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Statistics, Geometry, Computation!

Given high dimensional data sampled
from a low dimensional manifold,
how to compute a faithful embedding?
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Applications

Low dimensional manifolds arise in
many areas of information processing.
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(Seung & Lee, 2000) (Stopfer et al, 2003)



Unsupervised learning
* Inputs (high dimensional)
X. € Pwithi=1,2,...N

l

* Outputs (low dimensional)
Y. € ¢ whered<D

- Embedding

Nearby points remain nearby.
Distant points remain distant.
(Estimate d.)



Subspaces
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Linear methods

* Principal component analysis
Project inputs into subspace of
maximal variance:

max(tr[YTY]) with Y = PX

- Multidimensional scaling

Project inputs into subspace that
preserves pairwise distances:

- = |2 — — |2
VY[ ~[X,-X,

! J




Matrices of PCA and MDS

Algorithm | Matrix Size
PCA C=XX"| DxD

MDS G=X"X NxN

Correlation matrix: Cef ~ E[ X2XF]
Gram matrix: G; =X, - )7,

These matrices have the same
rank and eigenvalues.



Spectral embeddings

- Eigenvectors
eigs(C) = linear projections of PCA
eigs(G) = projected outputs of MDS
- Eigenvalues

Always nonnegative.
Gaps indicate latent dimensionality.

Different intuitions,
but equivalent results.



Properties of PCA and MDS

- Strengths
—Eigenvector methods
—Non-iterative
—No local optima
—No “free” parameters

 Weakness
PCA and MDS are linear methods.



Subspaces vs Manifolds

o

imited.

Linear methods are |



Non-eigenvector methods

- Examples
— Autoencoder neural networks
—Self-organizing maps
— Latent variable models

 Issues

—Local optima
—Weaker guarantees
—Harder implementations



Questions

- Are there eigenvector methods for
nonlinear dimensionality reduction?

(Yes)"withn=8
- Equally simple as PCA and MDS?
Almost!



Eigenvector methods

- Today

Locally linear embedding (LLE)
Semidefinite embedding (SDE)

 Others
Kernel PCA
Isomap
Laplacian eigenmaps
Local tangent space alignment
Hessian LLE
Charting



Outline

« Motivation

» Algorithm #1: LLE
“Think globally, fit locally.”

» Algorithm #2
- Related work



Local linearity

A manifold is
locally linear,
even if globally
nonlinear.

[

How can we
use this?
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Previous work

 Cluster inputs, then perform PCA:
k-lines,
k-planes,
local PCA,
mixture models,...

- Problem solved? No!

* No global coordinates.
* Prone to local optima.
- lterative optimizations.



Locally Linear Embedding (LLE)

- Steps
1. Nearest neighbor search.
2. Least squares fits.
3. Sparse eigenvalue problem.

- Properties

— Obtains highly nonlinear embeddings.
—Non-iterative, not prone to local minima.



Step 1. Identify neighbors.

- Examples of neighborhoods
— K nearest neighbors
—Neighbors within radius r
—Metric based on prior knowledge

- Assumptions

—Data is sampled from a manifold.
—Manifold is well sampled.



Nearest neighbor graph

Assumptions: ] T

- Graph is 4 / ""'*"""“.5. \" %
connected. 1 v & &

 Neighborhoods ¥ o ‘i """"" >~ N
on the graph R A S
correspond to SR a4
neighborhoods NN . o

on the manifold.



Step 2. Compute weights.

- Characterize local geometry of each
neighborhood by weights W,..

NN

- Compute weights by reconstructing
each input (linearly) from neighbors.




Linear reconstructions

 Local linearity

Neighbors lie on locally linear patches
of a low dimensional manifold.

 Reconstruction errors

Least squared errors should be small:
2

EW)=) (X, Y W,X,
{ J




Least squares fits

- Choose weights to minimize errors:
2
EW)=) (X, Y W,X,
[ J

« Constraints:

Nonzero W; only for neighbors.
Weights must sum to one: EW ~1




Symmetry
- Cost per input

E(W)=[X,-YW,X,
J

- Local invariance

Optimal weights W;; are invariant to
rotations, translations, and rescalings.



Manifolds

- Local linearity

Each neighborhood map looks like a
translation, rotation, and rescaling.

- Local geometry

These transformations do not affect the
weights W;;: they remain valid.



Step 3. Compute the embedding.

- Embedding ) )
Map inputs to outputs: xX.€ "tory. e

- Minimize reconstruction errors.
Optimize outputs Y; for fixed weights W;;:

‘I’(Y>=22‘EWUY]-
: j

- Constraints o
Center outputs on origin: 2. =0.

- - P, Il o=z
Impose unit covariance matrix: - > 1Y’ -1,




Sparse eigenvalue problem

- Quadratic form
DY) = EUAU.(Z. -?j) withA=(I-WHI-W)

- Rayleigh-Ritz theorem
Optimal embedding given by bottom
d+1 eigenvectors.

- Solution

Discard bottom eigenvector [1 1 ... 1].
Other eigenvectors satisfy constraints.



Summary of LLE

* Three steps
1. Compute K nearest neighbors.
2. Compute weights W,
3. Compute outputs Y..

- Optimizations
E(W) = E

X, - YW,X
J

Y- YWY,
J

DY) = E



Locally
Linear
Embedding
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Map to embedded coordinates



Surfaces

N=1000
inputs

K=8
neighbors

D=3
d=2
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Translated
faces

N=961 images
K=4 neighbors
D=3009 pixels
d=2 manifold




Pose and e s .
expression 4 2.

N=1965
images

K=12
neighbors

D=560
pixels

d=2
(shown)
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Lips
N=15960
images

K=24
neighbors

D=65664
pixels

d=2
(shown)




Sparseness of the weight matrix




Handwritten digits

N=11000 images
C=10 classes
D=256 pixels =

d=8

2

Digit classes
are naturally
clustered.
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Word
document
counts

N=5000
words

K=20
neighbors

D=31000
documents

d=3,4,5
(shown)
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Symmetries of LLE

- Conformal transformations
— Angle-preserving mappings.
—Local scaling, rotation, and translation.




Summary of LLE

» Three steps:

1. K nearest neighbors of inputs X..
2. Least squares fits for weights W
3. Sparse eigensystem for outputs Y..

* Local symmetries:

- translation
- rotation
- rescaling

“Think globally, fit locally”



Outline

* Motivation
 Algorithm #1: LLE

- Algorithm #2: SDE
How to unfold a manifold...

- Related work



Beyond linearity...

What larger class of mappings:

—Includes rotations and translations
as a special case?

—Unravels manifolds into subsets of
Euclidean space?



Isometry

Whatever you can do to a sheet of
paper without holes, tears, or self-
intersections.




Isometry (con’t)

A smooth, invertible mapping that
preserves distances and looks /ocally
like a rotation plus translation.

Two Riemannian manifolds are isometric
if there is a diffeomorphism that pulls
back the metric on one to the other.



Data on manifolds

Isometry is defined between manifolds.
Can we extend the relation to data sets?
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Discretely sampled manifolds

Connect each point to L
its k& nearest neighbors. é gl

il
el

T :_ )

Consider an embedding Y of X
locally isometric if:

75+ (7 ) -5 )[R -%)

for all 7(,- with neighbors X-and 7(,(.



Dot product constraints

=X *X, (1nputs)
Y Y  (outputs)

Consider an embedding Y of X
locally isometric if:

Kii_Kij _Kik +Kjk =Gii_Gij _Gik +ij

for all )?i with neighbors )?,and 7(,(.



Manifold learning

Vectors 7(,- and Gram matrix Gﬁ=3g-)?j;
latter determines former up to rotation.

Given G, = XX, how to construct K, = YsY,
such that Y “unfolds” the manifold of X?

What to optimize?
What to constrain?



Constraints on K,.j

Constrain outputs to have zero mean:

2
EYF() implies 22 =EI7Z.°I7].= EKU: 0
[ ij 5

Preserve local angles
and distances:

Kii_Kij _Kik +Kjk =Gii_Gij _Gik +ij




Constraints (con’t)

Eigenvalues of K must be nonnegative.

AK, + (1 - A)K,
with A € [0,1]

Semidefinite
and linear
constraints
are convex.

O(NK?) constraints
O(N?) variables



Unfolding a manifold

What function of the Gram matrix is
being optimized below?

e e

Before After

Gy=XeX K; =YY,




What Is increasing?

(a) Pairwise distances

(b) Number of zero eigenvalues
(c) Trace of Gram matrix

(d) All of the above



Optimization

Maximize sum of pairwise distances,

same as var(Y) or trace(K)'
1 E K.

2N
(Similar |ntU|t|on as PCA)

Follows from triangle inequality and
connectedness of neighborhood graph.



Semidefinite programming

(1) K =0,
(ii)zKU. -0,
1
(111) for all neighborhoods (ijk),

Kii _Kij _Kik +Kjk
=Gii_sz _Gik +ij




Convex optimization

Feasible region is convex.
Never empty (includes G).

Objective is linear and bounded.
Efficient algorithms exist.

Generic solvers
scale poorly.




Algorithm
1)

Compute nearest neighbors,
distances and angles.

2)

Maximize trace of centered, locally
isometric Gram matrices.

3)

Estimate d from eigenvalues.
Top eigenvectors give embedding.



Name of algorithm?

Locally Isometric Kernel
Matrix Embedding



Name of algorithm?

@ocally@sometr@@rnel
Matrix Embedding

LICKME

Technically accurate, but...



Name of algorithm?
(Semidefinite Embedding

SDE




Semidefinite Embedding




Experimental Results




Spiral
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Swiss Roll
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Trefoil knot

O x= =2
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Teapot (half rotation)

Images ordered by N =200
one dimensional k=4

embedding D =23028




Teapot (full rotation)

N =400

k=4
D =23028




Images of faces




Handwritten digits

N =638
k=4
D =256

f". l'll Hﬂ



Eigenvalues

Teapot 180 |

Swiss Roll
Teapot 360
]
N 1
.

Trefoil Knot
Faces

Twos

0.00 0.20 0.40 0.60 0.80 1.00

(normalized by trace)



Evaluating SDE

—Eigenvalues reveal dimensionality.
—Constraints ensure local isometry.
— Algorithm tolerates small data sets.

— Computation intensive.
—Currently limited to N = 2000, k = 6.



Outline

» Motivation
 Algorithm #1: LLE
- Algorithm #2: SDE



LLE vs SDE

LLE constructs a sparse matrix.
SDE constructs a dense matrix.

LLE computes bottom eigenvectors.
SDE computes top eigenvectors.

LLE motivated by conformal maps.
SDE motivated by isometric maps.

LLE eigenvalues do not reveal d.
SDE eigenvalues do reveal d.



Other methods

Map inputs nonlinearly to a new
space, then perform PCA.

Measure pairwise distances along
manifold, then apply MDS.

Preserve nearness relations as
encoded by graph Laplacian.



Manifold learning
1

1998 2000 2002 2004
Isomap Locally Laplacian Semidefinite
Linear eigenmaps Embedding
Embedding (SDE)
(LLE)

1) Compute nearest neighbors.
2) Construct an N x N matrix.
3) Compute eigenvectors.



Comparison

Algorithm | Mapping Signature | Matrix
Isomap isometric | geodesics
: : local
SDE isometric distances
hLLE isometric hessians
LLE conformal | tangents | sparse
Laplacian | proximity- :
eigenmaps | preserving Laplacian | sparse




Conclusion

—Manifolds are everywhere.
— Spectral methods can learn them.

—Scaling up to larger data sets
—Theoretical guarantees

— Alternative topologies

— Extrapolation and functional maps



