Rigorous Software Development CSCI-GA 3033-009

Instructor: Thomas Wies

Spring 2013

Lecture 13

Invariant Generation

- Tools such as Dafny enable automated program verification by
 - automatically generating verification conditions and
 - automatically checking validity of the generated VCs.
- The user still needs to provide the invariants.
 - This is often the hardest part.
- Can we generate invariants automatically?

Axiomatic vs. Operational Semantics

Programs as Systems of Constraints

- 1: assume $y \ge z$;
- 2: while x < y do

$$x := x + 1;$$

3: assert $x \ge z$

$$\rho_{1} = \mathsf{move}(\ell_{1}, \ell_{2}) \land \mathsf{y} \geq \mathsf{z} \land \mathsf{skip}(\mathsf{x}, \mathsf{y}, \mathsf{z})$$

$$\rho_{2} = \mathsf{move}(\ell_{2}, \ell_{2}) \land \mathsf{x} < \mathsf{y} \land \mathsf{x}' = \mathsf{x} + 1 \land \mathsf{skip}(\mathsf{y}, \mathsf{z})$$

$$\rho_{3} = \mathsf{move}(\ell_{2}, \ell_{3}) \land \mathsf{x} \geq \mathsf{y} \land \mathsf{skip}(\mathsf{x}, \mathsf{y}, \mathsf{z})$$

$$\rho_{4} = \mathsf{move}(\ell_{3}, \ell_{\mathsf{err}}) \land \mathsf{x} < \mathsf{z} \land \mathsf{skip}(\mathsf{x}, \mathsf{y}, \mathsf{z})$$

$$\rho_{5} = \mathsf{move}(\ell_{3}, \ell_{\mathsf{exit}}) \land \mathsf{x} \geq \mathsf{z} \land \mathsf{skip}(\mathsf{x}, \mathsf{y}, \mathsf{z})$$

move(
$$\ell_1$$
, ℓ_2) = pc = $\ell_1 \land$ pc' = ℓ_2
skip(x_1 , ..., x_n) = x_1 ' = $x_1 \land$... \land x_n ' = x_n

Program P = (V, init, R, error)

- *V* : finite set of program variables
- init: initiation condition given by a formula over V
- R : a finite set of transition constraints
 - transition constraint $\rho \in R$ given by a formula over V and their primed versions V'
 - we often think of R as disjunction of its elements $R = \rho_1 \vee ... \vee \rho_n$
- error: error condition given by a formula over V

Programs as Systems of Constraints

```
P = (V, init, R, error)
V = \{pc, x, y, z\}
init = pc = \ell_1
R = \{\rho_1, \rho_2, \rho_3, \rho_4, \rho_5\} where
\rho_1 = \mathsf{move}(\ell_1, \ell_2) \land \mathsf{y} \ge \mathsf{z} \land \mathsf{skip}(\mathsf{x}, \mathsf{y}, \mathsf{z})
\rho_2 = \text{move}(\ell_2, \ell_2) \land x < y \land x' = x + 1 \land \text{skip}(y,z)
\rho_3 = \mathsf{move}(\ell_2, \ell_3) \land \mathsf{x} \ge \mathsf{y} \land \mathsf{skip}(\mathsf{x}, \mathsf{y}, \mathsf{z})
                                                                                                              X < Z
\rho_{\Delta} = move(\ell_{3}, \ell_{err}) \wedge x < z \wedge skip(x,y,z)
\rho_5 = \mathsf{move}(\ell_3, \ell_{\mathsf{exit}}) \land \mathsf{x} \ge \mathsf{z} \land \mathsf{skip}(\mathsf{x}, \mathsf{y}, \mathsf{z})
error = pc = \ell_{err}
```

Programs as Transition Systems

- states Q are valuations of program variables V
- initial states Q_{init} are the states satisfying the initiation condition *init*

$$Q_{init} = \{q \in Q \mid q \models init \}$$

 transition relation → is the relation defined by the transition constraints in R

$$q_1 \rightarrow q_2$$
 iff $q_1, q_2' \models R$

• error states Q_{err} are the states satisfying the error condition error

$$Q_{err} = \{q \in Q \mid q \models error \}$$

Partial Correctness of Programs

 a state q is reachable in P if it occurs in some computation of P

$$q_0
ightarrow q_1
ightarrow q_2
ightarrow ...
ightarrow q$$
 where $q_0 \in Q_{init}$

- denote by Q_{reach} the set of all reachable states of P
- a program P is safe if no error state is reachable in P $Q_{reach} \cap Q_{err} = \emptyset$

or, if Q_{reach} is expressed as a formula reach over $V \models reach \land error \Rightarrow$ false

Partial Correctness of Programs

Example: Reachable States of a Program

```
1: assume y \ge z;
```

2: while x < y do

$$x := x + 1;$$

3: assert
$$x \ge z$$

Reachable states

reach =
$$pc = \ell_1 \lor$$

 $pc = \ell_2 \land y \ge z \lor$
 $pc = \ell_3 \land y \ge z \land x \ge y \lor$
 $pc = \ell_{exit} \land y \ge z \land x \ge y$

What is the connection with invariants? Can we compute *reach*?

Invariants of Programs

 an invariant Q_I of a program P is a superset of its reachable states:

$$Q_{reach} \subseteq Q_{\mathtt{I}}$$

 an invariant Q_I is safe if it does not contain any error states:

$$Q_{\mathrm{I}} \wedge Q_{err} = \emptyset$$

or if Q_{I} is expressed as a formula I over $V \models I \land error \Rightarrow \text{false}$

- reach is the "smallest" invariant of P.
- In particular, if *P* is safe then so is *reach*.

Partial Correctness of Programs

Strongest Postconditions

• The strongest postcondition $post(\rho,A)$ holds for any state q that is a ρ -successor state of some state satisfying A:

$$q' \models post(\rho, A)$$
 iff $\exists q \in Q. \ q \models A \land q, q' \models \rho$
or equivalently
 $post(\rho, A) = (\exists V. A \land \rho) [V/V']$

Compute reach by applying post iteratively to init

Example: Application of post

- A = pc = $\ell_2 \land y \ge z$
- $\rho = \text{move}(\ell_2, \ell_2) \land x < y \land x' = x + 1 \land \text{skip}(y,z)$
- post(ρ, A)
 - $= (\exists V. A \land \rho) [V/V']$
 - = (\exists pc x y z. pc= $\ell_2 \land y \ge z \land pc=\ell_2 \land pc'=\ell_2 \land x < y \land x'=x+1 \land y'=y \land z'=z$) [pc/pc', x/x', y/y', z/z']
 - = $(y' \ge z' \land pc' = \ell_2 \land x' 1 < y')$ [pc/pc', x/x', y/y', z/z']
 - $= y \ge z \land pc = \ell_2 \land x \le y$

Iterating post

•
$$reach^{i}(\rho, A) = \begin{cases} A, & \text{if } i = 0 \\ post(post^{i-1}(\rho, A)) & \text{if } i > 0 \end{cases}$$

• reach = init \vee post(R, init) \vee post(R, post(R, init)) \vee ... = $\bigvee_{i>0} post^i(R, init)$

• i'th disjunct of reach represents all states reachable from Q_{init} in i computation steps.

Finite iteration of *post* may suffice

• Fixed point is reached after n steps if

$$\models \bigvee_{i=0}^{n+1} post^i(R, init) \Rightarrow \bigvee_{i=0}^n post^i(R, init)$$

Example Iteration

```
\rho_{1} = \mathsf{move}(\ell_{1}, \ell_{2}) \land \mathsf{y} \geq \mathsf{z} \land \mathsf{skip}(\mathsf{x},\mathsf{y},\mathsf{z})
\rho_{2} = \mathsf{move}(\ell_{2}, \ell_{2}) \land \mathsf{x} < \mathsf{y} \land \mathsf{x}' = \mathsf{x} + 1 \land \mathsf{skip}(\mathsf{y},\mathsf{z})
\rho_{3} = \mathsf{move}(\ell_{2}, \ell_{3}) \land \mathsf{x} \geq \mathsf{y} \land \mathsf{skip}(\mathsf{x},\mathsf{y},\mathsf{z})
\rho_{4} = \mathsf{move}(\ell_{3}, \ell_{\mathsf{err}}) \land \mathsf{x} < \mathsf{z} \land \mathsf{skip}(\mathsf{x},\mathsf{y},\mathsf{z})
\rho_{5} = \mathsf{move}(\ell_{3}, \ell_{\mathsf{exit}}) \land \mathsf{x} \geq \mathsf{z} \land \mathsf{skip}(\mathsf{x},\mathsf{y},\mathsf{z})
post^{0}(R, init) = init = \mathsf{pc} = \ell_{1}
```

Example Iteration

```
\rho_1 = \mathsf{move}(\ell_1, \ell_2) \land \mathsf{y} \ge \mathsf{z} \land \mathsf{skip}(\mathsf{x},\mathsf{y},\mathsf{z})
\rho_2 = \mathsf{move}(\ell_2, \ell_2) \land \mathsf{x} < \mathsf{y} \land \mathsf{x}' = \mathsf{x} + 1 \land \mathsf{skip}(\mathsf{y}, \mathsf{z})
\rho_3 = \mathsf{move}(\ell_2, \ell_3) \land \mathsf{x} \ge \mathsf{y} \land \mathsf{skip}(\mathsf{x},\mathsf{y},\mathsf{z})
\rho_{A} = \text{move}(\ell_{3}, \ell_{err}) \land x < z \land \text{skip}(x,y,z)
\rho_5 = \mathsf{move}(\ell_3, \ell_{\mathsf{exit}}) \land \mathsf{x} \ge \mathsf{z} \land \mathsf{skip}(\mathsf{x}, \mathsf{y}, \mathsf{z})
post^{2}(R, init)
= post(\rho_2, post(R, init)) \lor post(\rho_3, post(R, init))
= pc = \ell_2 \land y > z \land x < y \lor pc = \ell_3 \land y > z \land x > y
post^3(R, init) =
post(\rho_2, post^2(R, init)) \lor post(\rho_3, post^2(R, init)) \lor
post(\rho_4, post^2(R, init)) \lor post(\rho_5, post^2(R, init))
= pc = \ell_2 \land y \ge z \land x \le y \lor pc = \ell_3 \land y \ge z \land x = y \lor
    pc = \ell_{exit} \land y \ge z \land x \le y \lor false
```

Example Iteration

```
post^{3}(R, init) =
= pc = \ell_{2} \land y \ge z \land x \le y \lor pc = \ell_{3} \land y \ge z \land x \ge y \lor pc = \ell_{exit} \land y \ge z \land x \le y \lor post^{4}(R, init) = post^{3}(R, init)
```

Fixed point:

```
reach = post^{0}(R, init) \vee post^{1}(R, init) \vee post^{2}(R, init) \vee post^{3}(R, init) = pc = \ell_{1} \vee pc = \ell_{2} \wedge y \geq z \vee pc = \ell_{3} \wedge y \geq z \wedge x \geq y \vee pc = \ell_{exit} \wedge y \geq z \wedge x \leq y
```

Checking Safety

 An inductive invariant I contains the initial states and is closed under successors:

$$\models$$
 init \Rightarrow I and \models post(R, I) \Rightarrow I

 A program is safe if there exists a safe inductive invariant.

reach is the strongest inductive invariant.

Inductive Invariants for Example Program

- weakest inductive invariant: true
 - set of all states
 - contains error states
- strongest inductive invariant: reach

$$pc = \ell_1 \lor pc = \ell_2 \land y \ge z \lor$$

 $pc = \ell_3 \land y \ge z \land x \ge y \lor pc = \ell_{exit} \land y \ge z \land x \ge y$

slightly weaker inductive invariant:

$$pc = \ell_1 \lor pc = \ell_2 \land y \ge z \lor$$

 $pc = \ell_3 \land y \ge z \land x \ge y \lor pc = \ell_{exit}$

Can we drop another conjunct in one of the disjuncts?

Inductive Invariants for Example Program

1: assume $y \ge z$;

2: while x < y do

$$x := x + 1;$$

3: assert $x \ge z$

Safe inductive invariant:

$$pc = \ell_1 \lor$$

$$pc = \ell_2 \land y \ge z \lor$$

$$pc = \ell_3 \land y \ge z \land x \ge y \lor$$

$$pc = \ell_{exit}$$

Computing Inductive Invariants

- We can compute the strongest inductive invariants by iterating post on init.
- Can we ensure that this process terminates?
- In general no: checking safety of programs is undecidable.
- But we can compute weaker inductive invariants
 - conservatively abstract the behavior of the program
 - iterate an abstraction of post that is guaranteed to terminate.

Abstracting post

 instead of iteratively applying post, use overapproximation post# such that always

$$post(\rho, F) \vDash post^{\#}(\rho, F)$$

- decompose computation of post# into two steps:
 - first, apply post and
 - then, over-approximate the result
- define abstraction function α such that

$$F \models \alpha(F)$$

• for a given abstraction function α define

$$post^{\#}(\rho, F) = \alpha (post(\rho, F))$$

Abstracting reach by reach#

instead of computing reach, compute reach[#] such that
 reach ⊨ reach[#]

- check whether reach[#] contains an error state
 if |= reach[#] ∧ error ⇒ false then
 |= reach ∧ error ⇒ false, i.e. program is safe
- compute reach[#] by applying iteration

```
reach<sup>#</sup> = \alpha(init) \vee

post<sup>#</sup>(R, \alpha(init)) \vee

post<sup>#</sup>(R, post<sup>#</sup>(R, \alpha(init))) \vee ...

= \bigvee_{i \geq 0} (post<sup>#</sup>)<sup>i</sup>(R, init)
```

consequence: reach ⊨ reach#

Predicate Abstraction

- construct abstraction α using a given set of building blocks, so-called predicates
- predicate = formula over program variables V
- fix finite set of predicates $Preds = \{p_1, ..., p_n\}$
- over-approximate F by conjunction of predicates in *Preds*

$$\alpha(F) = \Lambda \{ p \in Preds \mid F \models p \}$$

• computation of $\alpha(F)$ requires n theorem prover calls (n = number of predicates)

Predicate Abstraction

 $p_1 \equiv x \le 0$ $p_2 \equiv y > 0$...

/	ble states each		state	space Q
	$p_1 \land p_2 \land \dots$ x:0,y:5 x:-1,y:3 o	invariar reach#		error states error
		$x:0,y:3$ $x:1,y:5$ $\neg p_1 \land p_2 \land \dots$		error

Example: compute

$$\alpha(pc = \ell_2 \land y \ge z \land x + 1 \le y)$$

• $Preds = \{pc = \ell_1, ..., pc = \ell_{err}, y \ge z, x \le y\}$

	$pc = \ell_1$	$pc = \ell_2$	$pc = \ell_3$	$pc = \ell_{exit}$	$pc = \ell_{err}$	$y \ge z$	$x \le y$
$pc = \ell_2 \land y \ge z \land x + 1 \le y$	Ħ	⊨	F	F	F	þ	þ

result of abstraction = conjunction of implied predicates

$$\alpha$$
(pc = $\ell_2 \land y \ge z \land x + 1 \le y$) = pc = $\ell_2 \land y \ge z \land x \le y$

Trivial Abstraction

 Result of applying predicate abstraction is true if none of the predicates is implied by F

$$\alpha(F) = true$$

- "predicates are too specific"
- This is always the case if $Preds = \emptyset$

Algorithm AbstReach

begin

```
\alpha := \lambda F. \land \{ p \in Preds \mid F \Rightarrow p \}
  post^{\#} := \lambda \rho F. \alpha(post(\rho, F))
  reach# := \alpha(init)
  Tree := \emptyset
  Worklist := {reach#}
  while Worklist \neq \emptyset do
    F := choose from Worklist
    Worklist := Worklist \ {F}
    for each \rho \in R do
      F' := post\#(\rho, F)
       if F' \not\models reach^{\#} then
          reach^{\#} := reach^{\#} \vee F'
          Worklist := Worklist \cup {F'}
          Tree := Tree \cup {(F', \rho, F)}
   return (reach#, Tree)
end
```

Abstract Reachability Graph

$$F_1 = \alpha(init)$$
 $F_2 = post^{\#}(\rho_1, F_1)$
 $post^{\#}(\rho_2, F_2) \models F_2$
 $F_3 = post^{\#}(\rho_3, F_2)$
 $F_4 = post^{\#}(\rho_5, F_3)$

- Preds = {false, pc = ℓ_1 , ..., pc = ℓ_{err} , y \geq z, x \leq y}
- nodes F_1 , ..., $F_4 \in Q^{\#}_{reach}$
- labeled edges ∈ Tree
- dotted edge: entailment relation (here: $post^{\#}(\rho_2, F_2) \models F_2$

Abstract Reachability Graph

 $p_1 \equiv x \le 0$ $p_2 \equiv y > 0$...

ble states each		state	space Q
<i>p</i> ₁ ∧ <i>p</i> ₂ ∧ x:0,y:5	invariar reach#		error states error
	$x:1,y:5$ $\neg p_1 \land p_2 \land \dots$		error

Example: Computing reach#

- Preds = {false, pc = ℓ_1 , ..., pc = ℓ_{err} , y \geq z, x \leq y}
- over-approximation of the set of initial states init:

$$F_1 = \alpha(init) = pc = \ell_1$$

• apply $\textit{post}^{\text{\#}}$ on $\mathsf{F_1}$ and each program transition ρ_i

$$F_2 = post^{\#}(\rho_1, F_1) = \alpha(pc = \ell_2 \land y \ge z) = pc = \ell_2 \land y \ge z$$

$$post(\rho_1, F_1)$$

$$post^{\#}(\rho_{2}, F_{1}) = ... = post^{\#}(\rho_{5}, F_{1}) = \Lambda\{false, ...\} = false$$

Example: Computing reach#

- application of ρ_1 , ρ_4 , and ρ_5 on F_2 results in *false* (since ρ_1 , ρ_4 , ρ_5 are applicable only if pc = ℓ_1 or pc = ℓ_3 holds)
- for ρ_2 we obtain $\operatorname{post}^\#(\rho_2,\mathsf{F}_2) = \alpha(\operatorname{pc} = \ell_2 \wedge \mathsf{y} \geq \mathsf{z} \wedge \mathsf{x} \leq \mathsf{y}) = \operatorname{pc} = \ell_2 \wedge \mathsf{y} \geq \mathsf{z} \wedge \mathsf{x} \leq \mathsf{y}$ result is F_2 , which is already subsumed by $\operatorname{reach}^\#$
- for ρ_3 we obtain

$$post^{\#} (\rho_{3}, F_{2}) = \alpha (pc = \ell_{3} \land y \ge z \land x \ge y)$$
$$= pc = \ell_{3} \land y \ge z \land x \ge y$$
$$= F_{3}$$

add new node F₃ to reach[#], new edge to Tree

Example: Computing reach#

- application of $\rho_{\rm 1}$, $\rho_{\rm 2}$, and $\rho_{\rm 3}$ on F₃ results in *false*
- for ρ_5 we obtain

$$post^{\#} (\rho_{5}, F_{3}) = \alpha (pc = \ell_{exit} \land y \ge z \land x \ge y)$$
$$= pc = \ell_{exit} \land y \ge z \land x \ge y$$
$$= F_{4}$$

new node F₄ in *reach*[#], new edge in *Tree*

- for $\rho_{\scriptscriptstyle A}$ (assertion violation) we obtain
 - $post^{\#} (\rho_{A}, F_{3}) = \alpha(pc = \ell_{err} \land y \ge z \land x \ge y \land x < z) = false$
- any further application of program transitions does not compute any additional reachable states
- thus, $reach^{\#} = F_1 \vee F_2 \vee F_3 \vee F_4$
- since $reach^{\#} \land pc = \ell_{err} \models false$ the program is proved safe.

Abstract Reachability Graph

with *Preds* = {false, pc = ℓ_1 , ..., pc = ℓ_{err} , y \geq z}

Too Coarse Abstraction

Finding the Right Predicates

• omitting just one predicate (in the example: $x \ge y$) may lead to an over-approximation $reach^\#$ such that $reach^\# \land error \not\models false$

that is, algorithm AbstReach fails to prove safety of the program without the predicate $x \ge y$.

How can we find the right predicates?

Counterexample Path

- Tree relation records sequence of transitions leading to F₄
 - apply ρ_1 to F_1 and obtain F_2
 - apply ρ_3 to F_2 and obtain F_3
 - apply ρ_4 to F_3 and obtain F_4
- counterexample path: sequence of transitions $\rho_{\scriptscriptstyle 1}$, $\rho_{\scriptscriptstyle 3}$, $\rho_{\scriptscriptstyle 4}$
- Using this path and the functions α and $post^{\#}$ for the current set of predicates we obtain

$$F_4 = post^{\#}(\rho_4, post^{\#}(\rho_3, post^{\#}(\rho_1, \alpha(init))))$$

 that is, F₄ is the over-approximation of the post-condition computed along the counterexample path.

Analysis of Counterexample Path

- check if the counterexample path also leads to the error states when no over-approximation is applied
- compute

```
post(\rho_4, post(\rho_3, post(\rho_1, init)))
= post(\rho_4, post(\rho_3, pc = \ell_2 \land y \ge z))
= post(\rho_4, pc = \ell_2 \land y \ge z \land x \ge y)
= false
```

- by executing the program transitions ρ_1 , ρ_3 , and ρ_4 it is not possible to reach any error state.
- conclude that the over-approximation is too coarse when dealing with the above path.

Refinement of Abstraction

- need a more precise over-approximation that will prevent reach# from including error states.
- need a more precise over-approximation that will prevent α from including states that lead to error states along the path ρ_1 , ρ_2 , ρ_4 .
- need a refined abstraction function and a corresponding post# such that the execution of AbstReach along the counterexample path does not compute a set of states that contains some error states

 $post^{\#}(\rho_{4}, post^{\#}(\rho_{3}, post^{\#}(\rho_{1}, \alpha(init)))) \land error \models false$

Over-Approximation along Counterexample Path

- goal: $post^{\#}(\rho_4, post^{\#}(\rho_3, post^{\#}(\rho_1, \alpha(init)))) \land error \models false$
- find formulas F₁, F₂, F₃, F₄ such that

```
init \models F_1

post(\rho_1, F_1) \models F_2

post(\rho_3, F_2) \models F_3

post(\rho_4, F_3) \models F_4

F_4 \land error \models false
```

- thus, F₁, ..., F₄ guarantee that no error state can be reached but may still approximate, i.e., allow additional states
- example choice for F₁, ..., F₄

$$\begin{aligned} F_1 &= pc = \ell_1 & F_2 &= pc = \ell_2 \land y \ge z, \\ F_3 &= pc = \ell_3 \land x \ge z & F_4 &= \textit{false} \end{aligned}$$

Refinement of Predicate Abstraction

• given formulas F₁, F₂, F₃, F₄ such that

```
init \models F_1

post(\rho_1, F_1) \models F_2

post(\rho_3, F_2) \models F_3

post(\rho_4, F_3) \models F_4

F_4 \land error \models false
```

- add atoms of F₁, ..., F₄ to *Preds*.
- refinement guarantees that counterexample path ρ_1 , ρ_3 , ρ_4 is eliminated.

CEGAR: Counter-Example Guided Abstraction Refinement Loop

```
function AbstRefineLoop
 begin
   Preds := \emptyset;
   repeat
     (reach<sup>#</sup>, Tree) := AbstReach(Preds)
     if exists F \in reach^{\#} such that F \wedge error \not\models false then
       path := MakePath(F, Tree)
       if FeasiblePath(path) then
         return "counterexample path: path"
       else
         Preds := Preds \cup RefinePath(path)
     else
       return "program is safe"
 end
```

Path Computation

```
function MakePath
 input
   F<sub>err</sub> - reachable abstract error state formula
   Tree – abstract reachability tree
  begin
   path := empty sequence
    F' := F_{err}
   while exist F and \rho such that (F, \rho, F') \in Tree do
      path := \rho . path
      F' := F
   return path
  end
```

Feasibility of a Path

```
function FeasiblePath
  input \rho_1 \dots \rho_n - path
  begin
    F := post(\rho_1 \circ ... \circ \rho_n, init)
    if F \land error \models false then
        return true
    else
        return false
  end
```

Counterexample-Guided Predicate Discovery

```
function RefinePath
   input
      \rho_1 \dots \rho_n – infeasible path
   begin
      F_1, ..., F_{n+1} := compute such that
        init ⊨ F<sub>1</sub> and
        post(\rho_1, F_1) \models F_2 and ... post(\rho_n, F_n \models F_{n+1}) and
        F_{n+1} \wedge error \models false
      return \{F_1, ..., F_{n+1}\}
   end
```

omitted: particular algorithm for finding the F_1 , ..., F_{n+1}