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Limitations of Shared Memory Concurrency 

• locks are the “goto statements” of concurrency 

 

 

• shared memory typically implies physically shared 
memory 

 

• OS threads are resource-hungry and context-
switching is expensive 

number of threads  =      number of available cores 
   ≠      number of logical tasks 

programs do not scale out to distributed architectures 

locks do not compose; 
reasoning about programs becomes (even more) difficult 



Message Passing Concurrency 

• no shared memory (in its pure form) 
+ some classes of concurrency errors avoided by design 

+ natural programming model for distributed architectures 

- sometimes less efficient on shared-memory architectures:  
data must be copied before sending  

• all synchronization between processes is explicit 
+ reasoning about program behavior is simplified 

-  “it’s harder to parallelize a sequential program using MP” 

• higher level of abstraction 
+ decouple computation tasks from physical threads 

-> event-driven programming 



Message Passing Paradigms 

Two important categories of MP paradigms: 

 

1. Actor or agent-based paradigms 
 unique receivers: messages are sent directly from 

one process to another 
 

2. Channel-based paradigms 
– multiple receivers: messages are sent to channels 

that are shared between processes 

We will focus on the actor paradigm. 



The Actor Paradigm  

Actors are the object-oriented approach to 
concurrency 

 

“everything is an actor” 
 

actor = object + logical thread 
 



A Brief History of Actors 

• Hewitt, Bishop, Steiger 1973: actor model 
 
• Agha 1986: actor languages and semantics 

 
• Armstrong et al. 1990s: Erlang language 

 
• Haller, Odersky 2006: Scala actors 

 
• Boner 2009: Akka actors 



The Akka Actor Trait 

type Receive = PartialFunction[Any,Unit] 

 

trait Actor { 

  def receive: Receive 

  ... 
} 

 

The Actor type describes the behavior of an actor, i.e., 

how it reacts to received messages. 



A Simple Actor 

class Counter extends Actor { 

  var count = 0 

  def receive = { 

    case "incr" => count += 1 

  } 

} 

Use pattern matching to  
dispatch incoming messages 



Sending Messages 

class Counter extends Actor { 

  var count = 0 

  def receive = { 

    case "incr" => count += 1 

    case ("get", customer: ActorRef) => 

      customer ! count  

  } 

} 



Senders are Implicit 

trait Actor { 

  implicit val self: ActorRef 

  def sender: ActorRef 

  ... 

} 

 

abstract class ActorRef { 

  def !(msg: Any)(implicit sender: ActorRef = Actor.noSender): 

    Unit 

  def tell(msg: Any, sender: ActorRef) = this.!(msg)(sender) 

  ... 

} 



Using sender 

class Counter extends Actor { 

  var count = 0 

  def receive = { 

    case "incr" => count += 1 

    case "get" => sender ! count  

  } 

} 



Changing an Actor’s Behavior 

class ActorContext { 

  def become(behavior: Receive, discardOld: Boolean = true): Unit 

  def unbecome(): Unit 

  ... 

} 

 

trait Actor { 

  implicit val context: ActorContext 

  ... 

} 

 



Changing an Actor’s Behavior 

class Counter extends Actor { 

  def counter(n: Int) = { 

    case "incr" => context.become(counter(n + 1)) 

    case "get" => sender ! n 

  } 

  def receive = counter(0) 

} 



Important Lessons to Remember 

• Prefer context.become for different behaviors, 
with data local to each behavior 



Creating and Stopping Actors 

class ActorContext { 

  def actorOf(p: Props, name: String): ActorRef 

  def stop(a: ActorRef): Unit 

  ... 

} 

 

trait Actor { 

  val self: ActorRef 

  ... 

} 

 

Actors are created by other actors. 

Typically, stop is called with self as argument. 



A Simple Actor Application 

class Main extends Actor { 

  val counter = context.actorOf(Props[Counter], “counter”) 

 

  counter ! “incr” 

  counter ! “incr” 

  counter ! “incr” 

  counter ! “get” 

 

  def receive = { 

    case count: Int => 

 println(s“count was $count”) 

       context.stop(self) 

  } 

} 



Internal Computation of Actors 

• actors can 

– react to incoming messages 

– dynamically create other actors 

– send messages to other actors 

– dynamically change behavior 

 



Evaluation Order of Actor Computations 

• Actor-internal computation is single-threaded 

– messages are received sequentially 

– behavior change is effective before next message 
is processed 

– processing one message is an atomic operation 

• Sending a message is similar to calling a 
synchronized method, except that it is non-
blocking 



Actors Encapsulate State 

• no direct access to an actor’s internal state 

• state is accessed indirectly through message 
passing 

• message passing is 
– asynchronous 

– buffered (FIFO) 

– over unique-receiver channels (mailboxes) 

– restricted to “known” actor references  
• self 

• actors this created 

• references this received in messages 

 



The Bank Account (revisited) 

object BankAccount { 

  case class Deposit(amount: BigInt) { 

    require(amount > 0) 

  } 

  case class Withdraw(amount: BigInt) { 

    require(amount > 0) 

  } 

  case object Done 

  case object Failed 

} Good practice: 
• use case classes as messages 
• declare message types in actor’s  

companion object 



The Bank Account (revisited) 

class BankAccount extends Actor { 

  import BankAccount._ 

   

  var balance = BigInt(0) 

 

  def receive = { 

    case Deposit(amount) =>  

 balance += amount; sender ! Done 

    case Withdraw(amount) if amount <= balance => 

      balance -= amount; sender ! Done 

    case _ => sender ! Failed 

  } 

} 



Wire Transfer 

object WireTransfer { 

  case class Transfer(from: ActorRef,  
                      to: ActorRef, amount: BigInt) 

  case object Done 

  case object Failed 

} 



Wire Transfer 

class WireTransfer extends Actor { 

  import WireTransfer._ 
 

  def receive = { 

    case Transfer(from, to, amount) => 

      from ! BankAccount.Withdraw(amount) 

      context.become(awaitWithdraw(to, amount, sender)) 

  } 

 

  def awaitWithdraw ... 

} 



Wire Transfer 
class WireTransfer extends Actor { 
  ... 
 
  def awaitWithdraw(to: ActorRef, amount: BigInt,  
                    client: ActorRef): Receive = { 
    case BankAccount.Done => 
      to ! BankAccount.Deposit(amount) 
      context.become(awaitDeposit(client)) 
    case BankAccount.Failed => 
      client ! Failed 
      context.stop(self)  
  } 
 
  def awaitDeposit ... 
} 



Wire Transfer 
class WireTransfer extends Actor { 

  ... 

 

  def awaitDeposit(client: ActorRef): Receive = { 

    case BankAccount.Done => 

      client ! Done 

      context.stop(self) 

  } 

} 



A Simple Web Crawler 

Goal: write a simple web crawler that 
 
• makes an HTTP request for a given URL 

 
• parses the returned HTTP body to collect all links to 

other URLs 
 

• recursively follows those links up to a given depth 
 

• all links encountered should be returned. 



Basic Design 

Receptionist Client 

Controller 

Getter 

Get(url) 

Crawl(url,d) 

Get(url,d) 

Link(url,d) 
Done 

Getter Getter 
Getter 

Result(urls) 

Result(url,urls) 



Plan of Action 

• write web client which asynchronously turns a URL into 
an HTTP body (based on com.ning.http.client) 

 

• write a Getter actor for processing the body 

 

• write a Controller which spawns Getters for all links 
encountered 

 

• write a Receptionist managing one Controller per 
request. 



The Web Client 

val client = new AsyncHttpClient 

def get(url: String): String = { 

  val response = client.prepareGet(url).execute().get 

  if (response.getStatusCode < 400) 

    response.getResponseBodyExcerpt(131072) 

  else throw BadStatus(response.getStatusCode) 

} 

Blocks the caller until the web server has replied 
) actor is deaf to other requests, e.g., cancellation 
) priority inversion: current thread is blocked 



A short Digression to Monads 

• Monads allow you to encapsulate side-effects 
such as 
– state mutation 

– IO 

– exceptions 

– latency 

• We look at two of Scala's monads:  

– Try: encapsulates exceptions 

– Future: encapsulates exceptions and latency 



Implicit Exception Handling 

def divide: Int = 

  val dividend =  

    Console.readLine("Enter an Int to divide:\n").toInt 

  val divisor =  

    Console.readLine("Enter an Int to divide by:\n").toInt  

  divident/divisor 

 

What can go wrong here? 

 

Can we handle the exceptions without catching them 
explicitly? 



The Try Class 

sealed abstract class Try[T] { 

  abstract def isSuccess: Boolean 

  abstract def isFailure: Boolean 

  abstract def get: T  

  abstract def flatMap[S](f: T => Try[S]): Try[S]  

  abstract def map[S](f: T => S): Try[S] 

  ... 

} 

case class Success[T](elem: T) extends Try[T] 

case class Failure[T](t: Throwable) extends Try[T] 



Try's Companion Object 

object Try { 

  def apply[T](body: => T) { 

    try { Success(body) }  

    catch { t => Failed(t) } 

  } 

} 

 

Now we can wrap the result of a computation in a Try value: 

val dividend =  

  Try(Console.readLine("Enter an Int to divide:\n").toInt) 

 



Implicit Exception Handling 

import scala.util.{Try, Success, Failure} 

 

def divide: Int = 

  val dividend =  

    Try(Console.readLine("Enter an Int to divide:\n").toInt) 

  val divisor =  

    Try(Console.readLine("Enter an Int to divide by:\n").toInt)  

  val result = divident.flatMap(x => divisor.map(y => x/y)) 

  result match { 

    case Success(v) => v 

    case Failure(e) =>  

 println(“Not an Int or division by zero. Try again!") 

       divide 

  } 



Futures 

A Future is an object holding a value which may 
become available at some point.  

• This value is usually the result of some other 
computation. 

• If the computation has completed with a value or 
with an exception, then the Future is completed. 

• A Future can only be completed once. 

 

Think of a Future as an asynchronous version of Try 

 



The Future Trait 

trait Awaitable[T] { 
  abstract def ready(atMost: Duration): Unit 
  abstract def result(atMost: Duration): T  
} 
 
trait Future[T] extends Awaitable[T] { 
  abstract def onComplete[U](f: (Try[T]) => U) 
    (implicit executor: ExecutionContext): Unit  
  abstract def flatMap[S](f: T => Future[S]): Future[S] 
  abstract def map[S](f: T => S): Future[S] 
  ... 
} 
 
object Future { 
  def apply[T](body: => T) 
    (implicit executor: ExecutionContext): Future[T] 
} 



Using Futures 

import scala.concurrent._ 

import ExecutionContext.Implicits.global  

... 

val usdQuote = Future { connection.getCurrentValue(USD) } 

val eurQuote = Future { connection.getCurrentValue(EUR) } 

val purchase = for { 

    usd <- usdQuote 

    eur <- eurQuote 

    if isProfitable(usd, eur) 

} yield connection.buy(amount, eur) 

     

purchase onSuccess { 

  case _ => println(s"Purchased EUR $amount") 

} 



Promises 

import scala.concurrent.{Future, Promise} 
import scala.concurrent.ExecutionContext.Implicits.global 
 
val p = promise[T] 
val producer = Future { 
  val r = produceSomething() 
  p.success(r) 
  continueDoingSomethingUnrelated() 
} 
val f = p.future 
val consumer = Future { 
  startDoingSomething() 
  f onSuccess { 
    case r => doSomethingWithResult(r) 
  } 
} 



The Web Client 

val client = new AsyncHttpClient 

def get(url: String): String = { 

  val response = client.prepareGet(url).execute().get 

  if (response.getStatusCode < 400) 

    response.getResponseBodyExcerpt(131072) 

  else throw BadStatus(response.getStatusCode) 

} 

Blocks the caller until the web server has replied 
) actor is deaf to other requests, e.g., cancellation 
) priority inversion: current thread is blocked 



The Web Client 

val client = new AsyncHttpClient 

def get(url: String)(implicit exec: Executor):    

  Future[String] = { 

  val f = client.prepareGet(url).execute() 

  val p = Promise[String]() 

  f.addListener(new Runnable { 

    def run = { 

      val response = f.get 

      if (response.getStatusCode < 400) 

        p.success(response.getResponseBodyExcerpt(131072)) 

      else p.failure(BadStatus(response.getStatusCode)) 

    } 

  }, exec) 

  p.future 

} 



Important Lessons to Remember 

• Prefer context.become for different behaviors, 
with data local to each behavior 

• An actor application is non-blocking – event-driven 
from top to bottom 



Finding Links 

val A_TAG = “(?i)<a ([^>]+)>.+?</a>”.r 

val HREF_ATTR = 
”””\s*(?i)href\s*=\s*(?:”([^”]*)”|’([^’]*)’|([^’”>\s]+))”””.r 

 

def findLinks(body: String): Iterator[String] = { 

  for { 

    anchor <- A_TAG.findAllMatchIn(body) 

    HREF_ATTR(dquot, quot, bare) <- anchor.subgroups 

  } yield 

    if (dquot != null) dquot 

    else if (quot != null) quot 

    else bare  

} 

<html> 
  <head> ... </head> 
  <body> 
    ... 
    <a href=“http://cs.nyu.edu”></a> 
    ... 
  </body> 
</html> 



The Getter Actor (1) 

class Getter(url: String, depth: Int) extends Actor { 

  implicit val exec = context.dispatcher. 

      asInstanceOf[Executor with ExecutionContext] 

 

  val future = WebClient.get(url) 

  future onComplete { 

    case Success(body) => self ! body 

    case Failure(err) => self ! Status.Failure(err) 

  } 

  ... 

} 



The Getter Actor (2) 

class Getter(url: String, depth: Int) extends Actor { 

  implicit val exec = context.dispatcher. 

      asInstanceOf[Executor with ExecutionContext] 

 

  val future = WebClient.get(url) 

  future pipeTo(self) 

  ... 

} 



The Getter Actor (3) 

class Getter(url: String, depth: Int) extends Actor { 

  implicit val exec = context.dispatcher. 

      asInstanceOf[Executor with ExecutionContext] 

 

  WebClient get url pipeTo self 

  ... 

} 



Important Lessons to Remember 

• Prefer context.become for different behaviors, 
with data local to each behavior 

• An actor application is non-blocking – event-driven 
from top to bottom 

• Actors are run by a dispatcher – potentially shared – 
which can also run Futures 



The Getter Actor (4) 

class Getter(url: String, depth: Int) extends Actor { 

  ... 

  def receive = { 

    case body: String => 

      for (link <- findLinks(body)) 

        context.parent ! Controller.Crawl(link, depth) 

      stop() 

    case _: Status.Failure => stop() 

  } 

  def stop() = { 

    context.parent ! Done 

    context.stop(self) 

  } 

} 



Actor Logging 

• Logging includes IO which can block indefinitely 

• Akka’s logging delegates this task to dedicated actor 

• supports system-wide levels of debug, info, warning, error 

• set level, e.g., by using the setting akka.loglevel=DEBUG 
 

class A extends Actor with ActorLogging { 

  def receive = { 

    case msg => log.debug(“received message: {}”, msg) 

  } 

} 



The Controller 

class Controller extends Actor with ActorLogging { 
  var cache = Set.empty[String] 
  var children = Set.empty[ActorRef] 
  def receive = { 
    case Crawl(url, depth) => 
      log.debug(“{} crawling {}”, depth, url) 
      if (!cache(url) && depth > 0) 
        chilren += context.actorOf( 
                     Props(new Getter(url, depth – 1))) 
      cache += url 
    case Getter.Done => 
      children -= sender 
      if (children.isEmpty) context.parent ! Result(cache) 
  } 
} 



Important Lessons to Remember 

• Prefer context.become for different behaviors, 
with data local to each behavior 

• An actor application is non-blocking – event-driven 
from top to bottom 

• Actors are run by a dispatcher – potentially shared – 
which can also run Futures 

• Prefer immutable data structures, since they can be 
shared between actors 



Handling Timeouts 

import scala.concurrent.duration._ 

 

class Controller extends Actor with ActorLogging { 

  context.setReceiveTimeout(10 seconds) 

  ... 

  def receive = { 

    case Crawl(...) => ... 

    case Getter.Done => ... 

    case ReceiveTimeout => children foreach (_ ! Getter.Abort) 

  } 

} 

 

The receive timeout is reset by every received message. 



Handling Abort in the Getter 

class Getter(url: String, depth: Int) extends Actor { 

  ... 

  def receive = { 

    case body: String => 

      for (link <- findLinks(body)) ... 

      stop() 

    case _: Status.Failure => stop() 

    case Abort => stop() 

  } 

  def stop() = { 

    context.parent ! Done 

    context.stop(self) 

  } 

} 



The Scheduler 

Akka includes a timer service optimized for high volume,  

short durations, and frequent cancellations of events. 
 

trait Scheduler { 

  def scheduleOnce(delay: FiniteDuration, target: ActorRef, msg: Any) 

                  (implicit ec: ExecutionContext): Cancellable 

   

  def scheduleOnce(delay: FiniteDuration)(block: => Unit) 

                  (implicit ec: ExecutionContext): Cancellable 

   

  def scheduleOnce(delay: FiniteDuration, run: Runnable) 

                  (implicit ec: ExecutionContext): Cancellable 

   

  // ... the same for repeating timers 

} 



Adding an Overall Timeout (1) 

class Controller extends Actor with ActorLogging { 

  import context.dispatcher 

  var children = Set.empty[ActorRef] 

  context.system.scheduler.scheduleOnce(10 seconds) { 

    children foreach (_ ! Getter.Abort) 

  } 

  ... 

} 

This is not thread-safe! 
• code is run by the scheduler in a different thread 
• potential race condition on children 



Adding an Overall Timeout (2) 

class Controller extends Actor with ActorLogging { 

  import context.dispatcher 

  var children = Set.empty[ActorRef] 

  context.system.scheduler.scheduleOnce(10 seconds, self,  

    Timeout)  

  ... 

  def receive = { 

    ... 

    case Timeout => children foreach (_ ! Getter.Abort) 

  } 

} 



How Actors and Futures Interact (1) 

Future composition methods invite to closing over the actor’s state: 

 
class Cache extends Actor { 

  var cache = Map.empty[String, String] 

  def receive = { 

    case Get(url) => 

      if (cache contains url) sender ! cache(url) 

      else 

        WebClient get url foreach { body => 

          cache += url -> body 

          sender ! body 

        } 

  } 

} 



How Actors and Futures Interact (2) 

class Cache extends Actor { 

  var cache = Map.empty[String, String] 

  def receive = { 

    case Get(url) => 

      if (cache contains url) sender ! cache(url) 

      else 

        WebClient get url map (Result(sender, url, _))  

          pipeTo self 

    case Result(client, url, body) => 

          cache += url -> body 

          client ! body 

        } 

  } 

} 

Still leaking state! 



How Actors and Futures Interact (3) 

class Cache extends Actor { 

  var cache = Map.empty[String, String] 

  def receive = { 

    case Get(url) => 

      if (cache contains url) sender ! cache(url) 

      else 

        val client = sender 

        WebClient get url map (Result(client, url, _))  

          pipeTo self 

    case Result(client, url, body) => 

          cache += url -> body 

          client ! body 

        } 

  } 

} 



Important Lessons to Remember 

• Prefer context.become for different behaviors, 
with data local to each behavior 

• An actor application is non-blocking – event-driven 
from top to bottom 

• Actors are run by a dispatcher – potentially shared – 
which can also run Futures 

• Prefer immutable data structures, since they can be 
shared 

• Do not refer to actor state from code running 
asynchronously 



The Receptionist (1) 

class Receptionist extends Actor { 

  def receive = waiting 

 

  def waiting: Receive = { 

    // upon Get(url) start a crawl and become running 

  } 

 

  def running(queue: Vector[Job]): Receive = { 

    // upon Get(url) append that to queue and keep running 

    // upon Controller.Result(links) ship that to client 

    //  and run next job from queue (if any) 

  }  

} 



The Receptionist (2) 

case class Job(client: ActorRef, url: String) 

val DEPTH = 2 

var reqNo = 0 

def runNext(queue: Vector[Job]): Receive = { 

  reqNo += 1 

  if (queue.isEmpty) waiting 

  else { 

    val controller = context.actorOf(Props[Controller], s”c$reqNo”) 

    controller ! Controller.Crawl(queue.head.url, DEPTH) 

    running(queue) 

  } 

} 



The Receptionist (3) 

def enqueueJob(queue: Vector[Job]): Receive = { 

  if (queue.size > 3) { 

    sender ! Failed(job.url) 

    running(queue) 

  } else running(queue :+ job) 

} 



The Receptionist (4) 

def waiting: Receive = { 

  case Get(url) => 

    context.become(runNext(Vector(Job(sender, url)))) 

} 

 

def running(queue: Vector[Job]): Receive = { 

  case Controller.Result(links) => 

    val job = queue.head 

    job.client ! Result(job.url, links) 

    context.stop(sender) 

    context.become(runNext(queue.tail)) 

  case Get(url) => 

    context.become(enqueueJob(queue, Job(sender, url))) 

} 



Important Lessons to Remember 

• Prefer context.become for different behaviors, 
with data local to each behavior 

• An actor application is non-blocking – event-driven 
from top to bottom 

• Actors are run by a dispatcher – potentially shared – 
which can also run Futures 

• Prefer immutable data structures, since they can be 
shared 

• Do not refer to actor state from code running 
asynchronously 


