
Rigorous Software Development
CSCI-GA 3033-009

 Instructor: Thomas Wies

Spring 2013

Lecture 6

Disclaimer. These notes are derived from notes originally developed by Jochen Hoenicke. They
are copyrighted material and may not be used in other course settings outside of New York
University in their current form or modified form without the express written permission of one
of the copyright holders.

Java Modeling Language (JML)

JML is a behavioral interface specification
language (BISL) for Java.

• Proposed by G. Leavens, A. Baker, C. Ruby:
JML: A Notation for Detailed Design, 1999

• Combines ideas from two approaches:

– Eiffel with its built-in language for Design by
Contract

– Larch/C++ a BISL for C++

JML Syntax: Method Specifications

In JML the specification precedes the method in
/*@ ... @*/.

• requires formula:

– The specification only applies if formula holds when
method is called.

– Otherwise behavior of method is undefined.

• ensures formula:

– If the method exits normally, formula has to hold.

JML Syntax: Formulas

A JML formula is a Java Boolean expression. The following
list shows some operators of JML that do not exist in Java:

• \old(expression):
– the value of expression before the method was called (used

in ensures clauses)

• \result:
– the return value (used in ensures clauses).

• F ==> G:
– states that F implies G. This is an abbreviation for !F || G.

• \forall Type t; condition; formula:
– states that formula holds for all t of type Type that satisfy
condition.

A simple JML method contract

/*@ requires n >= 0;
 @ ensures \result >= 1;
 @*/
public static int factorial(int n) {
 int result = n;
 while (--n > 0)
 result *= n;
 return result;
}

JML Example: Factorial

JML Syntax: Method Specifications

In JML the specification precedes the method in /*@ ... @*/.

• requires formula
• ensures formula
• modifies variables:

– The method only changes values of variables

• signals (exception) formula:
– If the method signals exception then formula holds.

• signals_only exceptions:
– The method may only throw exceptions that are a subtype of one

of the exceptions.
– If omitted, method can signal only exceptions that appear in
throws clause.

• diverges formula:
– The function may only diverge if formula holds.

Specifying Side Effects

• Side effects of method calls are not restricted
to the state of the object on which the
method is invoked.

• A method can change the heap in an
unpredictable way.

• How can we specify side effects?

• We add frame conditions to contracts that
specify which parts of the heap are not
affected by a method call.

The assignable clause restricts the possible changes to the heap.

The specification

/*@ requires x >= 0;
 @ modifies \nothing;
 @ ensures \result <= Math.sqrt(x) &&
 @ Math.sqrt(x) < \result + 1;
 @*/
public static int isqrt(int x) {
 body
}

expresses that isqrt has no side effects.

Specifying Side Effects

Structuring Specifications with also

/*@ requires x > 0;

 @ ensures \return = 2*x;

 @ also

 @ requires x <= 0;

 @ ensures \return = 0;

 @*/

public int foo (int x) { body }

Specifying Exceptions

/*@ signals (IllegalArgumentException e) x < 0;

 @ signals_only IllegalArgumentException;

 @*/

public static int isqrt(int x) { body }

• If IllegalArgumentException is thrown, x < 0 holds.

• IllegalArgumentException is the only type of exception
that is thrown.

• If no signals_only clause is specified, JML assumes a sane
default value: the method may throw only exceptions it
declares with the throws keyword (in this case none).

• The code is still allowed to throw an error like an
OutOfMemoryError or a ClassNotFoundError.

Making Exceptions Explicit

/*@ public normal_behavior

 @ requires x >= 0;

 @ modifies \nothing;

 @ ensures \result <= Math.sqrt(x) && Math.sqrt(x) < \result + 1;

 @ also

 @ public exceptional_behavior

 @ requires x < 0;

 @ modifies \nothing;

 @ signals (IllegalArgumentException e) true;

 @*/

public static int isqrt(int x) throws IllegalArgumentException {

 if (x < 0) throw new IllegalArgumentException();

 body

}

• If several specifications are given with also, the
method must fulfill all of these specifications.

• A specification with normal_behavior implicitly
has the clause
 signals (java.lang.Exception) false
so the method may not throw an exception.

• A specification with exceptional_behavior
implicitly has the clause
 ensures false
so the method may not terminate normally.

Making Exceptions Explicit

Lightweight vs. Heavyweight Specifications

A lightweight specification

/*@ requires P;
 @ modifies X;
 @ ensures Q;
 @*/
public void foo() throws IOException;

is an abbreviation for the heavyweight specification

/*@ public normal_behavior
 @ requires P;
 @ diverges false;
 @ modifies X;
 @ ensures Q;
 @ signals_only IOException
 @*/
public void foo() throws IOException;

Pure Methods

The specification

public /*@ pure @*/ boolean isEmpty () { body }

is an abbreviation for the specification

/*@ modifies \nothing;

 @ diverges false;

 @*/

public boolean isEmpty () { body }

Null References

The specification

public void foo (/*@non_null*@/ Object o);

is an abbreviation for the specification

//@ requires o != null;

public void foo (Object o);

By default, all references are non_null, i.e. nullable
references have to be specified explicitly:

public void foo (/*@nullable*@/ Object o);

JML Syntax: Class Specifications

In JML class invariants are also in /*@ ... @*/.

• invariant formula:
– Whenever a method is called or returns, then
formula has to hold.

• constraint formula:
– formula defines a history constraint, i.e. a relation

between any states s and s’ such that s’ occurs after s
in an execution of the program.

Case Study: Priority Queue

• Subsystems request timer events and queue them.
• First timer event is passed to the timer.
• Priority queue maintains events in its internal data structure.

Priority Queue Interface

public interface PriorityQueue {

 public void enqueue(Comparable o);

 public Comparable removeFirst();

 public boolean isEmpty();

}

Adding Specifications: 1st Attempt

public interface PriorityQueue {
 /*@ public normal_behavior
 @ ensures !isEmpty();
 @*/
 public void enqueue(Comparable o);
 /*@ public normal_behavior
 @ requires !isEmpty();
 @*/
 public Comparable removeFirst();
 public /*@pure@*/ boolean isEmpty();
}

Specification Is Incomplete

The specification allows undesired behavior:
• After removeFirst() new value of
isEmpty() is undefined.

• In a correct implementation, after two
enqueue() and one removeFirst() the
queue is not empty.

• The specification does not say so.
• Problem:

– The internal state is not visible in the specification
– There is not even internal state in an interface!

Adding Model Fields
Solution: add a model field that records the size.

public interface PriorityQueue {
 //@ public instance model int size;
 //@ public invariant size >= 0;

 /*@ public normal_behavior
 @ ensures size == \old(size) + 1;
 @*/
 public void enqueue(Comparable o);
 /*@ public normal_behavior
 @ requires !isEmpty();
 @ ensures size == \old(size) - 1;
 @*/
 public Comparable removeFirst();
 /*@ public normal_behavior
 @ ensures \result == (size == 0);
 @*/
 public /*@pure@*/ boolean isEmpty();
}

Model Fields

//@ public instance model int size;

• A model field only exists in specifications.

• Public model fields can be accessed by
specifications of other classes.

• Only specifications can access model fields
(they are read-only).

• If a model field is accessed in code, the compiler
complains.

Visibility in JML

//@ public instance model int size;
...
/*@ public normal_behavior
 @ ensures \result == (size > 0);
 @*/
public /*@pure@*/ boolean isEmpty();

Why is size public?
• The external interface must be public.
• The specification is part of the interface.
• To understand the specification, one needs to know about
size.

• Therefore, size is public.

Implementing the Specification

public class Heap implements PriorityQueue {
 private Comparable[] elems;
 private int numElems;
 //@ private represents size = numElems;
 public void enqueue(Comparable o) {
 elems[numElems++] = o;
 ...
 }
 public Comparable removeFirst() {
 ...
 return elems[--numElems];
 }
 public isEmpty() {
 return numElems == 0;
 }
}

Representing Model Fields

• Every model field in a concrete class must be
represented:

//@ private represents size = numElems;

• The representing expression can also call pure
methods:

//@ private represents size = computeSize();

Obtaining Complete Specifications

• The specification is still incomplete.

• Which values are returned by
removeFirst()?

• We need a model field representing the queue.

• JML provides useful predefined types to model
complex data structures.

Complete Specification of Priority Queue

//@ model import org.jmlspecs.models.JMLObjectBag;
public interface PriorityQueue {
 //@ public instance model JMLObjectBag queue;
 /*@ public normal_behavior
 @ ensures queue.equals(\old(queue).insert(o));
 public void enqueue(Comparable o);
 /*@ public normal_behavior
 @ requires !isEmpty();
 @ ensures \old(queue).has(\result) &&
 @ queue.equals(\old(queue).remove(\result)) &&
 @ (\forall java.lang.Comparable o;
 @ queue.has(o); \result.compareTo(o) <= 0);
 public Comparable removeFirst();
 /*@ public normal_behavior
 @ ensures \result == (queue.isEmpty()); @*/
 public /*@pure@*/ boolean isEmpty();
}

What is JMLObjectBag

• org.jmlspecs.models.JMLObjectBag is a
pure class.

• A pure class has only pure methods and no
references to non-pure classes.

• Therefore, it can be used in specifications.

• JML provides many predefined types:

http://www.cs.iastate.edu/~leavens/JML-
release/javadocs/org/jmlspecs/models/package-summary.html

http://www.cs.iastate.edu/~leavens/JML-release/javadocs/org/jmlspecs/models/package-summary.html
http://www.cs.iastate.edu/~leavens/JML-release/javadocs/org/jmlspecs/models/package-summary.html
http://www.cs.iastate.edu/~leavens/JML-release/javadocs/org/jmlspecs/models/package-summary.html
http://www.cs.iastate.edu/~leavens/JML-release/javadocs/org/jmlspecs/models/package-summary.html
http://www.cs.iastate.edu/~leavens/JML-release/javadocs/org/jmlspecs/models/package-summary.html
http://www.cs.iastate.edu/~leavens/JML-release/javadocs/org/jmlspecs/models/package-summary.html
http://www.cs.iastate.edu/~leavens/JML-release/javadocs/org/jmlspecs/models/package-summary.html

For objects, e.g., \old(this) == this, since \old(this) is
the old reference not the old content of the object this.

Why does it work as expected with \old(queue)?

• JMLObjectBag is immutable
• The insert method of JMLObjectBag is declared as

public /*@pure@*/ JMLObjectBag insert(/*@nullable@*/ Object elem)

• Compare this to the add method of List:

public boolean add(/*@nullable@*/ Object elem)

• insert returns a reference to a new larger bag.
• the content of \old(queue) and queue never change
• but \old(queue) and queue are references to different

objects.

How Does It Work?

Representing queue using a Model Method

//@model import org.jmlspecs.models.JMLObjectBag;
public class Heap implements PriorityQueue {
 private Comparable[] elems;
 private int numElems;
 //@ private represents queue = computeQueue();
 /*@
 private model pure non_null JMLObjectBag computeQueue() {
 JMLObjectBag bag = new JMLObjectBag();
 for (int i = 0; i < numElems; i++) {
 bag = bag.insert(elems[i]);
 }
 return bag;
 }
 @*/
 ...
}

Representing queue by a Ghost Field

//@ model import org.jmlspecs.models.JMLObjectBag;
public class Heap implements PriorityQueue {
 private Comparable[] elems;
 private int numElems;
 //@ private ghost JMLObjectBag ghostQueue;
 //@ private represents queue = ghostQueue;
 public void enqueue(Comparable o) {
 //@ set ghostQueue = ghostQueue.insert(o);
 ...
 }
 public Comparable removeFirst() {
 ...
 //@set ghostQueue = ghostQueue.remove(first);
 return first;
 }
}

The assignable Problem
//@ model import org.jmlspecs.models.JMLObjectBag;
public interface PriorityQueue {
 //@ public instance model JMLObjectBag queue;
 /*@ public normal_behavior
 @ ensures queue.equals(\old(queue).insert(o));
 @*/
 public void enqueue(/*@non_null@*/ Comparable o);
 ...
}

Compilation produced a warning:

 >jmlc -Q PriorityQueue.java
 File "PriorityQueue.java", line 7, character 24 caution:
 A heavyweight specification case for a non-pure method
 has no assignable clause [JML]

Lets add an assignable clause!

Adding assignable
What does the method enqueue change?
It changes the model field queue and nothing else.

//@ model import org.jmlspecs.models.JMLObjectBag;
public interface PriorityQueue {
 //@ public instance model JMLObjectBag queue;
 /*@ public normal_behavior
 @ ensures queue.equals(\old(queue).insert(o));
 @ assignable queue;
 @*/
 public void enqueue(/*@non_null@*/ Comparable o);
 ...
}

However, when compiling Heap.java:
 File "Heap.java", line 50, character 29 error: Field "numElems"
 is not assignable by method "Heap.enqueue(java.lang.Comparable)";
 only fields and fields of data groups in set "{queue}" are assignable
 [JML]

Mapping Fields To Model Fields

We have to tell JML that elem and numElems are the
implementation of the model field queue.

There is a special JML syntax to do this:

import org.jmlspecs.models.JMLObjectBag;

 public class Heap implements PriorityQueue {

 private Comparable[] elems; //@ in queue;

 private int numElems; //@ in queue;

 /*@ private represents queue = computeQueue(); @*/

 ...

}

Data Groups

• A data group gives a name to a set of locations
without exposing implementation details.

• Every model field forms a data group.

• Other fields in the class or in sub-classes can be
associated with this data group
private Comparable[] elems; //@ in queue;
private int numElems; //@ in queue;

• Methods with specification
 assignable queue
may modify any field in the data group queue.

More About Data Groups

• There is a special data group objectState, which
should represent the object state.

• All representation fields should be added to this group.

• Adding a data group to another data group adds all
subgroups recursively:

public interface PriorityQueue {
 //@ public instance model JMLObjectBag queue;
 //@ in objectState;
 ...
}

After this change numElems and elems are also
automatically contained in objectState.

Grouping Fields with Data Groups

Data groups are useful to group fields.

class Calendar {
 //@ model JMLDataGroup datetime; in objectState;
 //@ model JMLDataGroup time, date; in datetime;
 int day, month, year; //@ in date;
 int hour, min, sec; //@ in time;
 int timezone; //@ in objectState;
 Locale locale; //@ in objectState;
 ...
 //@ assignable datetime;
 void setDate(Date date);
 //@ assignable timezone;
 void setTimeZone();
}

Data Groups and Visibility

Data groups and model fields are useful for resolving visibility
issues:

class Tree {
 //@ public model JMLDataGroup content;
 //@ in objectState;
 private Node rootNode; //@ in content;
 //@ assignable content;
 public void insert(Object o);
}

Using assignable rootNote would produce an error.

