MACHINE LEARNING AND
PATTERN RECOGNITION
Fall 2004, Lecture 4
Gradient-Based Learning I11: Architectures
Yann LeCun

The Courant Institute,
New York University

http://yann.lecun.com

A Trainer class

~Simple Trainer

@ The trainer object is designed to train a particu-
o5s lar machine with a given energy function and loss.
‘ The example below uses the simple energy loss.
(defcl ass sinple-trai ner object

| nput ; the input state

output ; the output/label state

@ machin ; the nmachine

nmout ; the output of the machine

cost : the cost nodul e

energy ; the energy (output of the cost) anc
param ; the trainable paraneter vector

oD |)

PARAM

MACHINE

b

Y LeCun: Machine Learnina and Pattern Recoanition — p. 2/-

A Trainer class: running the machine

Simple Trainer

.

LOSS

COST

MACHINE

> G

PARAM

Takes an input and a vector of possible labels (each
of which is a vector, hence <label-set> is a matrix)
and returns the index of the label that minimizes the
energy. Fills up the vector <energies> with the energy
produced by each possible label.

(def met hod sinpl e-trainer run
(sanpl e | abel -set energies)

(==> input resize (idx-dimsanple 0))

(i dx-copy sanple :input:Xx)

(==> machi ne fprop input nout)

(i dx-bloop ((label |abel-set) (e energies))
(==> out put resize (idx-dimlabel 0))
(i dx-copy | abel :output: x)
(==> cost fprop nout output energy)
(e (:energy:x)))

;; find index of |owest energy

(i dx-dli ndexm n energies))

Y LeCun: Machine Learnina and Pattern Recoanition — p. 3/-

A Trainer class: training the machine

Simple Trainer

.

LOSS

COST

PARAM

MACHINE

Performs a learning update on one sample. <sample>
IS the input sample, <label> is the desired category (an
Integer), <label-set> is a matrix where the i-th row is
the desired output for the i-th category, and <update-
args> is a list of arguments for the parameter update
method (e.g. learning rate and weight decay).

(def met hod sinple-trai ner |earn-sanple
(sanpl e | abel | abel -set updat e-args)

(==> input resize (idx-dimsanple 0))
(i dx-copy sanple :input:x)
(==> machi ne fprop input nout)
(==> output resize (idx-diml abel-set 1))
(i dx-copy (select |abel-set 0 (label 0)) :outpt
(==> cost fprop nout output energy)
(==> cost bprop nout output energy)
(==> machi ne bprop input nout)
(==> param updat e updat e-args)
(:energy: x))

Y LeCun: Machine Learnina and Pattern Recoanition — p. 4/-

Other Topologies

The back-propagation procedure is not
limited to feed-forward cascades.

It can be applied to networks of module
with any topology, as long as the
connection graph is acyclic.

If the graph iIs acyclic (no loops) then, we
can easily find a suitable order in which to
call the fprop method of each module.

The bprop methods are called in the
reverse order.

If the graph has cycles (loops) we have a
so-called recurrent network. This will be
studied in a subsequent lecture.

Y LeCun: Machine Learnina and Pattern Recoanition — p. 5/

More Modules

A rich repertoire of learning machines can be constructed with just a few module types
In addition to the linear, sigmoid, and euclidean modules we have already seen.
We will review a few important modules:

The branch/plus module
The switch module

The Softmax module
The logsum module

Y LeCun: Machine Learnina and Pattern Recoanition — p. 6/~

The Branch/Plus Module

The PLUS module: a module with K inputs
X1,..., Xk (of any type) that computes the sum

of its inputs:
Xout = Z Xk
k
back-prop: %= = 5% Vk

The BRANCH module: a module with one input
and K outputs X1, ..., Xg (of any type) that

g simply copies its input on its outputs:

: X =X;, Vk € [1K]

. OF OF
back-prop: 57 = > 5x.

Y LeCun: Machine Learnina and Pattern Recoanition — p. 7/~

The Switch Module

A module with K inputs X1, ..., X g (of
any type) and one additional
)au,» discrete-valued input Y.

The value of the discrete input determines

which of the IV inputs is copied to the
output.

Xous = ¥ _0(Y — k) Xy,
k

oF oF
T sy —
ox, Y TR

the gradient with respect to the output is
xl X2 x} X‘,), copied to the gradient with respect to the

switched-in input. The gradients of all other
Inputs are zero.

.‘-

Y LeCun: Machine Learnina and Pattern Recoanition — p. 8/-

The Logsum Module

fprop:
1
Xout = ——log » ~exp(—BXy)
5 k
bprop:
oF . oF exp(—ﬁXk)
an 8X0ut Zg eXp(—ﬁXj)
or
OF OF
— = P,
an 8Xout "
with
Pk _ exp(—ﬁXk)

Zj eXp(_ﬁXj)

Y LeCun: Machine Learnina and Pattern Recoanition — p. 9/-

Log-Likelihood Loss function and Logsum Modules

MAP/MLE Loss Ly(W,Y", X%) = E(W,Y", X') + §log 3", exp(—BE(W, k, X?))

“(w)
L (

- 1 A classifier trained with the

t Log-Likelihood loss can be

sun pEN transformed into an equivalent
1 -§loy {_6 machine trained with the energy
. loss.
EY‘ g,

The transformed machine contains
multiple “replicas” of the classifier,
one replica for the desired output,
and K replicas for each possible
value of Y.

Y LeCun: Machine Learnina and Pattern Recoanition — b. 10/~

Softmax Module

A single vector as input, and a “normalized” vector as output:

exp(—06x;)
> exp(—fry)

(Xout)i —

Exercise: find the bprop
a(AXvout)z
ail}j

=777

Y LeCun: Machine Learnina and Pattern Recoanition — b. 11/~

Radial Basis Function Network (RBF Net)

i

| I~
Q Linearly combined Gaussian
y bumps.
LNVEAR
U F(X7 W7 U) —

> ugexp(—ki (X — W;)?)
The centers of the bumps can be

Initialized with the K-means
6P 0-4" e!tr(m,) algorithm (see below), and

\ subsequently adjusted with gradient
descent.
| x- tl HJW This Is a good architecture for re-
gression and function approxima-
tion.

Y LeCun: Machine Learnina and Pattern Recoanition — b. 12/~

MAP/MLE Loss and Cross-Entropy

classification (y is scalar and discrete). Let’s denote E(y, X, W) = E, (X, W)
MAP/MLE Loss Function:

P

L(W) = % > By (XL W) + H

5108 > exp(~ B, (X', W)
i=1 k

This loss can be written as

I L oy EP(BE (XY, W)
L(W) — PZ 51 S Zk exp(—ﬂEk(Xiaw))

Y LeCun: Machine Learnina and Pattern Recoanition — b. 13/~

Cross-Entropy and KL-Divergence

let’s denote P(j|X¢, W) = Zixf}f;(ﬁ_ gﬂéi){w‘)})) then

gy

L(W) = %) % Y "Dy (y') log P(f"j;ﬁf%
k Y

with Dy (y") = 1 iff k = 3*, and 0 otherwise.

examplel: D = (0,0,1,0) and P(.|X;,W) = (0.1,0.1,0.7,0.1). with 5 = 1,
LY (W) = 1log(1/0.7) = 0.3567

example2: D = (0,0,1,0) and P(.|X;, W) = (0,0,1,0). with g = 1,
L' (W) =log(1/1) =0

Y LeCun: Machine Learnina and Pattern Recoanition — b. 14/-

Cross-Entropy and KL-Divergence

1 Dr(y")
L) = 25 2 Delos iy

L(W) is proportional to the cross-entropy between the conditional distribution
of y given by the machine P(k|X*, W) and the desired distribution over classes

for sample 4, Dy (y*) (equal to 1 for the desired class, and 0 for the other
classes).

The cross-entropy also called Kullback-Leibler divergence between two
distributions (k) and P(k) is defined as:

Q(k
ZQ) log k;

It measures a sort of dissimilarity between two distributions.

the KL-divergence is not a distance, because it is not symmetric, and it does not
satisfy the triangular inequality.

Y LeCun: Machine Learnina and Pattern Recoanition — b. 15/-

Multiclass Classification and KL-Divergence

Assume that our discriminant module F'(X, W)
produces a vector of energies, with one energy
E (X, W) for each class.

A switch module selects the smallest £}, to perform
the classification.

As shown above, the MAP/MLE loss below be seen
as a KL-divergence between the desired distribution
for y, and the distribution produced by the machine.

1 P

=5 Z[Eyi (X", W)

1=1

1
b,

log Z exp(—ﬁEk(Xi, w))]

Y LeCun: Machine Learnina and Pattern Recoanition — b. 16/~

Multiclass Classification and Softmax

The previous machine: discriminant function with one
output per class + switch, with MAP/MLE loss

It is equivalent to the following machine: discriminant
function with one output per class + softmax + switch
+ log loss

P
Z —log P(y'| X, W)

with P(j| X7, W) = 22 BB) (softmax of
the —Ej ’S).

Machines can be transformed into various equivalent
forms to factorize the computation in advantageous
ways.

Y LeCun: Machine Learnina and Pattern Recoanition — b. 17/~

Multiclass Classification with a Junk Category

Sometimes, one of the categories is “none of the above”, how can we handle
that?

We add an extra energy wire E for the “junk’ category which does not depend
on the input. £y can be a hand-chosen constant or can be equal to a trainable
parameter (let’s call it w).

everything else is the same.

Y LeCun: Machine Learnina and Pattern Recoanition — b. 18/-

NN-RBF Hybrids

sigmoid units are generally more
appropriate for low-level feature
extraction.

Euclidean/RBF units are generally more
appropriate for final classifications,
particularly if there are many classes.

Hybrid architecture for multiclass classifi-
cation: sigmoids below, RBFs on top + soft-
max + log loss.

Y LeCun: Machine Learnina and Pattern Recoanition — b. 19/-

Parameter-Space Transforms

Reparameterizing the function by transforming the space

E(Y,X,W)— E(Y,X,G(U))

E

W gradient descent in U space:

9G! OE(Y, X, W)’
U—U-ng oW

W equivalent to the following algorithm in W

oG 8G ! OE(Y, X, W)/
U aU oW

W dimensions: [N, X Ny|[Ny X Ny][Ny]

space: W «— W —n

Y LeCun: Machine Learnina and Pattern Recoanition — b. 20/~

Parameter-Space Transforms: Weight Sharing

E

W A single parameter is replicated multiple
times in a machine

] E(Y,X,wl,...,wi,...,wj,...) —
E(Y, X, wi,...,Uky-.. Uk, -.)

OE() _ OE() OE()
Bun = 0w, T ow,

W gradient:

W w; and w; are tied, or equivalently, uy is
shared between two locations.

Y LeCun: Machine Learnina and Pattern Recoanition — b. 21/~

Parameter Sharing between Replicas

We have seen this before: a parameter controls
several replicas of a machine.

E(Y17Y27X7 W) — El(Y17X7 W)+E1(Y27X7 W)

gradient:
OE(Y1,Y2,X,W) _ OE1(Y1,X,W) 4 OF1 (Y2, X, W)
oW — oW oW

W is shared between two (or more) instances of
the machine: just sum up the gradient contribu-

tions from each instance.

Y LeCun: Machine Learnina and Pattern Recoanition — b. 22/

Path Summation (Path Integral)

One variable influences the output through several others

£

mEY X W)=
E(Y,Fi(X, W), Fo(X, W), F5(X,W),V)
PE(Y,X,W) _ T OE;(Y,S:,V) OF;(X,W)

W gradient:

e OBV, X W)~ 9Ei(Y,S:,V) 0Fi(X,W)
W gradient: =5 = >, T 5% ST

M there is no need to implement these rules ex-
plicitely. They come out naturally of the object-
oriented implementation.

Y LeCun: Machine Learnina and Pattern Recoanition — b. 23/

Mixtures of Experts

Sometimes, the function to be learned is consistent in restricted domains of the input
space, but globally inconsistent. Example: piecewise linearly separable function.
Solution: a machine composed of several
“experts” that are specialized on subdomains of
the input space.

The output is a weighted combination of the
outputs of each expert. The weights are produced
by a “gater” network that identifies which
subdomain the input vector is in.

F(X, W)=Y, up F*(X, W¥) with

L — exp(—BGL(X,W?))
k= 32, exp(—BG,(X,W0))

the expert weights ;. are obtained by softmax-ing
the outputs of the gater.

example: the two experts are linear regressors, the
gater i1s a logistic regressor.

Y LeCun: Machine Learnina and Pattern Recoanition — p. 24/~

Seqguence Processing: Time-Delayed Inputs

The Input iIs a sequence of vectors X;.

simple idea: the machine takes a time
window as input

R = F(Xt7 Xt—17 Xt—27 W)
Examples of use:

W predict the next sample in a time
series (e.g. stock market, water
consumption)

W predict the next character or word in a
text

W classify an intron/exon transition in a
DNA sequence

Y LeCun: Machine Learnina and Pattern Recoanition — b. 25/

Sequence Processing: Time-Delay Networks

One layer produces a sequence for the next layer: stacked time-delayed layers.
layerl X! = FY(X, Xi—1, Xy_o, W1)
layer2 X? = FY(X}, X1 | X!, W?)
cost By = C(X},Y;)

Examples:

predict the next sample in a time series with
long-term memory (e.g. stock market, water
consumption)

recognize spoken words
recognize gestures and handwritten
— characters on a pen computer.

How do we train?

7
/)

Xt

Y LeCun: Machine Learnina and Pattern Recoanition — b. 26/~

Training a TDNN

Idea: isolate the minimal network that influences the energy at one particular time step

In our example, this is influenced by 5 time
steps on the input.

train this network in isolation, taking those
5 time steps as the input.

Surprise: we have three identical replicas
of the first layer units that share the same
weights.

We know how to deal with that.

do the regular backprop, and add up the
contributions to the gradient from the 3
replicas

Y LeCun: Machine Learnina and Pattern Recoanition — b. 27/~

Convolutional Module

If the first layer is a set of linear units with sigmoids, we can view it as performing a
sort of multiple discrete convolutions of the input sequence.

E , JE
:\J, 953 X, ri 25¢ x"‘ b 1D convolution operation:

T /
Stl — ijl le Xt—j-
w;k j € [1,T]isa convolution kernel
sigmoid X! = tanh(Sl)

derivative: =y o1 Xt—;

Y LeCun: Machine Learnina and Pattern Recoanition — b. 28/~

Simple Recurrent Machines

The output of a machine is fed back to some of its inputs Z. Z; 1 = F(X;, Zy, W),
where ¢ is a time index. The input X is not just a vector but a sequence of vectors X;.

This machine is a dynamical system with
an internal state Z;.

Hidden Markov Models are a special case
of recurrent machines where F' is linear.

Y LeCun: Machine Learnina and Pattern Recoanition — b. 29/-

Unfolded Recurrent Nets and Backprop through time

To train a recurrent net: “unfold” it in time
and turn it into a feed-forward net with as
many layers as there are time steps in the

Input sequence.

An unfolded recurrent net is a very “deep”
machine where all the layers are identical
and share the same weights.

Z OF OF(X,Zy,W)
t

YA oW
ThIS method is called back-propagation
through time.

examples of use: process control (steel mill,
chemical plant, pollution control....), robot
control, dynamical system modelling...

Y LeCun: Machine Learnina and Pattern Recoanition — b. 30/

	A Trainer class
	A Trainer class: running the machine
	A Trainer class: training the machine
	Other Topologies
	More Modules
	The Branch/Plus Module
	The Switch Module
	The Logsum Module
	Log-Likelihood Loss function and Logsum Modules
	Softmax Module
	Radial Basis Function Network (RBF Net)
	MAP/MLE Loss and Cross-Entropy
	Cross-Entropy and KL-Divergence
	Cross-Entropy and KL-Divergence
	Multiclass Classification and KL-Divergence
	Multiclass Classification and Softmax
	Multiclass Classification with a Junk Category
	NN-RBF Hybrids
	Parameter-Space Transforms
	Parameter-Space Transforms: Weight Sharing
	Parameter Sharing between Replicas
	Path Summation (Path Integral)
	Mixtures of Experts
	Sequence Processing: Time-Delayed Inputs
	Sequence Processing: Time-Delay Networks
	Training a TDNN
	Convolutional Module
	Simple Recurrent Machines
	Unfolded Recurrent Nets and Backprop through time

