
Programming Paradigms for Concurrency
Lecture 10 – The Actor Paradigm

Based on a course on
Principles of Reactive Programming

by Martin Odersky, Erik Meijer, Roland Kuhn

Modified by
Thomas Wies

New York University

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAA

Limitations of Shared Memory Concurrency

• locks are the “goto statements” of concurrency

• shared memory typically implies physically shared
memory

• OS threads are resource-hungry and context-
switching is expensive

number of threads = number of available cores
 ≠ number of logical tasks

programs do not scale out to distributed architectures

locks do not compose;
reasoning about programs becomes (even more) difficult

Message Passing Concurrency

• no shared memory (in its pure form)
+ some classes of concurrency errors avoided by design

+ natural programming model for distributed architectures

- sometimes less efficient on shared-memory architectures:
data must be copied before sending

• all synchronization between processes is explicit
+ reasoning about program behavior is simplified

- “it’s harder to parallelize a sequential program using MP”

• higher level of abstraction
+ decouple computation tasks from physical threads

-> event-driven programming

Message Passing Paradigms

Two important categories of MP paradigms:

1. Actor or agent-based paradigms
 unique receivers: messages are sent directly from

one process to another

2. Channel-based paradigms
– multiple receivers: messages are sent to channels

that are shared between processes

We will focus on the actor paradigm.

The Actor Paradigm

Actors are the object-oriented approach to
concurrency

“everything is an actor”

actor = object + logical thread

A Brief History of Actors

• Hewitt, Bishop, Steiger 1973: actor model

• Agha 1986: actor languages and semantics

• Armstrong et al. 1990s: Erlang language

• Haller, Odersky 2006: Scala actors

• Boner 2009: Akka actors

The Akka Actor Trait

type Receive = PartialFunction[Any,Unit]

trait Actor {

 def receive: Receive

 ...
}

The Actor type describes the behavior of an actor, i.e.,

how it reacts to received messages.

A Simple Actor

class Counter extends Actor {

 var count = 0

 def receive = {

 case "incr" => count += 1

 }

}

Use pattern matching to
dispatch incoming messages

Sending Messages

class Counter extends Actor {

 var count = 0

 def receive = {

 case "incr" => count += 1

 case ("get", customer: ActorRef) =>

 customer ! count

 }

}

Senders are Implicit

trait Actor {

 implicit val self: ActorRef

 def sender: ActorRef

 ...

}

abstract class ActorRef {

 def !(msg: Any)(implicit sender: ActorRef = Actor.noSender):

 Unit

 def tell(msg: Any, sender: ActorRef) = this.!(msg)(sender)

 ...

}

Using sender

class Counter extends Actor {

 var count = 0

 def receive = {

 case "incr" => count += 1

 case "get" => sender ! count

 }

}

Changing an Actor’s Behavior

class ActorContext {

 def become(behavior: Receive, discardOld: Boolean = true): Unit

 def unbecome(): Unit

 ...

}

trait Actor {

 implicit val context: ActorContext

 ...

}

Changing an Actor’s Behavior

class Counter extends Actor {

 def counter(n: Int) = {

 case "incr" => context.become(counter(n + 1))

 case "get" => sender ! n

 }

 def receive = counter(0)

}

Important Lessons to Remember

• Prefer context.become for different behaviors,
with data local to each behavior

Creating and Stopping Actors

class ActorContext {

 def actorOf(p: Props, name: String): ActorRef

 def stop(a: ActorRef): Unit

 ...

}

trait Actor {

 val self: ActorRef

 ...

}

Actors are created by other actors.

Typically, stop is called with self as argument.

A Simple Actor Application

class Main extends Actor {

 val counter = context.actorOf(Props[Counter], “counter”)

 counter ! “incr”

 counter ! “incr”

 counter ! “incr”

 counter ! “get”

 def receive = {

 case count: Int =>

 println(s“count was $count”)

 context.stop(self)

 }

}

Internal Computation of Actors

• actors can

– react to incoming messages

– dynamically create other actors

– send messages to other actors

– dynamically change behavior

Evaluation Order of Actor Computations

• Actor-internal computation is single-threaded

– messages are received sequentially

– behavior change is effective before next message
is processed

– processing one message is an atomic operation

• Sending a message is similar to calling a
synchronized method, except that it is non-
blocking

Actors Encapsulate State

• no direct access to an actor’s internal state

• state is accessed indirectly through message
passing

• message passing is
– asynchronous

– buffered (FIFO)

– over unique-receiver channels (mailboxes)

– restricted to “known” actor references
• self

• actors this created

• references this received in messages

The Bank Account (revisited)

object BankAccount {

 case class Deposit(amount: BigInt) {

 require(amount > 0)

 }

 case class Withdraw(amount: BigInt) {

 require(amount > 0)

 }

 case object Done

 case object Failed

} Good practice:
• use case classes as messages
• declare message types in actor’s

companion object

The Bank Account (revisited)

class BankAccount extends Actor {

 import BankAccount._

 var balance = BigInt(0)

 def receive = {

 case Deposit(amount) =>

 balance += amount; sender ! Done

 case Withdraw(amount) if amount <= balance =>

 balance -= amount; sender ! Done

 case _ => sender ! Failed

 }

}

Wire Transfer

object WireTransfer {

 case class Transfer(from: ActorRef,
 to: ActorRef, amount: BigInt)

 case object Done

 case object Failed

}

Wire Transfer

class WireTransfer extends Actor {

 import WireTransfer._

 def receive = {

 case Transfer(from, to, amount) =>

 from ! BankAccount.Withdraw(amount)

 context.become(awaitWithdraw(to, amount, sender))

 }

 def awaitWithdraw ...

}

Wire Transfer
class WireTransfer extends Actor {
 ...

 def awaitWithdraw(to: ActorRef, amount: BigInt,
 client: ActorRef): Receive = {
 case BankAccount.Done =>
 to ! BankAccount.Deposit(amount)
 context.become(awaitDeposit(client))
 case BankAccount.Failed =>
 client ! Failed
 context.stop(self)
 }

 def awaitDeposit ...
}

Wire Transfer
class WireTransfer extends Actor {

 ...

 def awaitDeposit(client: ActorRef): Receive = {

 case BankAccount.Done =>

 client ! Done

 context.stop(self)

 }

}

A Simple Web Crawler

Goal: write a simple web crawler that

• makes an HTTP request for a given URL

• parses the returned HTTP body to collect all links to

other URLs

• recursively follows those links up to a given depth

• all links encountered should be returned.

Basic Design

Receptionist Client

Controller

Getter

Get(url)

Crawl(url,d)

Get(url,d)

Link(url,d)
Done

Getter Getter
Getter

Result(urls)

Result(url,urls)

Plan of Action

• write web client which asynchronously turns a URL into
an HTTP body (based on com.ning.http.client)

• write a Getter actor for processing the body

• write a Controller which spawns Getters for all links
encountered

• write a Receptionist managing one Controller per
request.

The Web Client

val client = new AsyncHttpClient

def get(url: String): String = {

 val response = client.prepareGet(url).execute().get

 if (response.getStatusCode < 400)

 response.getResponseBodyExcerpt(131072)

 else throw BadStatus(response.getStatusCode)

}

Blocks the caller until the web server has replied
) actor is deaf to other requests, e.g., cancellation
) priority inversion: current thread is blocked

A short Digression to Monads

• Monads allow you to encapsulate side-effects
such as
– state mutation

– IO

– exceptions

– latency

• We look at two of Scala's monads:

– Try: encapsulates exceptions

– Future: encapsulates exceptions and latency

Implicit Exception Handling

def divide: Int =

 val dividend =

 Console.readLine("Enter an Int to divide:\n").toInt

 val divisor =

 Console.readLine("Enter an Int to divide by:\n").toInt

 divident/divisor

What can go wrong here?

Can we handle the exceptions without catching them
explicitly?

The Try Class

sealed abstract class Try[T] {

 abstract def isSuccess: Boolean

 abstract def isFailure: Boolean

 abstract def get: T

 abstract def flatMap[S](f: T => Try[S]): Try[S]

 abstract def map[S](f: T => S): Try[S]

 ...

}

case class Success[T](elem: T) extends Try[T]

case class Failure[T](t: Throwable) extends Try[T]

Try's Companion Object

object Try {

 def apply[T](body: => T) {

 try { Success(body) }

 catch { t => Failed(t) }

 }

}

Now we can wrap the result of a computation in a Try value:

val dividend =

 Try(Console.readLine("Enter an Int to divide:\n").toInt)

Implicit Exception Handling

import scala.util.{Try, Success, Failure}

def divide: Int =

 val dividend =

 Try(Console.readLine("Enter an Int to divide:\n").toInt)

 val divisor =

 Try(Console.readLine("Enter an Int to divide by:\n").toInt)

 val result = divident.flatMap(x => divisor.map(y => x/y))

 result match {

 case Success(v) => v

 case Failure(e) =>

 println(“Not an Int or division by zero. Try again!")

 divide

 }

Futures

A Future is an object holding a value which may
become available at some point.

• This value is usually the result of some other
computation.

• If the computation has completed with a value or
with an exception, then the Future is completed.

• A Future can only be completed once.

Think of a Future as an asynchronous version of Try

The Future Trait

trait Awaitable[T] {
 abstract def ready(atMost: Duration): Unit
 abstract def result(atMost: Duration): T
}

trait Future[T] extends Awaitable[T] {
 abstract def onComplete[U](f: (Try[T]) => U)
 (implicit executor: ExecutionContext): Unit
 abstract def flatMap[S](f: T => Future[S]): Future[S]
 abstract def map[S](f: T => S): Future[S]
 ...
}

object Future {
 def apply[T](body: => T)
 (implicit executor: ExecutionContext): Future[T]
}

Using Futures

import scala.concurrent._

import ExecutionContext.Implicits.global

...

val usdQuote = Future { connection.getCurrentValue(USD) }

val eurQuote = Future { connection.getCurrentValue(EUR) }

val purchase = for {

 usd <- usdQuote

 eur <- eurQuote

 if isProfitable(usd, eur)

} yield connection.buy(amount, eur)

purchase onSuccess {

 case _ => println(s"Purchased EUR $amount")

}

Promises

import scala.concurrent.{Future, Promise}
import scala.concurrent.ExecutionContext.Implicits.global

val p = promise[T]
val producer = Future {
 val r = produceSomething()
 p.success(r)
 continueDoingSomethingUnrelated()
}
val f = p.future
val consumer = Future {
 startDoingSomething()
 f onSuccess {
 case r => doSomethingWithResult(r)
 }
}

The Web Client

val client = new AsyncHttpClient

def get(url: String): String = {

 val response = client.prepareGet(url).execute().get

 if (response.getStatusCode < 400)

 response.getResponseBodyExcerpt(131072)

 else throw BadStatus(response.getStatusCode)

}

Blocks the caller until the web server has replied
) actor is deaf to other requests, e.g., cancellation
) priority inversion: current thread is blocked

The Web Client

val client = new AsyncHttpClient

def get(url: String)(implicit exec: Executor):

 Future[String] = {

 val f = client.prepareGet(url).execute()

 val p = Promise[String]()

 f.addListener(new Runnable {

 def run = {

 val response = f.get

 if (response.getStatusCode < 400)

 p.success(response.getResponseBodyExcerpt(131072))

 else p.failure(BadStatus(response.getStatusCode))

 }

 }, exec)

 p.future

}

Important Lessons to Remember

• Prefer context.become for different behaviors,
with data local to each behavior

• An actor application is non-blocking – event-driven
from top to bottom

Finding Links

val A_TAG = “(?i)<a ([^>]+)>.+?”.r

val HREF_ATTR =
”””\s*(?i)href\s*=\s*(?:”([^”]*)”|’([^’]*)’|([^’”>\s]+))”””.r

def findLinks(body: String): Iterator[String] = {

 for {

 anchor <- A_TAG.findAllMatchIn(body)

 HREF_ATTR(dquot, quot, bare) <- anchor.subgroups

 } yield

 if (dquot != null) dquot

 else if (quot != null) quot

 else bare

}

<html>
 <head> ... </head>
 <body>
 ...

 ...
 </body>
</html>

The Getter Actor (1)

class Getter(url: String, depth: Int) extends Actor {

 implicit val exec = context.dispatcher.

 asInstanceOf[Executor with ExecutionContext]

 val future = WebClient.get(url)

 future onComplete {

 case Success(body) => self ! body

 case Failure(err) => self ! Status.Failure(err)

 }

 ...

}

The Getter Actor (2)

class Getter(url: String, depth: Int) extends Actor {

 implicit val exec = context.dispatcher.

 asInstanceOf[Executor with ExecutionContext]

 val future = WebClient.get(url)

 future pipeTo(self)

 ...

}

The Getter Actor (3)

class Getter(url: String, depth: Int) extends Actor {

 implicit val exec = context.dispatcher.

 asInstanceOf[Executor with ExecutionContext]

 WebClient get url pipeTo self

 ...

}

Important Lessons to Remember

• Prefer context.become for different behaviors,
with data local to each behavior

• An actor application is non-blocking – event-driven
from top to bottom

• Actors are run by a dispatcher – potentially shared –
which can also run Futures

The Getter Actor (4)

class Getter(url: String, depth: Int) extends Actor {

 ...

 def receive = {

 case body: String =>

 for (link <- findLinks(body))

 context.parent ! Controller.Crawl(link, depth)

 stop()

 case _: Status.Failure => stop()

 }

 def stop() = {

 context.parent ! Done

 context.stop(self)

 }

}

Actor Logging

• Logging includes IO which can block indefinitely

• Akka’s logging delegates this task to dedicated actor

• supports system-wide levels of debug, info, warning, error

• set level, e.g., by using the setting akka.loglevel=DEBUG

class A extends Actor with ActorLogging {

 def receive = {

 case msg => log.debug(“received message: {}”, msg)

 }

}

The Controller

class Controller extends Actor with ActorLogging {
 var cache = Set.empty[String]
 var children = Set.empty[ActorRef]
 def receive = {
 case Crawl(url, depth) =>
 log.debug(“{} crawling {}”, depth, url)
 if (!cache(url) && depth > 0)
 chilren += context.actorOf(
 Props(new Getter(url, depth – 1)))
 cache += url
 case Getter.Done =>
 children -= sender
 if (children.isEmpty) context.parent ! Result(cache)
 }
}

Important Lessons to Remember

• Prefer context.become for different behaviors,
with data local to each behavior

• An actor application is non-blocking – event-driven
from top to bottom

• Actors are run by a dispatcher – potentially shared –
which can also run Futures

• Prefer immutable data structures, since they can be
shared between actors

Handling Timeouts

import scala.concurrent.duration._

class Controller extends Actor with ActorLogging {

 context.setReceiveTimeout(10 seconds)

 ...

 def receive = {

 case Crawl(...) => ...

 case Getter.Done => ...

 case ReceiveTimeout => children foreach (_ ! Getter.Abort)

 }

}

The receive timeout is reset by every received message.

Handling Abort in the Getter

class Getter(url: String, depth: Int) extends Actor {

 ...

 def receive = {

 case body: String =>

 for (link <- findLinks(body)) ...

 stop()

 case _: Status.Failure => stop()

 case Abort => stop()

 }

 def stop() = {

 context.parent ! Done

 context.stop(self)

 }

}

The Scheduler

Akka includes a timer service optimized for high volume,

short durations, and frequent cancellations of events.

trait Scheduler {

 def scheduleOnce(delay: FiniteDuration, target: ActorRef, msg: Any)

 (implicit ec: ExecutionContext): Cancellable

 def scheduleOnce(delay: FiniteDuration)(block: => Unit)

 (implicit ec: ExecutionContext): Cancellable

 def scheduleOnce(delay: FiniteDuration, run: Runnable)

 (implicit ec: ExecutionContext): Cancellable

 // ... the same for repeating timers

}

Adding an Overall Timeout (1)

class Controller extends Actor with ActorLogging {

 import context.dispatcher

 var children = Set.empty[ActorRef]

 context.system.scheduler.scheduleOnce(10 seconds) {

 children foreach (_ ! Getter.Abort)

 }

 ...

}

This is not thread-safe!
• code is run by the scheduler in a different thread
• potential race condition on children

Adding an Overall Timeout (2)

class Controller extends Actor with ActorLogging {

 import context.dispatcher

 var children = Set.empty[ActorRef]

 context.system.scheduler.scheduleOnce(10 seconds, self,

 Timeout)

 ...

 def receive = {

 ...

 case Timeout => children foreach (_ ! Getter.Abort)

 }

}

How Actors and Futures Interact (1)

Future composition methods invite to closing over the actor’s state:

class Cache extends Actor {

 var cache = Map.empty[String, String]

 def receive = {

 case Get(url) =>

 if (cache contains url) sender ! cache(url)

 else

 WebClient get url foreach { body =>

 cache += url -> body

 sender ! body

 }

 }

}

How Actors and Futures Interact (2)

class Cache extends Actor {

 var cache = Map.empty[String, String]

 def receive = {

 case Get(url) =>

 if (cache contains url) sender ! cache(url)

 else

 WebClient get url map (Result(sender, url, _))

 pipeTo self

 case Result(client, url, body) =>

 cache += url -> body

 client ! body

 }

 }

}

Still leaking state!

How Actors and Futures Interact (3)

class Cache extends Actor {

 var cache = Map.empty[String, String]

 def receive = {

 case Get(url) =>

 if (cache contains url) sender ! cache(url)

 else

 val client = sender

 WebClient get url map (Result(client, url, _))

 pipeTo self

 case Result(client, url, body) =>

 cache += url -> body

 client ! body

 }

 }

}

Important Lessons to Remember

• Prefer context.become for different behaviors,
with data local to each behavior

• An actor application is non-blocking – event-driven
from top to bottom

• Actors are run by a dispatcher – potentially shared –
which can also run Futures

• Prefer immutable data structures, since they can be
shared

• Do not refer to actor state from code running
asynchronously

The Receptionist (1)

class Receptionist extends Actor {

 def receive = waiting

 def waiting: Receive = {

 // upon Get(url) start a crawl and become running

 }

 def running(queue: Vector[Job]): Receive = {

 // upon Get(url) append that to queue and keep running

 // upon Controller.Result(links) ship that to client

 // and run next job from queue (if any)

 }

}

The Receptionist (2)

case class Job(client: ActorRef, url: String)

val DEPTH = 2

var reqNo = 0

def runNext(queue: Vector[Job]): Receive = {

 reqNo += 1

 if (queue.isEmpty) waiting

 else {

 val controller = context.actorOf(Props[Controller], s”c$reqNo”)

 controller ! Controller.Crawl(queue.head.url, DEPTH)

 running(queue)

 }

}

The Receptionist (3)

def enqueueJob(queue: Vector[Job]): Receive = {

 if (queue.size > 3) {

 sender ! Failed(job.url)

 running(queue)

 } else running(queue :+ job)

}

The Receptionist (4)

def waiting: Receive = {

 case Get(url) =>

 context.become(runNext(Vector(Job(sender, url))))

}

def running(queue: Vector[Job]): Receive = {

 case Controller.Result(links) =>

 val job = queue.head

 job.client ! Result(job.url, links)

 context.stop(sender)

 context.become(runNext(queue.tail))

 case Get(url) =>

 context.become(enqueueJob(queue, Job(sender, url)))

}

Important Lessons to Remember

• Prefer context.become for different behaviors,
with data local to each behavior

• An actor application is non-blocking – event-driven
from top to bottom

• Actors are run by a dispatcher – potentially shared –
which can also run Futures

• Prefer immutable data structures, since they can be
shared

• Do not refer to actor state from code running
asynchronously

