
Programming Paradigms for Concurrency
Lecture 12 – Failure Handling with Actors

Based on a course on
Principles of Reactive Programming

by Martin Odersky, Erik Meijer, Roland Kuhn

Modified by
Thomas Wies

New York University

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAA

Failure Handling in Asynchronous Systems

• Where should failures go?

– reify as message

– send to a known address

• Actor model is anthropomorphic

– actors work together in teams (systems)

– individual failure is handled by the team leader

Actor Supervision

• Actor systems enable containment and automatic
response to failures
– failed actor is terminated or restarted

– decision must be taken by one
other actor (the supervisor)

– supervised actors form a tree structure

– the supervisor needs to create
its subordinates

top

A B C

A1 A2

Supervisor Strategy

In Akka the parent declares how its child Actors are supervised:

class Manager extends Actor {
 override val supervisorStrategy = OneForOneStrategy() {
 case _: DBException => Restart // reconnect to DB
 case _: ActorKilledException => Stop
 case _: ServiceDownException => Escalate
 }
 ...
 context.actorOf(Props[DBActor], ”db”)
 context.actorOf(Props[ImportantServiceActor], ”service”)
 ...
}

Supervisor Strategy (cont'd)

Failure is sent and processed like a message:

class Manager extends Actor {
 var restarts = Map.empty[ActorRef, Int].withDefaultValue(0)
 override val supervisorStrategy = OneForOneStrategy() {
 case _: DBException =>
 restarts(sender) match {
 case toomany if toomany > 10 =>
 restarts -= sender; Stop
 case n =>
 restarts = restarts.updated(sender, n + 1); Restart
 }
 }
}

Supervisor Strategy (cont’d)

If decision applies to all children: AllForOneStrategy

top

A B C

Supervisor Strategy (cont’d)

If decision applies to all children: AllForOneStrategy

Simple rate trigger included:

• allow a finite number of restarts

• allow a finite number of restarts in a time window

• if restriction violated then Stop instead of Restart

OneForOneStrategy(maxNrOfRetries = 10,
 withinTimeRange = 1.minute) {
 case _: DBException => Restart // will turn into Stop
}

Actor Identity

Recovery by restart requires stable identifier to
refer to the service:

• in Akka the ActorRef stays valid after a restart

What does restart mean?

• expected error conditions are handled explicitly

• unexpected error indicate invalidated actor state

• restart will install initial behavior / state

Actor Lifecycle

• start

• restart*

• stop

Start
new Actor

preStart

fail

Restart

preRestart

new Actor

postRestart

stop

Stop

postStop

Actor Lifecycle Hooks

trait Actor {
 def preStart(): Unit = {}
 def preRestart(reason: Throwable,
 message: Option[Any]): Unit = {
 context.children foreach (context.stop(_))
 postStop()
 }
 def postRestart(reason: Throwable): Unit = {
 preStart()
 }
 def postStop(): Unit = {}
 ...
}

The Default Lifecycle

class DBActor extends Actor {

 val db = DB.openConnection(...)

 ...

 override def postStop(): Unit = {

 db.close()

 }

}

In this model the actor is fully reinitialized during restart.

Lifecycle-Spanning Restart

class Listener(source: ActorRef) extends Actor {
 override def preStart() { source ! RegisterListener(self) }
 override def preRestart(reason: Throwable,
 message: Option[Any]) {}
 override def postRestart(reason: Throwable) {}
 override def postStop() { source ! UnregisterListener(self) }
}

Actor-local state cannot be kept across restarts, only
external state can be managed like this.

Child actors not stopped during restart will be restarted
recursively.

Lifecyle Monitoring

The only observable transition occurs when stopping an actor:
• having an ActorRef implies actor has been live

(at some earlier point)
• restarts are not externally visible
• after stop there will be no more responses

No replies could also be due to communication failure, therefore Akka
supports lifecycle monitoring a.k.a. DeathWatch.
• an Actor registers its interest using context.watch(target)
• it will receive a Terminated(target) message when target

stops
• it will not receive any direct messages from target thereafter

The DeathWatch API

trait ActorContext {

 def watch(target: ActorRef): ActorRef

 def unwatch(target: ActorRef): ActorRef

 ...

}

case class Terminated private[akka] (actor: ActorRef)

 (val existenceConfirmed: Boolean,

 val addressTerminated: Boolean)

 extends AutoReceiveMessage with PossiblyHarmful

The DeathWatch API (cont'd)

Stop

watcher watched

watch()

Terminated(true)

Terminated(false)

watch()

The DeathWatch API (cont'd)

trait ActorContext {

 def watch(target: ActorRef): ActorRef

 def unwatch(target: ActorRef): ActorRef

 ...

}

case class Terminated private[akka] (actor: ActorRef)

 (val existenceConfirmed: Boolean,

 val addressTerminated: Boolean)

 extends AutoReceiveMessage with PossiblyHarmful

Applying DeathWatch to
Controller/Getter (1)

class Getter(url: String, depth: Int) extends Actor {

 ...

 def receive = {

 case body: String =>

 for (link <- findLinks(body))

 context.parent ! Controller.Check(link, depth)

 context.stop(self)

 case _: Status.Failure => context.stop(self)

 }

}

Simply terminating the Getter when it is done uses DeathWatch
to signal end of conversation.

The Children List

Each actor maintains a list of the actors it created:

• the child has been entered when context.actorOf returns

• the child has been removed when Terminated is received

• an actor name is available iff there is no such child

trait ActorContext {

 def children: Iterable[ActorRef]

 def child(name: String): Option[ActorRef]

 ...

}

Applying DeathWatch to
Controller/Getter (2)

class Controller extends Actor with ActorLogging {

 override val supervisorStrategy =

 OneForOneStrategy(maxNrOfRetries = 5) {

 case _: Exception => SupervisorStrategy.Restart

 }

 def receive = {

 case Check(url, depth) =>

 if (!cache(url) && depth > 0)

 context.watch(context.actorOf(getterProps(url, depth - 1)))

 cache += url

 case Terminated(_) =>

 if (context.children.isEmpty) context.parent ! Result(cache)

 case ReceiveTimeout => context.children foreach context.stop

 }

 ...

}

Lifecycle Monitoring for Fail-Over

class Manager extends Actor {

 def prime(): Receive = {

 val db = context.actorOf(Props[DBActor], ”db”)

 context.watch(db)

 {

 case Terminated(‘db‘) => context.become(backup())

 }

 }

 def backup(): Receive = { ... }

 def receive = prime()

}

The Error Kernel

Keep important data near the root, delegate risk to the leaves.

• restarts are recursive (supervised actors are part of the
state)

• restarts are more frequent near the leaves

• avoid restarting Actors with important state

top

A B C

A1 A2

Application to Receptionist (1)

• Always stop Controller if it has a problem.

• React to Terminated to catch cases where no
Result was sent.

• Discard Terminated after Result was sent.

class Receptionist extends Actor {

 override def supervisorStrategy =

 SupervisorStrategy.stoppingStrategy

 ...

}

Application to Receptionist (2)

class Receptionist extends Actor {
 ...
 def runNext(queue: Vector[Job]): Receive = {
 reqNo += 1
 if (queue.isEmpty) waiting
 else {
 val controller = context.actorOf(controllerProps,
 s”c$reqNo”)
 context.watch(controller)
 controller ! Controller.Check(queue.head.url, 2)
 running(queue)
 }
 }
}

Application to Receptionist (3)

def running(queue: Vector[Job]): Receive = {

 case Controller.Result(links) =>

 val job = queue.head

 job.client ! Result(job.url, links)

 context.stop(context.unwatch(sender))

 context.become(runNext(queue.tail))

 case Terminated(_) =>

 val job = queue.head

 job.client ! Failed(job.url)

 context.become(runNext(queue.tail))

 case Get(url) =>

 context.become(enqueueJob(queue, Job(sender, url)))

}

Digression: the EventStream (1)

Actors can direct messages only at known addresses.

The EventStream allows publication of messages to an unknown
audience.

Every actor can optionally subscribe to (parts of) the EventStream.

trait EventStream {
 def subscribe(subscriber: ActorRef, topic: Class[_]):
 Boolean
 def unsubscribe(subscriber: ActorRef, topic: Class[_]):
 Boolean
 def unsubscribe(subscriber: ActorRef): Unit
 def publish(event: AnyRef): Unit
}

Digression: the EventStream (2)

class Listener extends Actor {

 context.system.eventStream.subscribe(self, classOf[LogEvent])

 def receive = {

 case e: LogEvent => ...

 }

 override def postStop(): Unit = {

 context.system.eventStream.unsubscribe(self)

 }

}

Where do Unhandled Messages Go?

Actor.Receive is a partial function, the behavior may not apply.

Unhandled messages are passed into the unhandled method:

trait Actor {
 ...
 def unhandled(message: Any): Unit = message match {
 case Terminated(target) =>
 throw new DeathPactException(target)
 case msg =>
 context.system.eventStream.publish
 (UnhandledMessage(msg, sender, self))
 }
}

Persistent Actor State

Actors representing a stateful resource

• shall not lose important state due to (system) failure

• must persist state as needed

• must recover state at (re)start

Two possibilities for persisting state:

• in-place updates

• persist changes in append-only fashion

Changes vs. Current State

Benefits of persisting current state:
• Recovery of latest state in constant time.
• Data volume depends on number of records, not their change

rate.

Benefits of persisting changes:
• History can be replayed, audited or restored.
• Some processing errors can be corrected retroactively.
• Additional insight can be gained on business processes.
• Writing an append-only stream optimizes IO bandwidth.
• Changes are immutable and can be freely replicated.

Snapshots

Immutable snapshots can be used to bound recovery time.

actor

...

snapshots

Command Sourcing

Command Sourcing: Persist the command before processing it,
persist acknowledgement when processed.

actor

Log

replies

msgs

Recovery of State

During recovery

• all commands are replayed in order to recover state.

• a persistent Channel discards messages already sent
to other actors.

actor

Log

channel
replies

msgs

Event Sourcing

Event Sourcing: Generate change requests (“events”) instead of
modifying local state; persist and apply them.

actor
msgs

Log

events

replay

Event Example (1)

sealed trait Event

case class PostCreated(text: String) extends Event

case object QuotaReached extends Event

case class State(posts: Vector[String], disabled: Boolean) {

 def updated(e: Event): State = e match {

 case PostCreated(text) => copy(posts = posts :+ text)

 case QuotaReached => copy(disabled = true)

 }

}

Event Example (2)

class UserProcessor extends Actor {

 var state = State(Vector.empty, false)

 def receive = {

 case NewPost(text) =>

 if (!state.disabled)

 emit(PostCreated(text), QuotaReached)

 case e: Event =>

 state = state.updated(e)

 }

 def emit(events: Event*) = ... // send to log

}

When to Apply the Events?

• Applying after persisting leaves actor in stale state.

• Applying before persisting relies on regenerating during replay.

When to Apply the Events?

• Applying after persisting leaves actor in stale state.

• Applying before persisting relies on regenerating during replay.

processor Log

NewPost

Posted

NewPost
?

processor Log

NewPost

Posted

NewPost
!

When to Apply the Events?

• Applying after persisting leaves actor in stale state.

• Applying before persisting relies on regenerating during replay.

Trading performance for consistency:

• Do not process new messages while waiting for persistence.

The Stash Trait

class UserProcessor extends Actor with Stash {
 var state: State = ...
 def receive = {
 case NewPost(text) if !state.disabled =>
 emit(PostCreated(text), QuotaReached)
 context.become(waiting(2), discardOld = false)
 }
 def waiting(n: Int): Receive = {
 case e: Event =>
 state = state.updated(e)
 if (n == 1) { context.unbecome(); unstashAll() }
 else context.become(waiting(n - 1))
 case _ => stash()
 }
}

When to Perform External Effects?

Performing the effect and persisting that it was done cannot
be atomic.

• Perform it before persisting for at-least-once semantics.

• Perform it after persisting for at-most-once semantics.

This choice needs to be made based on the concrete
application.

Summary

• Actors can persist incoming messages or generated
events.

• Events can be replicated and used to inform other
components.

• Recovery replays past commands or events;
snapshots reduce this cost.

• Actors can defer handling certain messages by using
the Stash trait.

