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Probability

e The world is a very uncertain place

» 30 years of Artificial Intelligence and
Database research danced around this fact

e And then a few Al researchers decided to
use some ideas from the eighteenth century
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What we’re going to do
e We will review the fundamentals of
probability.
 It’s really going to be worth it

 In this lecture, you'll see an example of
probabilistic analytics in action: Bayes
Classifiers

Copyright © 2001, Andrew W. Moore Probabilistic Analytics: Slide 3

Discrete Random Variables

e Ais a Boolean-valued random variable if A
denotes an event, and there is some degree
of uncertainty as to whether A occurs.

e Examples
e A = The US president in 2023 will be male

e A = You wake up tomorrow with a
headache

e A = You have Ebola
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Probabilities
» We write P(A) as “the fraction of possible
worlds in which A is true”

e We could at this point spend 2 hours on the
philosophy of this.

e But we won't.
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Visualizing A

Event space of
all possible \>

worlds Worlds in which P(A) = Area of

Alis true reddish oval

R 4
Its areais 1
Worlds in which A is False
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The Axioms of Probability

«0<=PA)<=1

e P(True) =1

e P(False) =0

e P(AorB) =P(A) + P(B) - P(A and B)
Where do these axioms come from? Were they “discovered”?
Answers coming up later.
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Interpreting the axioms

e 0<=PA)<=1

e P(True) =1

e P(False) =0

e P(Aor B) =P(A) + P(B) - P(A and B)

The area of A can't get
any smaller than 0

And a zero area would
mean no world could
ever have A true
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Interpreting the axioms

e 0<=PA)<=1

e P(True) =1

e P(False) =0

e P(AorB) =P(A) + P(B) - P(A and B)

The area of A can't get
any bigger than 1

And an area of 1 would
mean all worlds will have
A true
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Interpreting the axioms

e 0<=PA)<=1

e P(True) =1

e P(False) =0

e P(Aor B) =P(A) + P(B) - P(A and B)
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Interpreting the axioms

e 0<=PA)<=1

e P(True) =1

e P(False) =0

e P(Aor B) = P(A) + P(B) - P(A and B)

P(A and B

'

Simple addition and subtraction
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These Axioms are Not to be
Trifled With

e There have been attempts to do different
methodologies for uncertainty
e Fuzzy Logic
e Three-valued logic
e Dempster-Shafer
« Non-monotonic reasoning

e But the axioms of probability are the only
system with this property:

If you gamble using them you can’t be unfairly exploited
by an opponent using some other system [di Finetti 1931]
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Theorems from the Axioms

e 0<=P(A) <=1, P(True) =1, P(False) =0
e P(AorB) =P(A) + P(B) - P(A and B)
From these we can prove:
P(not A) = P(—A) = 1-P(A)

e How?
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Side Note

e | am inflicting these proofs on you for two
reasons:

1. These kind of manipulations will need to be
second nature to you if you use probabilistic
analytics in depth

2. Suffering is good for you
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Another important theorem

e 0<=P(A) <=1, P(True) =1, P(False) =0
e P(AorB) =P(A) + P(B) - P(A and B)
From these we can prove:
P(A) = P(A™B) + P(A™ ~B)

e How?
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Multivalued Random Variables

e Suppose A can take on more than 2 values

e Ais a random variable with arity k if it can
take on exactly one value out of {v;,v,, ..

Vit
e Thus...

P(A=v UA=v,)=0if i? |
P(A=v,UA=v,UA=V,)=1
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An easy fact about Multivalued
Random Variables:

e Using the axioms of probability...
0 <=P(A) <=1, P(True) = 1, P(False) = 0
P(A or B) = P(A) + P(B) - P(A and B)

e And assuming that A obeys

P(A=v UA= v;)=0if it j
P(A=v,UA=v,UA=v)=1

e It's easy to prove that
P(A=v,UA=v,UA=v)= aP(A V)

j=1
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An easy fact about Multivalued
Random Variables:

e Using the axioms of probability...
0 <=P(A) <=1, P(True) = 1, P(False) =0
P(A or B) = P(A) + P(B) - P(A and B)

e And assuming that A obeys

P(A=v UA= v;)=0if it j
P(A=vUA=v,UA=V,)=1
e It's easy to prove that
P(A=v,UA=v,UA=v)= aP(A V)
j=1
k
a P(A=v,)=1

=1

e And thus we can prove
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Another fact about Multivalued
Random Variables:

e Using the axioms of probability...
0 <=P(A) <=1, P(True) = 1, P(False) = 0
P(A or B) = P(A) + P(B) - P(A and B)

e And assuming that A obeys

P(A=v UA= v;)=0if it j
P(A=v,UA=v,UA=v)=1
e It's easy to prove that

PBU[A=v,UA=v,UA=V])= aP(BUA v,)

ji=1
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Another fact about Multivalued
Random Variables:

e Using the axioms of probability...
0 <=P(A) <=1, P(True) = 1, P(False) =0
P(A or B) = P(A) + P(B) - P(A and B)

e And assuming that A obeys

P(A=v UA= v;)=0if it j
P(A=vUA=v,UA=V,)=1

e It's easy to prove that

P(BU[A=v,UA=v,UA=V])= aP(BUA V)

e And thus we can prove K 1=
lo) N
P(B)=a P(BUA=V))
j=1
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Elementary Probability in Pictures
e P(~A) + P(A) = 1
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Elementary Probability in Pictures
« P(B) = P(B ™ A) + P(B ™ ~A)
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Elementary Probability in Pictures
ék P(A=v,)=1

j=1
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Elementary Probability in Pictures
P(B):g‘glk P(BUA=V,)

=1
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Conditional Probability

e P(A|B) = Fraction of worlds in which B is
true that also have A true

H = “Have a headache”
F = “Coming down with Flu”

i=h)

P(H) = 1/10
P(F) = 1/40
P(H|F) = 1/2

“Headaches are rare and flu
is rarer, but if you're
coming down with “flu
there’s a 50-50 chance

Copyright © 2001, Andrew W. Moore

you’ll have a headache.”
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Condition

H = “Have a headache”
F = “Coming down with Flu

”

P(H) = 1/10
P(F) = 1/40
P(HIF) = 1/2
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| Probability

P(H|F) = Fraction of flu-inflicted
worlds in which you have a
headache

= #worlds with flu and headache

#worlds with flu

= Area of “H and F” region
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Definition of Conditional Probability

P(A ™ B)
OY]:) R —

Corollary: The Chain Rule
P(A ~ B) = P(A|B) P(B)
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Probabilistic Inference

H = “Have a headache”

F = “Coming down with Flu”

P(F) = 1/40
P(HIF) = 1/2

One day you wake up with a headache. You think: “Drat!
50% of flus are associated with headaches so | must have a
50-50 chance of coming down with flu”

Is this reasoning good?
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Probabilistic Inference

H = “Have a headache”
F = “Coming down with Flu”

’ P(H) = 1/10
P(F) = 1/40
P(HIF) = 1/2
P(F/~H) = ...
P(FIH) = ...
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What we just did...

P(A~B) P(A|B) P(B)
T i ——

This is Bayes Rule

Bayes, Thomas (1763) An essay
towards solving a problem in the
doctrine of chances. Philosophical
Transactions of the Royal Society of
London, 53:370-418

Copyright © 2001, Andrew W. Moore Probabilistic Analytics: Slide 30

15



Using Bayes Rule to Gamble

000 (N N

The “Win” envelope The “Lose” envelope
has a dollar and four has three beads and
beads in it no money

Trivial question: someone draws an envelope at random and offers to
sell it to you. How much should you pay?
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Using Bayes Rule to Gamble

o000 (N N J

The “Win” envelope The “Lose” envelope
has a dollar and four has three beads and
beads in it no money

Interesting question: before deciding, you are allowed to see one bead
drawn from the envelope.

Suppose it's black: How much should you pay?

Suppose it’s red: How much should you pay?
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Calculation...

(X X X J X X
$1.00
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More General Forms of Bayes Rule

oap = PBIARA
P(B| AP(A)+P(BI- AP(~A

P(B| AUX)P(AUX)
P(BUX)

P(ABUX) =
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More General Forms of Bayes Rule

P(A=v |B) = %AP(B|A:\4)P(A:\4)
a P(Bl A:Vk) P(A:Vk)

k=1
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Useful Easy-to-prove facts
P(A|B)+P(ZA|B) =1

g P(A=v_ |B)=1

k=1
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The Joint Distribution cumpe: sootean

variables A, B, C

Recipe for making a joint distribution
of M variables:
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The Joint Distribution c.mpe: sooiean

variahles A’ R, C

. . . L . A B -

Recipe for making a joint distribution - -
of M variables:

sl sl 1

1. Make a truth table listing all X K .

combinations of values of your ) R ~

variables (if there are M Boolean , R ,

variables then the table will have , , .

2M rows). . . .
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The Joint Distribution cumpe: sootean

Recipe for making a joint distribution
of M variables:

1. Make a truth table listing all
combinations of values of your
variables (if there are M Boolean
variables then the table will have
2M rows).

2. For each combination of values,
say how probable it is.

Copyright © 2001, Andrew W. Moore

variables A, B, C

C Prob

0.30

0.05

0.10

0.05

0.05

0.10

0.25

mlr R o oo o>

Pl |ofolr|r|o]lo|m
P || |O|F || |O

0.10
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The Joint Distribution c.mpe: sooiean

Recipe for making a joint distribution
of M variables:

1. Make a truth table listing all
combinations of values of your
variables (if there are M Boolean
variables then the table will have
2M rows).

2. For each combination of values,
say how probable it is.

3. If you subscribe to the axioms of
probability, those numbers must
sum to 1.
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variahles A’ R, ad

A B = Prob
Iy o 630
Q Q 1 Q.05
o £l o 616
Q 1 1 Q.05
1 o o 865
1 Q 1 010
1 4 o 825
1 1 1 010
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Using the
Joint

One you have the JD you can
ask for the probability of any

gender hows_worked wealth

Female w405 pear 0253122 |
rch 00245835 [l
w140 6+ poor 0042176 [l
fleh  opiiszaa |
Male V0405 poor 0331212 [N
reh ooavizes [
w1406+ poor 0122106 [
neh  oaosea:
P(E)= g P(row)

logical expression involving

your attribute

Copyright © 2001, Andrew W. Moore

rows matchinge

Probabilistic Analytics: Slide 41

Using the
Joint

P(Poor Male) = 0.4654

Copyright © 2001, Andrew W. Moore

gender howrs_worked wealth

Female vO-40.5- poer 0283122 ([
fich  0.02e5Ea5
w140 6+ poor 00421768 Il
el ooiisraa ||
Maw  visEm poor i35 i
reh  oos712es
A0S PG 134105 g
eh o053
[0
P(E)= Q P(row)

rows matchinge
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gender hows_worked wealth

Fomale 0405 poar 0283122 D

. Ach  o.ozesess [l

USIng the w0 G+ pone 00421768 DY

. fleh  opiiszaa |

JOInt fale w0405 paae 0331312 DJNEGEGGEEEE
reh ooavizes [

v1:40.6+ poor 0134106 DI

| neh  oaosea:

P(Poor) = 0.7604 P(E) = é, P(row)

rows matchinge
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gender howrs_worked wealth

Inference Female vO40.5- poer 0283122 ([
with the o i

. e 00916283 |
JOIﬂt Msle w405 poor 0331312 [
riech  oos7i2es A
w1406+ poor 0122106 [N
eh o053

o
. a P(row)
- P(E1 U Ez) — rows matchingg; andE,
P(E,) a P(row)

rows matchinge,

P(E |E,)
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gender hows_worked wealth

I nference Famate w0405 nenr 0253122 D

. reh ouzasEss i

Wlth the W1AD 5+ pone 00421758 B

. feh 00116233 |

Joint Qoo _vosos oo 033131 D
reh ooavi2es [

7( w1406+ poot 0 fz&'.:%

dech 0105333 [
o
. a P(row)
P(El | E ) — P(Ei U Ez) — rows matchings; and E,
[¢]
’ P(E,) a P(row)

rows matchinge,

P(Male | "001) = 0.4654 / 0.7604 = 0.612
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Inference is a big deal

e |'ve got this evidence. What's the chance

that this conclusion is true?
e I've got a sore neck: how likely am | to have meningitis?

e | see my lights are out and it's 9pm. What's the chance
my spouse is already asleep?

Copyright © 2001, Andrew W. Moore Probabilistic Analytics: Slide 46
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Inference is a big deal

e I've got this evidence. What's the chance
that this conclusion is true?

e I've got a sore neck: how likely am I to have meningitis?

e | see my lights are out and it's 9pm. What's the chance
my spouse is already asleep?
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Inference is a big deal

e |'ve got this evidence. What's the chance

that this conclusion is true?
e I've got a sore neck: how likely am | to have meningitis?

e | see my lights are out and it's 9pm. What's the chance
my spouse is already asleep?

e There’s a thriving set of industries growing based
around Bayesian Inference. Highlights are:
Medicine, Pharma, Help Desk Support, Engine
Fault Diagnosis
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Where do Joint Distributions
come from?

e Idea One: Expert Humans
e Idea Two: Simpler probabilistic facts and
some algebra

Example: Suppose you knew
P(A) = 0.7 P(C|A™B) = 0.1
P(C|A~~B) = 0.8
P(BJA) = 0.2  P(C|~A"™B) = 0.3

Then you can automatically
compute the JD using the

P(B|~A) = 0.1 P(C|~A~~B) = 0.1  chainrule
In another lecture:
P(A=x ™ B=y ™ C=2) = Bayes Nets, a
P(C=z|A=x" B=y) P(B=y|A=x) P(A=x) systematic way to
do this.
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Where do Joint Distributions
come from?

e |dea Three: Learn them from datal

Prepare to see one of the most impressive learning
algorithms you’ll come across in the entire course....
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25



Learning a joint distribution

Build a JD table for your
attributes in which the

The fill in each row with

probabilities are unspecified ~

Prob

o ol IS SN RS A2
Rl ook r]o]lo|lm

rlo|r ok |olr]o O

ECH ECNE IR BN INCRN PO RN BN

Fraction of all records in which
A and B are True but C is False

Copyright © 2001, Andrew W. Moore

P(row

)_

records matching row

"~ total number of records

Prob

0.30

0.05

0.10

0.05

HI—'I—'I—'OOOO>

HHOOHI—\OOUJ
R lo|r|olr|olr]olO
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Example of Learning a Joint

e This Joint was
obtained by

learning from
three
attributes in
the UCI
“Adult”
Census

gender howrs_worked wealth

Femate w405

w1406+

ldale w0405

w1406+

poor
rich
[l
fich
sl
rich
g
rich

zsziz: [
00245595

o0221755 [

oo115293 |

CEEEE |
o.0a71205

(REFAIA |

0105233 [

Database
[Kohavi 1995]
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Where are we?
e We have recalled the fundamentals of
probability

e \We have become content with what JDs are
and how to use them

e And we even know how to learn JDs from
data.
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Density Estimation

e Qur Joint Distribution learner is our first
example of something called Density
Estimation

e A Density Estimator learns a mapping from
a set of attributes to a Probability

Input Density

. - >
Attributes ———  »[Estimator
>

» Probability
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Density Estimation

e Compare it against the two other major
kinds of models:

- %
Input —— o
Attri{,’utes : Prediction of
- T categorical output
- ®
Input  ————»| Density .
. —F 4
Attributes ————|Estimator | Probability
—

Input g D
Attributes § Regressor rediction of
- ¥

real-valued output
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Evaluating Density Estimation

Test-set criterion for estimating performance

on future data*
* See the Decision Tree or Cross Validation lecture for more detail

- v
Atg:gﬂit:es EElge_digrediction of Test set
< categorical output Accuracy
— _
Input  ————4 Density +———p opability 2
Attributes — 3 Estimator

>

Attributes & prediction of Test set
»>

real-valued output
Accuracy
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Evaluating a density estimator

e Given a record X, a density estimator M can
tell you how likely the record is:

P(xM)

e Given a dataset with R records, a density
estimator can tell you how likely the dataset
IS:

(Under the assumption that all records were independently
generated from the Density Estimator’s JD)

~ ~ . . £ .
P(dataset|M) = P(x, Ux,...UxJM) = P(x, M)
k=1
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A small dataset: Miles Per Gallon

mpg | modelyear maker

good | 75t078 asia
bad |70to74 america

1 9 2 bad | 75t078 europe
H bad |70to74 america
Tral ni ng bad |70to74 america
bad |70to74 asia
Set bad |70to74 asia

Records bad 75078 |america

bad  70to74 america
good | 79t083 america
bad | 75t078 america
good | 79t083 america
bad | 75t078 america
good | 79t083 america
good | 79t083 america
bad |70to74 america
good | 75t078 europe

bad | 75t078 europe

From the UCI repository (thanks to Ross Quinlan)

Copyright © 2001, Andrew W. Moore Probabilistic Analytics: Slide 58
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A small dataset: Miles Per Gallon

mpg

good
bad

192 bad

Training 2ad

Set bad

bad

Records bad

Copyright © 2001, Andrew W.

modelyear maker

75t078
70to74
75t078
70t074
70t074
70t074
70to74
75t078

70t074
79t083
75t078
79t083
75t078
79t083
791083
70t074
75t078
75t078

Moore

asia
america
europe
america
america
asia
asia
america

america
america
america
america
america
america
america
america
europe

europe

npg  nodeheer
bed  TOiGTd

THAoTT

gond TOindq

THoTT

ke

e 00755
wn oozl

curape  00isag ]

amercn 01500 |
mi oossio: il

eympe 00557145 0

amevion 00551224 [

=11 L=l

inpe e

smercn 004 ]

mn ozl

aumpa 0 misc e [

amercn 000 22 [l

aim ondoses [l

cumps 00257142 [

arerica 0112245 [N
=e ooz I

cuape 00357143 [l
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A small

dataset: Miles Per Gallon

npg  TodshEw Mk
o e R e
; =n oozl
good | 75t078 asia
192 bad 70to74 | america eunpe  00SE0E '
- bad |75t078 europe TonTT ca O1s30n1 _
T rainin g bad |70to74 america
bad |70074  america e onzssioz [l
S et bad |70to74 asia
e TS ; sunne 0157 e T

- -~ . B .
P(dataset|M ) = P(x, UX,...Ux M) = P(x M)
= (in this case) =3.4" 10*®

k=1

Copyright © 2001, Andrew W.

Moore

TE0sd

arerica 0112245 [N
=n ooz I

cumpe 003573 [l
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Log Probabilities

Since probabilities of datasets get so
small we usually use log probabilities

N 8 . R A
log P(dataset|M ) =log () P(x,IM) =8 log P(x,|M)
k=1 k=1

Copyright © 2001, Andrew W. Moore Probabilistic Analytics: Slide 61

A small dataset: Miles Per Gallon

npg  TodshEw Mk

mpg | modelyear maker bad  TOioTd america 03755 —
£l ] 00251 02

good | 75t078 asia .

192 bad |70t074  america sumps 00 sa06 ]

- bad |75t078 europe i o e

T rainin g bad |70to74 america i
bad |70to74 america o) ooessi oz [l

Set bad |70to74 asia
had 0074 H Elnme (el |

. 8 . & .
log P(dataset|M ) =log O P(x,|M) =8 log P(x, /M)
k=1 k=1
=(in this case) = - 466.19

Taesd  emerice 0112245 [N
=m ar4z e [
eumps 00357143 [
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Summary: The Good News

 We have a way to learn a Density Estimator
from data.

e Density estimators can do many good
things...

e Can sort the records by probability, and thus
spot weird records (anomaly detection)

e Can do inference: P(E1|E2)

Automatic Doctor / Help Desk etc

 Ingredient for Bayes Classifiers (see later)
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Summary: The Bad News

e Density estimation by directly learning the
joint is trivial, mindless and dangerous

Copyright © 2001, Andrew W. Moore Probabilistic Analytics: Slide 64
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Using a test

set

Set Size Log likelihood
Training Set 186 -466,1905
Test Set 196 -B814.6157

An independent test set with 196 cars has a

worse log likelihood

(actually it's a billion quintillion quintillion quintillion quintillion

times less likely)

....Density estimators can overfit. And the fu
estimator is the overfittiest of them all!

Copyright © 2001, Andrew W. Moore

Il joint density
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Overfitting Density Estimators

If this ever happens, it means
there are certain combinations
that we learn are impossible

Enpe

pood  TinTd smercn 00004 ]

k=1

=- ¥ if for any k P(x,|M)

~ B . & -
log P(testset|M) =log O P(xJM) = g log P(x, /M)

k=1

=0

| Eunape

nnzari e il

Copyright © 2001, Andrew W. Moore
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Using a test set

Set Size Log likelihood

Training Set 186 =466, 1805
Test Set 196 -514.6157

The only reason that our test set didn’t score -infinity is that my
code is hard-wired to always predict a probability of at least one
in 1020

We need Density Estimators that are less prone
to overfitting
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Naive Density Estimation

The problem with the Joint Estimator is that it just
mirrors the training data.

We need something which generalizes more usefully.

The naive model generalizes strongly:

Assume that each attribute is distributed
independently of any of the other attributes.
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Independently Distributed Data

e Let x[i] denote the i'th field of record x.

e The independently distributed assumption
says that for any i,v, U; U,... Uy Uiq... Uy

POl =v|Xd =u,X2] =u,,...q1 - =u;_, i +1] =U;4,...{M]=uy)

=P(Xi]=V)

e Or in other words, X[i] is independent of
{x[1].x[2],..x[i-1], x[i+1],..x[M]}

e This is often written as

Xi] A X1, X(2],... i - 0, +2,... (M}

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 69

A note about independence

e Assume A and B are Boolean Random
Variables. Then

“A and B are independent”
if and only if

P(A[B) = P(A)

e “A and B are independent” is often notated

Copyright © 2001, Andrew W. Moore Probabilistic Analytics: Slide 70

35



Independence Theorems

e Assume P(A|B) = P(A)
e Then P(A"B) =

= P(A) P(B)

Copyright © 2001, Andrew W. Moore

e Assume P(A|B) = P(A)
e Then P(B|A) =

= P(B)
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Independence Theorems

e Assume P(A|B) = P(A)
e Then P(~A|B) =

= P(~A)

Copyright © 2001, Andrew W. Moore

e Assume P(A|B) = P(A)
e Then P(A|~B) =

= P(A)
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Multivalued Independence

For multivalued Random Variables A and B,
AN B
if and only if

"u,v:P(A=u|B=v)=P(A=u)
from which you can then prove things like...

"u,v:P(A=uUB=Vv)=P(A=u)P(B =V)
"uv:P(B=Vv|A=Vv)=P(B=V)
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Back to Naive Density Estimation

e Let x[i] denote the i'th field of record x:
* Naive DE assumes x[i] is independent of {x[1],x[2],..x[i-1], x[i+1],...x[M]}
e Example:

« Suppose that each record is generated by randomly shaking a green dice
and a red dice

» Dataset 1: A = red value, B = green value
e Dataset 2: A = red value, B = sum of values

* Dataset 3: A = sum of values, B = difference of values

« Which of these datasets violates the naive assumption?
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Using the Naive Distribution

e Once you have a Naive Distribution you can easily
compute any row of the joint distribution.

e Suppose A, B, C and D are independently
distributed. What is P(A~B~NC™~D)?
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Using the Naive Distribution
* Once you have a Naive Distribution you can easily
compute any row of the joint distribution.

e Suppose A, B, C and D are independently
distributed. What is P(A~BNC™~D)?

= P(A|~B~C~~D) P(~B~C~~D)
= P(A) P(~B~C"~D)

= P(A) P(~B|C"~D) P(C~D)

= P(A) P(~B) P(C"~D)

= P(A) P(~B) P(C|~D) P(~D)

= P(A) P(=B) P(C) P(~D)
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Naive Distribution General Case

e Suppose x[1], x[2], ... X[M] are independently
distributed.

P(XY] =u,X2]=u,,...{M] :uM):(M) P(x(k]=u,)

» So if we have a Naive Distribution we can
construct any row of the implied Joint Distribution
on demand.

e So we can do any inference
e But how do we learn a Naive Density Estimator?
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Learning a Naive Density
Estimator

#recordsinwhich X[i] =u
total number of records

P(Xi]=u) =

Another trivial learning algorithm!
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Contrast

Joint DE

Naive DE

Can model anything

Can model only very
boring distributions

No problem to model “C
IS a noisy copy of A”

Outside Naive'’s scope

Given 100 records and more than 6
Boolean attributes will screw up
badly

Given 100 records and 10,000
multivalued attributes will be fine
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Empirical Results: “Hopeless”

The “hopeless” dataset consists of 40,000 records and 21 Boolean

attributes called a,b,c, ... u. Each attrib

50-50 randomly as 0 or 1.

Ws generated

Mame  Model Paramelers L-ogl.lke;

Modell jeint  submodel=gauss 272625
gausstype=general

gausstype=general

Model2 paive submodel=gauss -53225.6\#— 0554747

Average test set log
probability during
10 folds of k-fold
cross-validation*

cribed in a future Andrew |

+- 301.109

Despite the vast amount of data, “Joint” overfits hopelessly and

does much worse
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The “logical” dataset consists of 40,000 records and 4 Boolean

Empirical Results: “Logical”

attributes called a,b,c,d where a,b,c are generated 50-50 randomly as 0
or 1. D = A™~C, except that in 10% of records it is flipped

&b d

1

0000 0NIE
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a b 0.500325
The DE { 0, 490675
learned by b O 0.50045
“Joint”
1 0.45055
c 0 0.50185
) (R 0.49836
S d 0 0.69945
1 0,30055
The DE
learned by
“Naive”

Probabilistic Analytics: Slide 81

The “logical” dataset consists of 40,000 records and 4 Boolean

Empirical Results: “Logical”

attributes called a,b,c,d where a,b,c are generated 50-50 randomly as 0
or 1. D = A™~C, except that in 10% of records it is flipped

L R

1

0000 013%

I a o 0.500325
489675
oo | |Mame  Model Paramelers LogLike 50045
pret Modell joint submodel=gauss -3613.73 +F 26.6TB1| |400ss
o gausstype=general
o ) 50165

Model2 nahve submodel=gauss -107634 4+~ 11.0638

gausstype=geners| | 49836
d 0 0. 69345
1 0,30055
The DE
learned by
“Naive”
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Empirical Results: “MPG”

The “MPG” dataset consists of 392 records and 8 attributes

R —— —
e
e [
L
. e
a o - [

pre—

[rrr—
MinTa smmioa vige
wh oEENE]
ey Hew
T e

A tiny part of

EE the DE
b et S learned by
B L “Joint”

S

20T :: G The DE

s learned by
Ll “Naive”
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Empirical Results: “MPG”

The “MPG” dataset consists of 392 records and 8 attributes

Copyright © 2001, Andrew W. Moore
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Mame  Bodel Paramelers LogLike
iy =]
Modell joint submodel=gauss 472486 H- T7.2184 _
gausstype=genersl G T '
Meodel2 naive submodel=gauss -257.212 - 3.02246 I: I
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Empirical Results: “Weight vs. MPG”

Suppose we train only from the “Weight” and “MPG” attributes

mpg  welghi
bad bow 0193578 [

nigh c4osie:
goed bow  Coe0icz [

high 00178571 ]

\___

The DE
learned by
“Joint”
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mpg  bad 0602041
good 0.397959
weight  low 0573598
high 0.42602
/

The DE
learned by
“Naive”

Probabilistic Analytics: Slide 85

Empirical Results:

“Weight vs. MPG”

Suppose we train only from the “Weight” and “MPG” attributes

npg  welght

goed 4

i
Modell joint submodel=gauss

gausstype=genersl
Meodel2 naive submodel=gauss
gausstype=geners|

mpg  bad 0.602041
bad bow 0193678 [
foh  nanpic: I good 0.287958
Mame  Bodel Paramelers LogLike

-44 3562 +- 2.27547 @l

=53.2231 +- 0.5104111:'

learned by
“Joint”
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—

The DE
learned by
“Naive”
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“Weight vs. MPG”: The best that Naive can do

s mPg = Hipg = P04 1
o weight bad good _qa
low N EET—

high I

The light color shades denote predicted
densities. The dark shades are real data.

“Naive”

Copyright © 2001, Andrew W. Moore Probabilistic Analytics: Slide 87

Reminder: The Good News

e We have two ways to learn a Density
Estimator from data.

e *In other lectures we'll see vastly more
impressive Density Estimators (uixture Models,

Bayesian Networks, Density Trees, Kernel Densities and many more )

e Density estimators can do many good
things...
e Anomaly detection
e Can do inference: P(E1|E2) automatic Doctor / Help Desk etc
e Ingredient for Bayes Classifiers
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Bayes Classifiers

e A formidable and sworn enemy of decision
trees

- r
Input ‘ ” T
Attributes _ rediction of
-’

categorical output
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How to build a Bayes Classifier

« Assume you want to predict outputY which has arity n, and values
Vi, Vo, oo Vi

« Assume there are m input attributes called X,, X,, ... X

- Break dataset into n, smaller datasets called DS,, DS,, ... DS

» Define DS;= Records in which Y=v;

e For each DS; , learn Density Estimator M; to model the input
distribution among the Y=v; records.

ny*
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How to build a Bayes Classifier

e Assume you want to predict outputY which has arity n, and values
Vi, Vg v Vi

e Assume there are m input attributes called X,, X,, ... X

e Break dataset into n, smaller datasets called DS,, DS,, ... DS

» Define DS;= Records in which Y=y,

e For each DS; , learn Density Estimator M; to model the input
distribution among the Y=v; records.

e M, estimates P(Xy, X5, ... Xpp | Y=V;)

ny*
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How to build a Bayes Classifier

e Assume you want to predict outputY which has arity n, and values
Vi, Vg v Vi

+ Assume there are m input attributes called X,, X,, ... X

= Break dataset into n, smaller datasets called DS,, DS,, ... DS

+ Define DS;= Records in which Y=y,

e For each DS; , learn Density Estimator M; to model the input
distribution among the Y=v; records.

e M; estimates P(Xq, Xy, ... X;y | Y=V,)

ny*

e ldea: When a new set of input values (X; = uy, X5 = Uy, ... Xy,
= u,,) come along to be evaluated predict the value of Y that
makes P(Xq, X5, ... X, | Y=V, ) most likely

Ypredict — a-gmax P(X]_ = ul... xm :um IY e V)

Is this a good idea?
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How to build a Bayes Classifier

e Assume you want to predict outputY which has arity n, and values
Vi, Vy, o V

ny*
e Assume there are m input attriby
e Break dataset into n, smaller dat
e Define DS;= Records in which Y3
e For each DS; , learn Density Esti

distribution among the Y=v; rec

e M; estimates P(X{, Xy, ... Xy | Y=V, )

This is a Maximum Likelihood
classifier.

It can get silly if some Ys are
very unlikely

e Idea: When a new set of input values fX; = u, X, = U, .... X
= u,,) come along to be evaluated prgdict the value of Y that

makes P(Xq, X5, ... Xiy | Y=V, ) mostfikely
YPe = argmax P(X; =U; -+ X, =Uy, [ Y =V)
\
Is this a good idea?
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How to build a Bayes Classifier

e Assume you want to predict outputY which has arity n, and values
Vi, Vo, .V,

ny*

e Assume there are m input attributes calleq
= Break dataset into n, smaller datasets call
+ Define DS;= Records in which Y=y, Much Better Idea

e For each DS; , learn Density Estimator M,
distribution among the Y=v; records.

e M; estimates P(Xq, Xy, ... X;y | Y=V,)

e Idea: When a new set of input va 1 = U, Xy = Uy, von Xy
= u,,) come along to be evalu predict the value of Y that
makes P(Y=v; | Xy, X5, ... X;;,) most likely

Y = argmax P(Y = V| X; = Uy - X, =U,,)

Is this a good idea?
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Terminology

e MLE (Maximum Likelihood Estimator):
YPee = argmax P(X, =u,--- X, =u_ |Y =V)

e MAP (Maximum A-Posteriori Estimator):
yPedet = argmax P(Y =v| X, =u,--- X, =Uu,))
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Getting what we need

YPe = argmax P(Y =v| X, =u, -+ X, =U,,)
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Getting a posterior probability
P(Y=v|X,=u,---X_=U_)

P(X;=u,---X_ =u_|Y=V)P(Y =V)
P(X1 :ul...)(m :um)
P(X,=u,--- X =u_|Y=V)P(Y =V)

Ny
[o]
a P(Xl =Up - Xm = Uy |Y _Vj)P(Y _Vj)
=1
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Bayes Classifiers in a nutshell

1. Learn the distribution over inputs for each value Y.
2. This gives P(Xq, X5, ... Xy | Y=V;).
3. Estimate P(Y=v;). as fraction of records with Y=v, .

4. For a new prediction:
YPe = argmax P(Y =v| X, =u,---X_=U_)

=agmax P(X; =u;--- X, =u,, |Y =V)P(Y =V)
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Bayes Classifiers in a nutshell

1. Learn the distribution over inputs for each value Y.
2. This gives P(Xy, X5, ... Xy | Y=V;).

3. Estimate P(Y=v;). as fraction of records

4. For a new prediction: we can use our favorite
Density Estimator here.

YPee = argmax P(Y =v| X, 3

Right now we have two
V .
options:
=argmax P(X; =u,--- X, = U] P
v <Joint Density Estimator
*Naive Density Estimator
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Joint Density Bayes Classifier

y predict — argmax P(X; =u,--- X, =u,, |Y =V)P(Y =V)

In the case of the joint Bayes Classifier this
degenerates to a very simple rule:

ypredict = the most common value of Y among records
in which X; = uy, X, = Uy, .... X, = U,

Note that if no records have the exact set of inputs X;
= Uy, X5 = Uy, ... Xy = Uy, then P(Xy, X5, ... X | Y=V;)
= 0 for all values of Y.

In that case we just have to guess Y’s value
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Joint BC Results: “Logical”

The “logical” dataset consists of 40,000 records and 4 Boolean
attributes called a,b,c,d where a,b,c are generated 50-50 randomly as 0
or 1. D = A™~C, except that in 10% of records it is flipped

=0 =1
|prior = 0.£3845] prior = 0.20065)
8 bc g bc

00 o o 1esose G 0 0 O 005 )
+ otez7: I 0osrse )

10015152 I 1 U 004001
1 05002 1

L 35 .

The Classifier
learned by
“Joint BC”

® =

IR EERECNE
1 1 noansdis [l
tosos: 1 oo
Mame  kiodsl Faramsbars Frackight
Wiodel! bawesdass  density=joint 080065+~ 000301887
submodei=gaiss
gaussivpe=genaral
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Joint BC Results:

“All Irrelevant”

The “all irrelevant” dataset consists of 40,000 records and 15 Boolean

attributes called a,b,c,d..o where a,b,

¢ are generated 50-50 randomly

as 0 or 1. v (output) = 1 with probability 0.75, 0 with prob 0.25

Mame  Model Parameters

Modell bayesclass density=joint
submodel=gauss
gausstype=general

FracRight
0.70425 +~ 000583537

S
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Naive Bayes Classifier

YPredet = grgmax P(X, =u,--- X, =u,. |Y =V)P(Y =V)
v
In the case of the naive Bayes Classifier this can be

simplified:

, Y
YPe? = argmax P(Y =v)OQ P(X,; =u; |Y =V)

=
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Naive Bayes Classifier

YPede = argmax P(X, =u; - X, =u,, |Y =V)P(Y =V)
\"
In the case of the naive Bayes Classifier this can be
simplified:
. Ly
YPete = argmax P(Y =v)OQ P(X,; =u; |Y =V)
\'

i1 =

Technical Hint:
If you have 10,000 input attributes that product will
underflow in floating point math. You should use logs:

predict __ x _ gY _ _ 0
Y —argmaxglogP(Y—v)+ang P(X; =u; Y =V)z
\% 1:1 g’
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BC Results: “XOR”

The “XOR” dataset consists of 40,000 records and 2 Boolean inputs called a
and b, generated 50-50 randomly as 0 or 1. ¢ (output) = a XOR b

c=0 o= =0 (L |
AR S LU {price = 0,503175) {price = 0, 486E25)
e N S a0 050077 & O 0.499874
I b 1 o I 048623 1 0.500126
e e |
e 159 b0 050077 & O 0500126
1 h”."'..'_/ Hitwts
1 0.49933 1 4589874
—I/ AN
The Classifier \\I
learned by = i FracRight The Classifier
“ni g & arameters rachi
Joint BC learned by
esclass  density=joint 1 4= 0 “Naive BC”
submodel=gauss
gausstype=general
Model? bayesclass density=nalve 0500125 +~ 000529625
submadel=gauss

gausstype=general
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Naive BC Results: “Logical”

The “logical” dataset consists of 40,000 records and 4 Boolean
attributes called a,b,c,d where a,b,c are generated 50-50 randomly as 0
or 1. D = A™~C, except that in 10% of records it is flipped

d=0 d=1
(prior = 0.6R545) {prios = 0.50055)
a 0 0544035 a 0 0183783 The Classifier
1 0, 355065 1 0836217 learned by
boo 0501287 b O 0.458503 Naive BC
0.488713 1 0501487
c 0 0358818 ¢ 0 0834054
0541182 1 01859485
Mame  Model Farameters FracRight
Modell bayesclass density=joint 080065 +~ 000301897
submodel=gauss
gausstype=general
Model? bayesclass density=nalve 090065 +~ 0.00301897
submodel=gauss
gausstype=genaral
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Naive BC Results: “Logical”

The “logical” dataset consists of 40,000 records and 4 Boolean
attributes called a,b,c,d where a,b,c are generated 50-50 randomly as 0

or 1. D = A™~C, except that in 10%

This result surprised Andrew until he
had thought about it a little

of records it is flipped

dwalues: 0 1
a=

c 0

.|-I

() T
| NN
The data shown in the figure is

merely a subsample of the full
dataset. The light color shades

fNan’c Iade Parameters FracRight d i d' tad | Th

|Modall  Bayestiaes dermdy=ioint Q90085 +- 0.00307887 B LSAS CRtR R =
submotelsgauss dark shades are real data.
gaussype=ganaral

:f-'l:.'a.l-.--Z bayesciass  denslysraive 090065 - 00D3BET 000

subimodelsgauss
gausstype-general
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o 11 73
~ Naive BC Results: “All Irrelevant
;:.,'._urm: .:.,1..;;w,=: The “all irrelevant” dataset consists
+ 0 ey bt of 40,000 records and 15 Boolean
e st s attributes called a,b,c,d..o where
i35 i Fresens a,b,c are generated 50-50 randomly
L LS b as 0 or 1. v (output) = 1 with
L stesc e e probability 0.75, 0 with prob 0.25
55 sl 1T~ The Classifier
] sAmaE | oD 250841 learned by
- LERA 1 --i'ﬂr".l: “Naive BC"
Rame  Model Parameters FracRight
Medell bayesclass density=joint 0.70426 +~ 0.00883837
submodel=gauss
gausstype=general
hodel2 bayesclass densiby=naive 075065 ++~ 0.00281976
submodel=gauss
gausstypa=ganaral
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npg = bl g osd
(e s DR ) (vl = DU0E3EN
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Mamea  Model Parameters FracRight
Iodell bayesclass densiymjoind D.BESTSE +- 00247796
submodel=gauss T T
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hodel2 bayesclass densify=mnaive 0852372+ 00400455
submodel=gauss
gausstype=general
Copyright © 2001, Andrew W. Moore Probabilistic Analytics: Slide 109
“MPG”: 40
MHame  Madel Farameters Frackight
Modell  beyesclass  density=joint 0Ta5 +L 0114333

sLhmodal=0auss
gausshype=genaral

Modal?  bayesclass density=raives &

sibmockel=cEaLUss
gausskype=general

- Q133E27
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More Facts About Bayes
Classifiers

e Many other density estimators can be slotted in*.

e Density estimation can be performed with real-valued
inputs™
e Bayes Classifiers can be built with real-valued inputs*

e Rather Technical Complaint: Bayes Classifiers don't try to
be maximally discriminative---they merely try to honestly
model what’s going on*

e Zero probabilities are painful for Joint and Naive. A hack
(justifiable with the magic words “Dirichlet Prior”) can
help*.

e Naive Bayes is wonderfully cheap. And survives 10,000

attributes cheerfully!

*See future Andrew Lectures
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What you should know

e Probability
e Fundamentals of Probability and Bayes Rule
e What's a Joint Distribution

e How to do inference (i.e. P(E1|E2)) once you
have a JD

e Density Estimation
e What is DE and what is it good for
e How to learn a Joint DE
e How to learn a naive DE
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What you should know

e Bayes Classifiers
e How to build one
e How to predict with a BC
» Contrast between naive and joint BCs
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Interesting Questions

e Suppose you were evaluating NaiveBC,
JointBC, and Decision Trees

e Invent a problem where only NaiveBC would do well

e Invent a problem where only Dtree would do well

* Invent a problem where only JointBC would do well

e Invent a problem where only NaiveBC would do poorly
* Invent a problem where only Dtree would do poorly

* Invent a problem where only JointBC would do poorly
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