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Java Modeling Language (JML) 

JML is a behavioral interface specification 
language (BISL) for Java. 

• Proposed by G. Leavens, A. Baker, C. Ruby: 
JML: A Notation for Detailed Design, 1999 

• Combines ideas from two approaches: 

– Eiffel with its built-in language for Design by 
Contract  

– Larch/C++ a BISL for C++ 



JML Syntax: Method Specifications 

In JML the specification precedes the method in 
/*@ ... @*/. 

 

• requires formula:  

– The specification only applies if formula holds when 
method is called. 

– Otherwise behavior of method is undefined. 

• ensures formula:  

– If the method exits normally, formula has to hold. 



JML Syntax: Formulas 

A JML formula is a Java Boolean expression. The following 
list shows some operators of JML that do not exist in Java: 

• \old(expression):  
– the value of expression before the method was called (used 

in ensures clauses) 

• \result:  
– the return value (used in ensures clauses). 

• F ==> G:  
– states that F implies G. This is an abbreviation for !F || G. 

• \forall Type t; condition; formula:  
– states that formula holds for all t of type Type that satisfy 
condition. 



A simple JML method contract 
 
/*@ requires n >= 0; 
  @ ensures \result >= 1; 
  @*/ 
public static int factorial(int n) { 
  int result = n; 
  while (--n > 0) 
    result *= n; 
  return result; 
} 
 

JML Example: Factorial 



JML Syntax: Method Specifications 

In JML the specification precedes the method in /*@ ... @*/. 
 

• requires formula  
• ensures formula 
• modifies variables:  

– The method only changes values of variables 

• signals (exception) formula:  
– If the method signals exception then formula holds. 

• signals_only exceptions:  
– The method may only throw exceptions that are a subtype of one 

of the exceptions. 
– If omitted, method can signal only exceptions that appear in 
throws clause. 

• diverges formula:  
– The function may only diverge if formula holds. 



Specifying Side Effects 

• Side effects of method calls are not restricted 
to the state of the object on which the 
method is invoked. 

• A method can change the heap in an 
unpredictable way. 

• How can we specify side effects? 

• We add frame conditions to contracts that 
specify which parts of the heap are not 
affected by a method call. 

 



The assignable clause restricts the possible changes to the heap. 
 
The specification 

 

/*@ requires x >= 0; 
  @ modifies \nothing; 
  @ ensures \result <= Math.sqrt(x) && 
  @         Math.sqrt(x) < \result + 1; 
  @*/ 
public static int isqrt(int x) { 
  body 
} 
 

expresses that isqrt has no side effects. 

Specifying Side Effects 



Structuring Specifications with also 

/*@ requires x > 0; 

  @ ensures \return = 2*x; 

  @ also 

  @ requires x <= 0; 

  @ ensures \return = 0; 

  @*/ 

public int foo (int x) { body } 



Specifying Exceptions 

/*@ signals (IllegalArgumentException e) x < 0; 

  @ signals_only IllegalArgumentException; 

  @*/ 

public static int isqrt(int x) { body } 

 

• If IllegalArgumentException is thrown, x < 0 holds. 

• IllegalArgumentException is the only type of exception 
that is thrown. 

• If no signals_only clause is specified, JML assumes a sane 
default value: the method may throw only exceptions it 
declares with the throws keyword (in this case none). 

• The code is still allowed to throw an error like an 
OutOfMemoryError or a ClassNotFoundError. 



Making Exceptions Explicit 

/*@ public normal_behavior 

  @ requires x >= 0; 

  @ modifies \nothing; 

  @ ensures \result <= Math.sqrt(x) && Math.sqrt(x) < \result + 1; 

  @ also 

  @ public exceptional_behavior 

  @ requires x < 0; 

  @ modifies \nothing; 

  @ signals (IllegalArgumentException e) true; 

  @*/ 

public static int isqrt(int x) throws IllegalArgumentException { 

  if (x < 0) throw new IllegalArgumentException(); 

  body 

} 



• If several specifications are given with also, the 
method must fulfill all of these specifications. 

• A specification with normal_behavior implicitly 
has the clause 
 signals (java.lang.Exception) false 
so the method may not throw an exception. 

• A specification with exceptional_behavior 
implicitly has the clause 
 ensures false 
so the method may not terminate normally. 

Making Exceptions Explicit 



Lightweight vs. Heavyweight Specifications 

A lightweight specification 
 

/*@ requires P; 
  @ modifies X; 
  @ ensures Q; 
  @*/ 
public void foo() throws IOException; 
 

is an abbreviation for the heavyweight specification 
 

/*@ public normal_behavior 
  @ requires P; 
  @ diverges false; 
  @ modifies X; 
  @ ensures Q; 
  @ signals_only IOException 
  @*/ 
public void foo() throws IOException; 



Pure Methods 

The specification 
 

public /*@ pure @*/ boolean isEmpty () { body } 
 

is an abbreviation for the specification 
 

/*@ modifies \nothing; 

  @ diverges false; 

  @*/ 

public boolean isEmpty () { body } 



Null References 

The specification 
 

public void foo (/*@non_null*@/ Object o); 
 

is an abbreviation for the specification 
 

//@ requires o != null;  

public void foo (Object o); 

 

By default, all references are non_null, i.e. nullable 
references have to be specified explicitly: 
 

public void foo (/*@nullable*@/ Object o); 

 



JML Syntax: Class Specifications 
 

In JML class invariants are also in /*@ ... @*/. 

 

• invariant formula:  
– Whenever a method is called or returns, then 
formula has to hold. 

• constraint formula:  
– formula defines a history constraint, i.e. a relation 

between any states s and s’ such that s’ occurs after s 
in an execution of the program. 



Case Study: Priority Queue 

• Subsystems request timer events and queue them. 
• First timer event is passed to the timer. 
• Priority queue maintains events in its internal data structure. 



Priority Queue Interface 

public interface PriorityQueue { 

  public void enqueue(Comparable o); 

  public Comparable removeFirst(); 

  public boolean isEmpty(); 

} 



Adding Specifications: 1st Attempt 

public interface PriorityQueue { 
  /*@ public normal_behavior 
    @ ensures !isEmpty();  
    @*/ 
  public void enqueue(Comparable o); 
  /*@ public normal_behavior 
    @ requires !isEmpty(); 
    @*/ 
  public Comparable removeFirst(); 
  public /*@pure@*/ boolean isEmpty(); 
} 



Specification Is Incomplete 

The specification allows undesired behavior: 
• After removeFirst() new value of 
isEmpty() is undefined. 

• In a correct implementation, after two 
enqueue() and one removeFirst() the 
queue is not empty. 

• The specification does not say so. 
• Problem:  

– The internal state is not visible in the specification 
– There is not even internal state in an interface! 

 



Adding Model Fields 
Solution: add a model field that records the size. 
 

public interface PriorityQueue { 
  //@ public instance model int size; 
  //@ public invariant size >= 0; 
 

  /*@ public normal_behavior 
    @ ensures size == \old(size) + 1; 
    @*/ 
  public void enqueue(Comparable o); 
  /*@ public normal_behavior 
    @ requires !isEmpty(); 
    @ ensures size == \old(size) - 1; 
  @*/ 
  public Comparable removeFirst(); 
  /*@ public normal_behavior 
    @ ensures \result == (size == 0); 
  @*/ 
  public /*@pure@*/ boolean isEmpty(); 
} 



Model Fields 

//@ public instance model int size; 

 

• A model field only exists in specifications. 

• Public model fields can be accessed by 
specifications of other classes. 

• Only specifications can access model fields  
(they are read-only). 

• If a model field is accessed in code, the compiler 
complains. 



Visibility in JML 

//@ public instance model int size; 
... 
/*@ public normal_behavior 
  @ ensures \result == (size > 0); 
  @*/ 
public /*@pure@*/ boolean isEmpty(); 
 
Why is size public? 
• The external interface must be public. 
• The specification is part of the interface. 
• To understand the specification, one needs to know about 
size. 

• Therefore, size is public. 



Implementing the Specification 

public class Heap implements PriorityQueue { 
  private Comparable[] elems; 
  private int numElems; 
  //@ private represents size = numElems; 
  public void enqueue(Comparable o) { 
    elems[numElems++] = o; 
    ... 
  } 
  public Comparable removeFirst() { 
    ... 
    return elems[--numElems]; 
  } 
  public isEmpty() { 
    return numElems == 0; 
  } 
} 



Representing Model Fields 

• Every model field in a concrete class must be 
represented: 
 

//@ private represents size = numElems; 

 

• The representing expression can also call pure 
methods: 
 

//@ private represents size = computeSize(); 



Obtaining Complete Specifications 

• The specification is still incomplete. 

• Which values are returned by 
removeFirst()? 

• We need a model field representing the queue. 

• JML provides useful predefined types to model 
complex data structures. 



Complete Specification of Priority Queue 

//@ model import org.jmlspecs.models.JMLObjectBag; 
public interface PriorityQueue { 
  //@ public instance model JMLObjectBag queue; 
  /*@ public normal_behavior 
    @ ensures queue.equals(\old(queue).insert(o)); 
  public void enqueue(Comparable o); 
  /*@ public normal_behavior 
    @ requires !isEmpty(); 
    @ ensures \old(queue).has(\result) && 
    @         queue.equals(\old(queue).remove(\result)) && 
    @         (\forall java.lang.Comparable o; 
    @                  queue.has(o); \result.compareTo(o) <= 0); 
  public Comparable removeFirst(); 
  /*@ public normal_behavior 
    @ ensures \result == (queue.isEmpty()); @*/ 
  public /*@pure@*/ boolean isEmpty(); 
} 



What is JMLObjectBag 

• org.jmlspecs.models.JMLObjectBag is a 
pure class. 

• A pure class has only pure methods and no 
references to non-pure classes. 

• Therefore, it can be used in specifications. 

• JML provides many  predefined types: 
 

http://www.cs.iastate.edu/~leavens/JML-
release/javadocs/org/jmlspecs/models/package-summary.html 

http://www.cs.iastate.edu/~leavens/JML-release/javadocs/org/jmlspecs/models/package-summary.html
http://www.cs.iastate.edu/~leavens/JML-release/javadocs/org/jmlspecs/models/package-summary.html
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http://www.cs.iastate.edu/~leavens/JML-release/javadocs/org/jmlspecs/models/package-summary.html
http://www.cs.iastate.edu/~leavens/JML-release/javadocs/org/jmlspecs/models/package-summary.html
http://www.cs.iastate.edu/~leavens/JML-release/javadocs/org/jmlspecs/models/package-summary.html


For objects, e.g., \old(this) == this, since \old(this) is 
the old reference not the old content of the object this. 
 

Why does it work as expected with \old(queue)? 
 

• JMLObjectBag is immutable 
• The insert method of JMLObjectBag is declared as 

 

public /*@pure@*/ JMLObjectBag insert(/*@nullable@*/ Object elem) 

• Compare this to the add method of List: 
 

public boolean add(/*@nullable@*/ Object elem) 

• insert returns a reference to a new larger bag. 
• the content of \old(queue) and queue never change 
• but \old(queue) and queue are references to different 

objects. 

How Does It Work? 



Representing queue using a Model Method 

//@model import org.jmlspecs.models.JMLObjectBag; 
public class Heap implements PriorityQueue { 
  private Comparable[] elems;  
  private int numElems;  
  //@ private represents queue = computeQueue(); 
  /*@ 
  private model pure non_null JMLObjectBag computeQueue() { 
  JMLObjectBag bag = new JMLObjectBag(); 
    for (int i = 0; i < numElems; i++) { 
      bag = bag.insert(elems[i]); 
    } 
    return bag; 
  } 
  @*/ 
  ... 
} 



Representing queue by a Ghost Field 

//@ model import org.jmlspecs.models.JMLObjectBag; 
public class Heap implements PriorityQueue { 
  private Comparable[] elems; 
  private int numElems; 
  //@ private ghost JMLObjectBag ghostQueue;  
  //@ private represents queue = ghostQueue; 
  public void enqueue(Comparable o) { 
    //@ set ghostQueue = ghostQueue.insert(o); 
    ... 
  } 
  public Comparable removeFirst() { 
    ... 
    //@set ghostQueue = ghostQueue.remove(first); 
    return first; 
  } 
} 



The assignable Problem 
//@ model import org.jmlspecs.models.JMLObjectBag; 
public interface PriorityQueue { 
  //@ public instance model JMLObjectBag queue; 
  /*@ public normal_behavior 
    @ ensures queue.equals(\old(queue).insert(o)); 
    @*/ 
  public void enqueue(/*@non_null@*/ Comparable o); 
  ... 
} 
 

Compilation produced a warning: 
 

  >jmlc -Q PriorityQueue.java 
  File "PriorityQueue.java", line 7, character 24 caution: 
  A heavyweight specification case for a non-pure method 
  has no assignable clause [JML] 
 

Lets add an assignable clause! 



Adding assignable 
What does the method enqueue change? 
It changes the model field queue and nothing else. 
 

//@ model import org.jmlspecs.models.JMLObjectBag; 
public interface PriorityQueue { 
  //@ public instance model JMLObjectBag queue; 
  /*@ public normal_behavior 
    @ ensures queue.equals(\old(queue).insert(o)); 
    @ assignable queue; 
    @*/ 
  public void enqueue(/*@non_null@*/ Comparable o); 
  ... 
} 
 

However, when compiling Heap.java: 
  File "Heap.java", line 50, character 29 error: Field "numElems" 
  is not assignable by method "Heap.enqueue( java.lang.Comparable )"; 
  only fields and fields of data groups in set "{queue}" are assignable 
  [JML] 



Mapping Fields To Model Fields 

We have to tell JML that elem and numElems are the 
implementation of the model field queue. 

 

There is a special JML syntax to do this: 
 

import org.jmlspecs.models.JMLObjectBag; 

  public class Heap implements PriorityQueue { 

  private Comparable[] elems; //@ in queue; 

  private int numElems; //@ in queue; 

  /*@ private represents queue = computeQueue(); @*/ 

  ... 

} 



Data Groups 

• A data group gives a name to a set of locations 
without exposing implementation details. 

• Every model field forms a data group. 

• Other fields in the class or in sub-classes can be 
associated with this data group  
private Comparable[] elems; //@ in queue; 
private int numElems; //@ in queue; 

• Methods with specification  
 assignable queue 
may modify any field in the data group queue. 



More About Data Groups 

• There is a special data group objectState, which 
should represent the object state. 

• All representation fields should be added to this group. 

• Adding a data group to another data group adds all 
subgroups recursively: 
 

public interface PriorityQueue { 
  //@ public instance model JMLObjectBag queue;  
  //@ in objectState; 
  ... 
} 
 

After this change numElems and elems are also 
automatically contained in objectState. 



Grouping Fields with Data Groups 

Data groups are useful to group fields. 

 
class Calendar { 
  //@ model JMLDataGroup datetime; in objectState; 
  //@ model JMLDataGroup time, date; in datetime; 
  int day, month, year; //@ in date; 
  int hour, min, sec; //@ in time; 
  int timezone; //@ in objectState; 
  Locale locale; //@ in objectState; 
  ... 
  //@ assignable datetime; 
  void setDate(Date date); 
  //@ assignable timezone; 
  void setTimeZone(); 
} 



Data Groups and Visibility 

Data groups and model fields are useful for resolving visibility 
issues: 
 

class Tree { 
  //@ public model JMLDataGroup content; 
  //@ in objectState; 
  private Node rootNode; //@ in content; 
  //@ assignable content; 
  public void insert(Object o); 
} 
 
Using assignable rootNote would produce an error. 


