Rigorous Software Development
CSCI-GA 3033-009

Instructor: Thomas Wies

Invariant Generation

* Tools such as Dafny enable automated program
verification by

— automatically generating verification conditions and
— automatically checking validity of the generated VCs.

* The user still needs to provide the invariants.
— This is often the hardest part.

* Can we generate invariants automatically?

Axiomatic vs. Operational Semantics

semantics

— TN

A F A

WA P B) soundness = WA} P BJ
theorem provir\) /

completeness
— A

—{A} P {B}

Programs as Systems of Constraints

1. assumey > z;
2: whilex<ydo

X:=x+1;
X<YyAX =x+1
3: assertx >z

p, =move(L,, £,) Ay >z A skip(x,y,z)

p, =move(l,, £,) A x<y Ax =x+1A skipl(y,z)
ps = move(L,, £3) A x >y A skip(x,y,z)

p, = move(L,, £,.,) A x<z A skip(x,y,z)

ps = move(L;, £ .) A x>z A skip(x,y,z)

err
exit
move({,, £,) = pc=£, A pc’ =4,

skip(Xy, ..., X)) = X" =X, A o A X=X,

Program P = (V, init, R, error)

V :finite set of program variables
init : initiation condition given by a formula over V
R :afinite set of transition constraints

— transition constraint p € R given by a
formula over V and their primed versions V’

— we often think of R as disjunction of its elements
R=p,V..Vp,

error : error condition given by a formula over V

Programs as Systems of Constraints

P =(V, init, R, error)

V= {pcl XI yl Z}
init = pc = £, X<y A

R =1p1, P2, P3s Par Ps} Where X'=x+1

p, =move(L,, £,) Ay >z A skip(x,y,z)
p, =move(l,, £,) A x<y Ax =x+1A skip(y,z)
ps = move(L,, £3) A x >y A skip(x,y,z)
p, = move(L,, £,.,) A x<z A skip(x,y,z)

ps = move(L,, £...) A x>z A skip(x,y,z)

error= pc = ¥{,

Programs as Transition Systems

states Q are valuations of program variables V

initial states Q,;, are the states satisfying the
initiation condition init

Q,.={gc Q| qFinit}
transition relation — is the relation defined by
the transition constraints in R

q,—q, iff g, q9,FER
error states Q,,, are the states satisfying the error

condition error
Q.,={g€ Q| qkFerror}

Partial Correctness of Programs

e astate gis reachable in P if it occurs in some
computation of P
do— 4,— g, — ... > q whereg, € Q

* denote by Q
e aprogram P is safe if no error state is reachable in P

Qreolch A Qerr = @

or, if Q... IS expressed as a formula reach over V

init

each the set of all reachable states of P

F reach N error = false

Partial Correctness of Programs

state space Q

initial states
Q"

reachable states

Qerr

error states

Qreach

Example: Reachable States of a Program

1l: assumey > z;

2: whilex<ydo
X:=xXx+1;

3: assertx >z

Reachable states

reach= pc=4,V
pc={, ANy>zV
pc=L;Ay>zZ Ax>yV
pc=L_.AYy>zZAX>Yy

exit

What is the connection with invariants?
Can we compute reach?

Invariants of Programs

an invariant Q; of a program P is a superset of its
reachable states:

Qreach g QI

an invariant Q; is safe if it does not contain any
error states:

QI A Qerr = @
or if Q; is expressed as a formula I over V

= I A error = false

reach is the “smallest” invariant of P
In particular, if P is safe then so is reach.

Partial Correctness of Programs

state space Q

initial states
Q"

reachable states

safe invariant
Q;

Qerr

error states

Qreach

Strongest Postconditions

* The strongest postcondition post(p,A) holds for any
state g that is a p-successor state of some state
satisfying A:

q’ F post(p,A) iff dgeQ.qFANQ,g Fp
or equivalently

post(p, A) = (3 V. AN p) [V/V’]
 Compute reach by applying post iteratively to init

Example: Application of post

* A= pc=4{, Ny >z
* p=move(L,, £,) AN x<y Ax =x+1A skip(y,z)
* post(p, A)

=(3V.A A p) [V/V]

=(dpcxyz. pc=£, ANy>z A pc=~L, A pc’=L, A x<y A
X'=x+1 Ay'=y A 2’=2) [pc/pc’, x/X, y/Y’, 2/7’]

=(y' > 2 ANpcd=L£, AX -1<Yy’) [pc/pc, x/X, y/Y, 2/7’]
=y>zApc=L,Ax<y

Iterating post

| A, ifi=0
reach’(p, A) = -

post(post'(p, A)) ifi >0

reach = init \VV post(R, init) \V post(R, post(R, init)) \V ...
=V ;5o POStYR, init)

1‘th disjunct of reach represents all states reachable

from Q,,;, in = computation steps.

Finite iteration of post may suffice

* Fixed point is reached after n steps if

= VI posti(R, init) = VL, posti(R, init)

Example Iteration

p;=move(£,, £,) Ay >z A skip(x,y,z)

p, =move(L,, £,) Ax<y Ax =x+1A skip(y,z)
p; = move(L,, £5) A x >y A skip(x,y,z)

p, = move(L;, £,.) A x<z A skip(x,y,z)

ps = move(L;, £..) A X >z A skip(x,y,z)

post’(R, init) = init = pc=4,

Example Iteration

p;=move(£,, £,) Ay >z A skip(x,y,z)

p, =move(L,, £,) Ax<y Ax =x+1A skip(y,z)
p; = move(L,, £5) A x >y A skip(x,y,z)

p, = move(L;, £,.) A x<z A skip(x,y,z)

ps = move(L;, £..) A X >z A skip(x,y,z)

err

exit

post?(R, init)
= post(p, post(R, init)) V post(p; post(R, init))
=pc=, ANy > zZAX<y V pc=b;Ay>z2AX>Yy

post3(R, init) =

post(p, post*(R, init)) \VV post(p; post*(R, init)) V

post(p, post?(R, init)) \VV post(ps post*(R, init))

=pc={, ANy >zAX<y Vpc=; Ay >zAx=yV
pc=L_ . Ay >zAx<yV false

exit

Example Iteration

post3(R, init) =

=pc=0, ANy > zZAX<y Vpc=biAy>zZAX>yV
pc=Lei ANY > ZAX <y

post*(R, init) = post3(R, init)

Fixed point:

reach
= postO(R, init) \V posti(R, init) \/ post?(R, init) \/ post3(R, init)
=pc=£{, V

pc=0, ANy>zV

pc=b;Ay>zAX>y V

pc=Loi ANYZZAX<Yy

Checking Safety

e An inductive invariant I contains the initial
states and is closed under successors:

Finit=1 and Fpost(R, I)=1

* A program is safe if there exists a safe
inductive invariant.

* reach is the strongest inductive invariant.

Inductive Invariants for Example Program

e weakest inductive invariant: true
— set of all states
— contains error states

e strongest inductive invariant: reach
pc=4£, V pc={,ANy>zV
pc=l;ANy>z Ax>y Vpc={

* slightly weaker inductive invariant:
pc=4£, V pc={,ANy>zV
pc=4; Ay>z Ax>y Vpc={

 Can we drop another conjunct in one of the disjuncts?

ANYZZNAX2>Y

exit

exit

Inductive Invariants for Example Program

1: assumey > z;

2: whilex<ydo
X:=x+1;

3: assertx >z

Safe inductive invariant:
pc=£, V
pc=4,ANy>zV
pc=L;ANy>zAx>y V
pc=1{

exit

Computing Inductive Invariants

We can compute the strongest inductive
invariants by iterating post on init.

Can we ensure that this process terminates?

In general no: checking safety of programs is
undecidable.

But we can compute weaker inductive invariants

— conservatively abstract the behavior of the program

— iterate an abstraction of post that is guaranteed to
terminate.

Abstracting post

instead of iteratively applying post, use over-
approximation post” such that always

post(p, F) E post*(p, F)
decompose computation of post* into two steps:

— first, apply post and
— then, over-approximate the result

define abstraction function « such that
FF «F)
for a given abstraction function « define

postt(p, F) = o (post(p, F))

Abstracting reach by reach®

instead of computing reach, compute reach* such that

reach E reach®

check whether reach? contains an error state
if FE reach® A\ error = false then
F reach N error = false, i.e. program is safe

compute reach” by applying iteration
reach? = a(init) vV
post*(R, a(init)) V
post?(R, post?(R, a(init))) V ...
= V>0 (post?*)(R, init)

consequence: reach E reach*

Predicate Abstraction

construct abstraction « using a given set of
building blocks, so-called predicates

predicate = formula over program variables V
fix finite set of predicates Preds ={p,, ..., p,}

over-approximate F by conjunction of predicates
in Preds

a(F)=A{p € Preds | FF p}

computation of «(F) requires n theorem prover
calls (n = number of predicates)

Predicate Abstraction

P, =x<0 p,=y>0
state space Q
reachdble states
reach
DL APLA. .. invariant

x:0,y:5 reach® D
x-1,y:3 o T w
o O
x:Oéy:S § B

X:1,y:5 GLJ

Example: compute
afpc=L, ANy>zAx+1<Yy)

* Preds={pc={,,..,pc="L,,y>2x< y}

| pe=lipe=f lpc=fy lpe=Lo [pe=lo V22 XSy

pc=£{,A

y>zA F F F i = | B | F

x+1<vy

* result of abstraction = conjunction of implied predicates

afpc=L, Ay >zAx+1<y)=pc=4,ANy>zAx<y

Trivial Abstraction

* Result of applying predicate abstraction is true
if none of the predicates is implied by F
o(F) = true
“predicates are too specific”

* This is always the case if Preds = ()

Algorithm AbstReach

begin
a:=AF.A{p € Preds | EF=p}
post? .= X\ p F. a(post (p, F))
reach” := a(init)
Tree := ()
Worklist := {reach®}
while Worklist # () do
F := choose from Worklist
Worklist := Worklist \ {F}
for each p € Rdo
F' := post#(p, F)
if F' reach” then
reach® := reach” \V F’
Worklist := Worklist U {F’}
Tree := Tree U {(F’, p, F)}
return (reach?, Tree)
end

Abstract Reachability Graph

F.: pc=¢, F, = alinit)
P F, = post*(p,, Fy)
Fr pc={, ANy >z L4 post*(p,, F,) F F,
Py F; = post®(p,, F,)
F: pc=€; ANy >zZAXx>y F, = post*(p,, F)
Ps
Fiopc=L ANY>ZAX> Yy

Preds = {false, pc=4£,, ..., pc=4_,y >z, x < vy}

nodes F,, ..., F, € Q¥ ...

labeled edges € Tree

dotted edge: entailment relation (here: post#(p,, F,) F F,

Abstract Reachability Graph

P, =x<0 p,=y>0
state space Q
reachgble states
reach
DL APLA. .. invariant

(7))

x:0,y:5 reaCh 3
M
X:=x+1 W O
. o

...... o

X:1,y:5 GLJ

Example: Computing reach*

Preds = {false, pc={,, ..., pc =L, Y > 2, x < vy}

over-approximation of the set of initial states init:
F, = alinit) = pc= £,

apply post* on F;and each program transition p,

Fzzpost#(pl,Fl)za(Pc:EZAyZZ}):pCZQZ/\yZZ

|
post(p , F)

post#(pz, F1) = ... = post* (pc, F,) = A{false, ...} = false

Example: Computing reach*

* application of p,, p,, and p_ on F, results in false
(since p,, p,, p are applica?)le only if pc = £, or pc = £; holds)

* for p, we obtain
post? (p,, Fy)=alpc =L, ANy>zAx<y)=pc=L,ANy>z Ax<y
result is F,, which is already subsumed by reach®
* for p, we obtain
post® (p,, F)) =alpc =€ Ay >z A x>y)
=pc=L;AYy>ZAX>Yy
= F,

add new node F; to reach®, new edge to Tree

Example: Computing reach*

application of p,, p,, and p, on F; results in false
for p. we obtain
pOSt# (1051 F3) = Oé(pC — eexit /\ Y Z Z N\ X Z y)

=pc=4L_ . ANy>zAXx>y

exit
=F,
new node F,in reach”, new edge in Tree

for p, (assertion violation) we obtain

post® (p,, F3) = alpc =L, ANy >z AXx >y Ax<Z)=false

any further application of program transitions does not compute any
additional reachable states

thus, reach*=F, V F,V F; V F,

since reach® \ pc= £, F false the program is proved safe.

Abstract Reachability Graph
with Preds = {false, pc ={,, ..., pc =4,y > z}

F, = a(init)
Fi: pe= 4, F, = post(p,, F,)
P, postt(p,, F,) F F,
F: pc=€, Ay ZVIZ P F3 = post®(p,, F)

F, = posti(p,, F,)
2

Fy = posti(p,, F,)

F: pc={; Ay >z

Fiopc=L, , ANy>2 Fo: pc=4¢

Too Coarse Abstraction

state space Q

reachable states
reach

Invariant

reach®

error states
error

C

Finding the Right Predicates

e omitting just one predicate (in the example: x > vy)
may lead to an over-approximation reach” such that
reach” A error ¥ false
that is, algorithm AbstReach fails to prove safety of

the program without the predicate x > v.

* How can we find the right predicates?

Counterexample Path

Tree relation records sequence of transitions leading to F,
— apply p, to F, and obtain F,
— apply p, to F, and obtain F;
— apply p, to F; and obtain F,

counterexample path: sequence of transitions p,, p,, p,
Using this path and the functions o and post* for the
current set of predicates we obtain

F, = post®(p,, post*(p,, post*(p,, a(init))))

that is, F, is the over-approximation of the post-condition
computed along the counterexample path.

Analysis of Counterexample Path

check if the counterexample path also leads to the error
states when no over-approximation is applied

compute
post(p,, post(p,, post(p,, init)))
= post(p,, post(p,, pc= £, Ny > z))
= post(p,, pc=L, Ay >z Ax>Yy)

= false

by executing the program transitions p,, p,, and p, it is not
possible to reach any error state.

conclude that the over-approximation is too coarse when
dealing with the above path.

Refinement of Abstraction

* need a more precise over-approximation that will
prevent reach” from including error states.

* need a more precise over-approximation that will
prevent o from including states that lead to error

states along the path p,, p,, p,.
* need a refined abstraction function and a
corresponding post” such that the execution of

AbstReach along the counterexample path does not
compute a set of states that contains some error states

post*(p,, post*(p,, post*(p,, a(init)))) A error F false

Over-Approximation along

Counterexample Path

goal: post?(p,, post*(p,, post®(p,, alinit)))) A error F false

find formulas F, F,, F;, F, such that
initE F,
post(p,, F,) F F,
post(pg, F,) FF,
post(p,, F3) F F,
F, N\ error = false

thus, F,, ..., F, guarantee that no error state can be reached
but may still approximate, i.e., allow additional states

example choice for F,, ..., F,

Fi=pc=1£{, F,=pc=4{, Ay >z,
Fa=pc={0;AXx>z F, = false

Refinement of Predicate Abstraction

* given formulas F, F,, F5, F, such that
initE F,
post(p,, F,) F F,
post(pg, F,) EF,
post(p,, F3) F F,
F, N\ error = false

* add atomsof F,, ..., F,to Preds.

* refinement guarantees that counterexample path
P1r Py P, 1S €liminated.

CEGAR: Counter-Example Guided

Abstraction Refinement Loop

function AbstRefinelLoop
begin
Preds := ():
repeat
(reach®, Tree) := AbstReach(Preds)
if exists F € reach” such that F A error ¥ false then
path := MakePath(F, Tree)
if FeasiblePath(path) then
return “counterexample path: path"
else
Preds := Preds U RefinePath(path)
else
return “program is safe"
end

Path Computation

function MakePath
input
F.., - reachable abstract error state formula
Tree — abstract reachability tree
begin
path := empty sequence
F’ = Ferr
while exist F and p such that (F, p, F’) € Tree do
path := p . path
F':=F
return path
end

Feasibility of a Path

function FeasiblePath
input p, ... p - path
begin

F:=post(p, o ... o p,, init)
if F A\ error F false then
return true

else
return false
end

Counterexample-Guided
Predicate Discovery

function RefinePath

input
p, ... p, — infeasible path
begin
F, ..., F .1 := compute such that

init = F, and
post(p,, F,) EF,and ... post(p,, F,F F, ., and

F... /\ error E false
return {F, ..., F ..}

end

omitted: particular algorithm for finding the F,, ..., F

n+1

