likelihood loss reduces to the Perceptron loss.

Y. LeCun: Machine Leaming and Pattern Recognition — p. 13/3

Yann LeCun t New York University

Logistic Regression (a.k.a MaxEnt)

Ly(W) = E(Yi, Xt W)+ log (ZYE vy exp(—E(W,Y, X’i)))

“‘1

Ynj&J

mR=iWX
m E(Y,X,W)=D(Y,R) = —1YR=-lyW'X
B L(W) =log(l+ exp(-Y'W'X?))

m 9L _ 8D(Y'.R) 9§

ow oR OW
8L _ _ [Yi41 1 '
- ow — (2 1+exp(—wfx='-)) X*
b +1 1 1
B descent: W — W+n (— 1+exp(—Wfo}) X

Y. LeCun: Machine Leaming and Pattern Recognition — p. 18/2

Yann LeCun t New York University

Examples of Loss: Margin Loss

Margin Loss: for discrete output set {Y }:

Lmargin(wvﬁ YigXi) = m (E(PV-: Y?:-,Xi) == }”e{ll}}il}%;évi E(H”:) Xt))

where (0, (e) is any function that is monotonically increasing for e > —m, where m is
a constant called the margin.

Q"' (EJ Adjust W so that E(W,Y* X*) gets smaller,
while all E(W,Y, X") for which E(W,Y, X") —
E(W,Y" X*) < m get bigger. This guarantees that
e the energy .Df the desired Y will be smaller than all
other energies by at least m.

Y. LeCun: Machine Leaming and Pattern Recognition — p. 12/3

t New York University

Yann LeCun

_Linear Model + Margin Loss + Regularization = SVM

m‘—‘mé‘_;_

& Minimize the hinge loss: make the energy of all the
“s00d” answers smaller that the energy of any ‘“bad”

answer by at least m (the margin).

@ Minimize the Regularization term: Make W as short

as possible.

@ This is equivalent to keeping [IWI| constant, while

maximizing m.

Yann LeCun * New York University

i Architecture
[

& We can put anything we want in the box.

E(W{Y’X) @ The energy can be a very complicated
non-linear function of X,Y, and W (e.g. A
neural net, a graphical model, an HMM,
W Markov Random Field,....).
@ The internal structure of the box is called

the architecture of the model.

X —p
-~ —p

Yann LeCun * New York University

Examples of EBM: Matcher

W X and Y are vectors of the same dimension.

W Energy:
EW)Y,X)=D(GW,Y),G(W, X)) where
D(.,.) is a distance or dissimilarity measure.

W Best output: Y = miny EW,)Y,X) = G —
1)(G(W, X)).

Finding the Y that minimizes the energy

may be non-trivial

Y. LeCun: Machine Learning and Pattern Recognition — p, 72

Yann LeCun t New York University

Limitations of Linear Machines

The Linearly separable dichotomies are the partitions
that are realizable by a linear classifier (the boundary be-
tween the classes is a hyperplane).

Y. LeCun: Machine Learning and Patem Recopnition — p. 2336

Yann LeCun t New York University

Number of Linearly Separable Dichotomies

The probability that P samples of dimension /N are linearly separable goes to zero
very quickly as P’ grows larger than N (Cover’s theorem, 1960).

o ey feparable)

W Problem: there are 2¥" possible
dichotomies of P points.

“ Only about N are linearly separable.
Mr\ﬁ y y sep

@ If P is larger than N, the probability that

a random dichotomy is linearly separable is
very, very small.

Y, LeCun: Machine Learning and Patem Hecopnilion — p. 24036

Yann LeCun

t New York University

Example of Non-Linearly Separable Dichotomies

¥ Some seemingly simple dichotomies are
not linearly separable

¥ Question: How do we make a given prob-
lem linearly separable?

Y. LeCun; Machine Learning and Pattem Eeoopnilion — p. 25036

Yann LeCun t New York University

Making N Larger: Preprocessing

= Answer |: we make [V larger by
augmenting the input variables with new
“features”.

“ we map/project X from its original
N -dimensional space into a higher
dimensional space where things are more
likely to be linearly separable, using a
vector function (X).

® E(Y,X,W)=D(Y,R)
W R=f(WV)
®V =&(X)

Y. LeCun; Machine Learning and Pattem Eeoopnilion — p. 2636

Yann LeCun t New York University

Adding Cross-Product Terms

LI ! . .
x xl x‘ x &” @ Polynomial Expansion.
’ 2 @ If our original input variables are
(1, z1,x2), we construct a new feature
vector with the following components:

¢(%) (IJ{]-:IIJIE} — {I!TIJIEJI%JIgJIIIE)

i.e. we add all the cross-products of the
original variables.

® we map/project X from its original N-
dimensional space into a higher dimen-
sional space with N (N +1)/2 dimensions.

X. X2

Y. LeCun; Machine Learning and Patem Eeoopnilion — p. 2736

Yann LeCun t New York University

Polynomial Mapping

“ Many new functions are now separable with the
new architecture.

= With cross-product features, the family of class
boundaries in the original space is the conic
sections (ellipse, parabola, hyperbola).

W to each possible boundary in the original space

corresponds a linear boundary in the transformed
space.

® Because this 1s essentially a linear classifier with
a preprocessing, we can use standard linear learn-
ing algorithms (perceptron, linear regression, logis-
tic regression...).

Y, LeCun: Machine Learning and Patdem Eecopnilion — p. 2836

Yann LeCun t New York University

Problems with Polynomial Mapping

W We can generalize this idea to higher degree polynomials, adding cross-product
terms with 3, 4 or more variables.

© Unfortunately, the number of terms is the number of combinations d choose IV,

which grows like N?, where d is the degree, and N the number of original
variables.

0 In particular, the number of free parameters that must be learned is also of order
N9,

W This is impractical for large NV and for d > 2.

© Example: handwritten digit recognition (16x16 pixel images). Number of
variables: 256. Degree 2: 32.896 variables. Degree 3: 2.796.160. Degre 4
247,460,160.....

Y. LeCun; Machine Learning and Patem Eeoopnilion — p. 29036

Yann LeCun t New York University

Next Idea: Tile the Space

place a number of equally-spaced “bumps™ that cover the entire input space.
“ For classification, the bumps can be
Gaussians

¢| @1 ¢3 4)'[@ For regression, the basis functions can be

wavelets, sine/cosine, splines (pieces of
polynomials)....

W problem: this does not work with more
than a few dimensions.

“ The number of bumps necessary to cover an
x N dimensional space grows exponentially

with V.

Y. LeCun: Machine Learning and Patem Hecopnilion — p 300306

Yann LeCun t New York University

Sample-Centered Basis Functions (Kernels)

Place the center of a basis function around each training sample. That way, we only
spend resources on regions of the space where we actually have training samples.
“ Discriminant function:

R E'_ k=P
o, | FX, W) =) WiK(X, X¥)
. k=1

W K(X, X') often takes the form of a radial
basis function:
K(X,X') = exp(b]| X — X’||%) ora
polynomial (X, X’) = (X. X' 4+1)™

“ This is a very common architecture, which can
be used with a number of energy functions.

“ In particular, this is the architecture of the so-

called Support Vector Machine (SVM), but the
X Y energy function of the SVM is a bit special. We
will study it later in the course.

Y. LeCun; Machine Learning and Pattem Eeoopnilion — p. 3136

t New York University

Yann LeCun

The Kernel Trick

W If the kernel function K (X, X') verifies
the Mercer conditions, then there exist a
mapping ©, such that
¢(X).P(X") = K(X,X".

“ The Mercer conditions are that /A must be
symmetric, and must be positive definite
(i.e K(X, X) must be positive for all X).

& In other words, if we want to map our X
into a high-dimensional space (so as to
make them linearly separable), and all we
have to do in that space is compute dot
products, we can take a shortcut and

simply compute K (X*, X*) without going

x‘ I through the high-dimensional space.
K(xf W This is called the “kernel trick™. It is used in
‘ = many so-called Kernel-based methods, in-

cluding Support Vector Machines.

Y. LeCun: Machine Learning and Patem Recopnition — p. 3236

Yann LeCun t New York University

Examples of Kernels

B Quadratic kernel: ®(X) = (1, v2zy, V222, vV2z1 22, 22, 22) then
KX X"Y=8(X)8X")=[(xXxX"+1)*

W Polvynomial kernel: this generalizes to any degree d. The kernel that corresponds
to ®(X') bieng a polynomial of degree d is
KX, X)=®X).eX')=(XX"+ l}f“

W Gaussian Kernel:

K (X, X') = exp(—b[|X — X'||*)

This kernel, sometimes called the Gaussian Radial Basis Function, is very
commonly used.

Y. LeCun; Machine Learning and Pattem Eeoopnilion — p. 3336

t New York University

Yann LeCun

Sparse Basis Functions

= Place the center of a basis function around
areas containing training samples.

® Idea l: use an unsupervised clustering
algorithm (such as K-means or mixture of
Gaussians) to place the centers of the basis
functions in areas of high sample density.

© Idea 2: adjust the basis function centers

through gradient descent in the loss func-
tion.

The discriminant function F' is:

k=K
F(X,W,U",...,.US) =) WiK(X,U*)
k=1

Y. LeCun: Machine Learning and Patem Heoopnilion — o 3036

Yann LeCun t New York University

Other Idea: Random Directions

“ Partition the space in lots of little domains by
randomly placing lits of hyperplanes.

W Use many variables of the type q(TW*X), where g
is the threshold function (or some other squashing
function) and T}, is a randomly picked vector.

This is the original Perceptron.

Without the non-linearity, the whole system
would be linear (product of linear operations), and
therefore would be no more powerful than a linear
classifier.

@ problem: a bit of a wishful thinking, but it works
occasionally.

Y, LeCun: Machine Learning and Patlem Hecopnilion — p. 3636

Yann LeCun t New York University

Neural Net with a Single Hidden Layer

A particularly interesting type of basis function is the sigmoid unit: 1, = tanh(U"*X)

W a network using these basis functions,
whose output is R = S"F= 1 WV, is
called a single hidden-layver neural
network.

“ Similarly to the RBF network, we can
compute the gradient of the loss function

with respect to the U*:

OL(W) _ OL(W) ., dtanh(U;X)
ous OR 7 09U

_ OL(W)
~ OR
Any well-behaved function can be approximated as close as we wish by such networks
(but A" might be very large).

Witanh'(U; X)X’

Y. LeCun: Machine Learning and Patem Hecopnilion — p. 37036

t New York University

Yann LeCun

Yann LeCun ¢ New York University

