GA 3033-014
Programming Paradigms for Concurrency
Spring 2014

Lecture 8 - Scala Intro

Thomas Wies

New York University

Sources

» Programming in Scala, Second Edition by Martin Odersky,
Lex Spoon and Bill Venners, Artima, 2010.

» http://www.scala-lang.org
» Scala STM: http://nbronson.github.io/scala-stm/
» Akka library: http://akka.io/

http://www.scala-lang.org
http://nbronson.github.io/scala-stm/
http://akka.io/

The SCALA Language

What is SCALA?

language for scalable component software

developed by Martin Odersky's group at EPFL, Switzerland
influenced by ML /HASKELL, JAVA, and other languages
unifies object-oriented and functional programming

interoperates with Java

vV v vV V. VY

is gaining momentum in industry (cf. http://www.typesafe.org)

http://www.typesafe.org

Why ScALA?

» Runs on the Java Virtual Machine
» can use any JAVA code in SCALA (and vice versa)
> similar efficiency

Much shorter code

» 50% reduction in most code over JAVA
> local type inference

v

Fewer errors

v

» strongly and statically typed
> encourages state-less programming style

v

Clean language design
» uniform object model

v

More flexibility
» easily extensible (operator overloading, implicit type conversions,
user-defined control constructs)
> mix-in composition of classes

v

Good support for concurrent programming

Getting Started in SCALA

scala - runs compiled SCALA code (like java)
if no arguments are supplied, starts the SCALA interpreter

scalac - compiles SCALA code (like javac)

sbt - build tool for larger project (incremental compilation,
dependency and library management, .. .)

There are plugins available for popular IDEs such as Eclipse.

For more information visit http://www.scala-lang.org

http://www.scala-lang.org

SCALA Basics

» Use var to declare variables:

var x = 3
x += 4

» Use val to declare values:

val x = 3
x += 4 // error: reassignment to wval

> SCALA is statically typed:

var x = 3
x = "HelloyWorld!" // error: type mismatch

» Explicit type annotations:

val x: Int = 3

Tuples

scala> (3,’c’)
res0: (Int, Char) = (3,c)

scala> (3,’c’)._1
resl: Int = 3

scala> (3,7¢c’)._2

res2: Char = c

scala> val (i,c) = (3,’c?)
2: Int = 3

c: Char = c¢

Method Definitions (Part 1)

Use def to declare methods:

def max(x: Int, y: Int): Int = {
if (x < y) {
return y;
} else {
return x;

}
or shorter:
def max(x: Int, y: Int) = if (x < y) y else x

Method definitions can also be nested.

Method Definitions (Part 2)

SCALA supports

» tail-call elimination (in most cases):
def gcd(x: Int, y: Int): Int =
if (y == 0) x else gcd(y, x % y)
» lambda abstraction (function literals):
val sum = (x: Int, y: Int) => x + y
» currying and partial application:
def curriedSum (x: Int)(y: Int): Int

scala> val add3
add3: Int =>Int
scala> add3(2)
resO: Int = 5

curriedSum(3) _
<functioni>

X

+

Higher-Order Functions

Methods can take functions as arguments:

def compose(f: Int => Int, g: Int => Int) =
(x: Int) => f(g(x))

Examples:
» Maps
List(1,2,3) .map((x: Int) =>x + 10).foreach(println)
or more readable:
List(1,2,3) map (_ + 10) foreach (println)
» Filtering
1 to 100 filter (_ % 7 == 3) foreach (println)

SCALA is Object-Oriented

v

Uniform object model
» every value is an object (including primitive values and functions)
» every application of an operator is a method call
1 + 2 is short for 1.+(2)

No static class members (instead: singleton objects)
Single inheritance
Dynamic method dispatch by default

vV v v Y

Traits, mix-in composition, and views give more flexibility.

ScALA Class Hierarchy

java.lang. String
scala.List

\ | <+ (otner Java classes)...
AN L
____ scala Option
;
S +. (othar Scala classes)...
~ = scalashort

scala.ull

A simple class in JAVA

class Point A
private double x;
private double y;

public Point (double xc, double yc) {
X = XcC;
y = vyc;

}

public double getX () = { return x; 1}
public double getY () { return y; }

public String toString() {
return “Point(" + x + n,u + y + u)u;

}

...and its SCALA pendant

class Point(xs: Double, ys: Double) {
val x = xs
val y = ys

override def toString =
Ilpoint(ll + X + ||’II + y + Il)ll
X
scala> val p = new Point(1,2)
p : Point = Point(1.0,2.0)
scala> val px = p.x
pz : Double = 1.0

Notice:
> Classes can take arguments.
» The compiler automatically generates a primary constructor.

» All members are public by default.

Access Modifiers

» A member labeled private is visible only inside the class that
contains that member definition.

> A member labeled protected is only accessible in subclasses of the
class in which the member is defined.

» Every member not labeled private or protected is public. There
is no explicit modifier for public members.

» Access modifiers can be augmented with qualifiers for more
fine-grained access control.

package geometry;
class P {
private[this] val f: Int
// visible only in the same instance
private [geometry] val g: Int
// same as package vistibility in Java

Auxiliary Constructors

Auxiliary constructors are defined using def this(...)

class Point(val x: Double, val y: Double) {
def this() = this(0,0)

override def toString =
"Point (" + x + "," + y o+ myn

b

}

scala> val p = new Point()
p : Point = Point(0.0,0.0)

Defining Operators

Method names can be operators and can be overloaded:

class Point(val x: Double, val y: Double) {
def this() = this(0,0)

override def toString =
"Point (" + x + oo+ y + nyn

def +(other: Point) =
new Point(x + other.x, y + other.y)

}

scala> val p = new Point(1,2)
p : Point = Point(1.0,2.0)
scala> val g = p + p

q : Point = Point(2.0,4.0)

Operator precedence is predefined, e.g. * binds stronger than +.

Singleton Objects

SCALA has singleton objects instead of static members.

A singleton object definition looks like a class definition, except that the
keyword class is replace by object.

object Main {
def main(args: Array[Stringl) {
println("Hello,_ world!'")
}
}

or shorter:

object Main extends App {
println("Hello,_ world!");
}

Companion Objects

A singleton object of the same name as a class is called the companion
object of that class. They can access each others private members.

class CheckSumAccumulator {

private var sum = 0
def add(b: Byte) { sum += b }
def checksum(): Int = “(sum & OxFF) + 1

}

object CheckSumAccumulator {
private val cache = Map[String, Int]()
def calculate(s: String): Int =
if (cache.contains(s)) cache(s)

else {
val acc = new CheckSumAccumulator
for (c <- s) acc.add(c.toByte)
val cs = acc.checkSum()
cache += (s -> cs)
cs

}

Functions as Objects

Instances of classes and objects that define the apply method can be
used like functions.

object max {
def apply(x: Int, y: Int) =
if(x < y) then y else x
}

scala> max(1,2)
res0: Int = 2

In particular, a declaration of a function literal
val inc = (x: Int) => x + 1
is expanded by the compiler to

object inc extends Functionl {
def apply(x: Int) = x + 1
b

Factory Methods

Companion objects can be used to define factory methods that construct
instances of the companion class.

class Point(val x: Double, val y: Double) {

object Point {
def apply() = new Point (0,0)

def apply(x: Double, y: Double) = new Point(x,y)
}

scala> val p = Point(1,2)
p: Point = Point(1.0,2.0)

Implicit Parameters

Parameters of methods can be declared implicit. If a call to a method
misses arguments for its implicit parameters, such arguments are
automatically provided.

def speakImplicitly (implicit greeting : String) =
println(greeting)

scala> speakImplicitly("Goodbye world")
Goodbye world

An appropriate implicit value must be in scope:

scala> speakImplicitly

:6: error: no implicit argument matching parameter type
String was found.

scala> implicit val hello = "Hello world"

hello: java.lang.String = Hello world

scala> speakImplicitly

Hello world

Views

An implicit value of a function type S =>T is called a view.

implicit def pairToPoint(p: (Double, Double)) =
new Point(p._1, p._2)

scala> (1,2) + (3,3)
res0: Point(4.0,5.0)

If the compiler encounters a type mismatch it searches for an appropriate
view to convert the mismatched type.

The implicit conversion is inserted automatically by the compiler.

Views are typically defined in the companion object of the involved types.

Pimp My Library

Implicit conversions can be used to extend easily the functionality of
existing libraries.

class RichArray[T](a: Array([T]) {
def append(b: Array[T]): Array[T] = {
val res = new Array[T](a.length + b.length)
Array.copy(a, 0, res, 0, a.length)
Array.copy(b, 0, res, a.length, b.length)
res
}
}

implicit def enrichArray[T](a: Arrayl[T]) =
new RichArray[T] (a)

val a = Array(1, 2, 3)
val b = Array(4, 5, 6)
val ¢ = a append b

Traits

Traits are like classes except that

1. they do not take parameters (and have no constructors)

2. calls to super in traits are dynamically dispatched

trait
def
def
def
def
def

class

Rectangular {
topLeft: Point
bottomRight: Point
left = topleft.x
right = bottomRight.x
width = right - left

Rectangle(val topLeft: Point,
val bottomRight: Point)
extends Rectangular {

// other methods...

}

Mix-In Composition

Traits can be mixed into classes.

Mix-in composition captures the cases where multiple inheritance is
useful while avoiding its pitfalls.

Use case: stackable modifications

abstract class IntQueue {
def get(): Int
def put(x: Int): Unit
}

class BasicIntQueue extends IntQueue {
private val buf = new ArrayBuffer[Int]
def get() = buf.remove (0)
def put(x: Int) { buf += x }

X

Stackable Modifications

trait Incrementing extends IntQueue {
abstract override def put(x: Int) {
super .put (x+1)

3

trait Filtering extends IntQueue {
abstract override def put(x: Int) A
if (x >= 0) super.put(x)
}
}

scala> val queue = (new BasicIntQueue
with Incrementing with Filtering)

queue: BasticIntQueue with Filtering with Incrementing. ..

scala> queue.put(-2); queue.put(0); queue.get()
resO: Int = 1

Compound Types

Sometimes it is necessary to express that the type of an object is a
subtype of several other types.

In Scala this can be expressed with the help of compound types, which
are intersections of object types.

trait Cloneable extends java.lang.Cloneable {
override def clone(): Cloneable = {
super.clone (); this
}
}
trait Resetable {
def reset: Unit
}
def cloneAndReset (obj: Cloneable with Resetable):
Cloneable = {
val cloned = obj.clone()
obj.reset
cloned

Case Classes

SCALA supports ML-style algebraic data types.
They are implemented using case classes.

sealed abstract class List
case object Nil extends List
case class Cons(hd: Int, tl: List) extends List

scala> val 1: List = Cons(1, Cons(3, Cons(2, Nil)))
l: List = Cons(1, Cons(3, Cons(2, Nil)))

Case Classes

SCALA supports ML-style algebraic data types.
They are implemented using case classes.

sealed abstract class List
case object Nil extends List
case class Cons(hd: Int, tl: List) extends List

scala> val 1: List = Cons(1, Cons(3, Cons(2, Nil)))
l: List = Cons(1, Cons(3, Cons(2, Nil)))

The compiler generates a factory method for each case class.

Also, case classes override the methods equals, hashCode, and
toString with appropriate implementations.

Pattern Matching

Case classes support pattern matching.

def filter(p: Int => Boolean, 1: List): List =
1 match {
case Comns(x, t) if p(x) =>
Cons (x, filter(p, t))
case Cons(x, t) => filter(p, t)
case _ => Nil

}

As in ML, patterns are tried in the order in which they are written.

By-Name Parameters

SCALA provides by-name parameters. An argument that is passed by
name is not evaluated at the point of function application, but instead is
evaluated at each use within the function.
def nano() = {

println("Getting,nano,time")

System.nanoTime

}

def delayed(t: => Long) = {
println("In delayed_ method")
println("Param: " + t)
t

}

scala> println(delayed(nano()))

In delayed method
Getting mano time
Param: 8434944194946569
Getting mano time
8434944195017459

Writing New Control Structures

The combination of automatic closure construction and by-name
parameters allows programmers to make their own control structures.

object Main extends App {
def whileLoop(cond: => Boolean) (body: => Unit) {
if (cond) {
body
whileLoop (cond) (body)
}

var i = 10
whileLoop (i > 0) A
println (i)
i -=1

Example: repeat until

object Main extends App {
def repeat(body: => Unit): RepeatUntilCond =
new RepeatUntilCond (body)
protected class RepeatUntilCond(body: => Unit) {
def until(cond: => Boolean) {
body
if (!cond) until(cond)

var i = 10

repeat {
println (i)
i -=1

