Programming Paradigms for Concurrency
Lecture 7 — Concurrent Queues and Stacks

[HE AR

MULTIPROCESSOR
PROGRAMMING

The Art of Multiprocessor Programming

The Five-Fold Path

Coarse-grained locking
Fine-grained locking
Optimistic synchronization
Lazy synchronization
Lock-free synchronization

Another Fundamental Problem

* | told you about
— Sets implemented by linked lists

* Next: queues
* Next: stacks

Queues & Stacks

* pool of items

Queues

eng(@)

Total order
First In
First out

Stacks

Total order
Last in
First out

Bounded

* Fixed capacity
« Good when resources an issue

Unbounded

« Unlimited capacity
o Often more convenient

Blocking

Block on attempt to remove

Q from empty stack or queue

Blocking

Block on attempt to add to full
bounded stack or queue

10

Non-BIocking

Throw exception on attempt to

Q remove from empty stack or queue

11

This Lecture

* Queue
— Bounded, blocking, lock-based
— Unbounded, non-blocking, lock-free

e Stack

— Unbounded, non-blocking lock-free
— Elimination-backoff algorithm

12

Queue: Concurrency

eng() and deq()
work at different
ends of the object

Concurrency

o E
Challenge: what if
the queue is empty

or full?

Bounded Queue

head

tail

Sentinel

15

Bounded Queue

head

tail

First actual item

16

Bounded Queue

r

head

tail
deqLock
EL Lock out other

deq() calls

17

Bounded Queue

r

head

deqLock 6
enqlLock
tL Lock out other

enq() calls

18

Not Done Yet

r

Ol +— [N

head
tail

deqLock

enqlLock g
Need to tell whether

gueue is full or
empty

19

r
head
tail

deqLock

enqlLock

Not Done Yet

N\

Ol +— [N

6
6

Max size Is 8 items

20

Not Done Yet

tail
degLock 6

engLock

Incremented by enq()

Decremented by deq()

s
head

21

r
head
tail

deqLock
enqlLock

size

Enqueuer

6

Ol +— [N

Lock enqlLock

22

Enqueuer

s
s +—@F3— O
tail
deqLock
engLock Read size

r
head
tail

deqLock

enqlLock

Enqueuer

:' / NoO need to

lock tall

24

Enqueuer

s
head

tail

deqLock

enqlLock

25

Enqueuer

r

head
tail

deqLock

enqlLock

getAndincrement()

26

Enqueuer

s
head

tail

deqLock

enqlLock

Release lock

S

27

Enqueuer

p
tail

deqLock

sl @k If queue was empty,

otify waliting dequeuers

size

28

Unsuccesful Enqueuer

e
head

tail

deqLock

enqlLock

size

o= =

Dequeuer

e
head

tail

deqLock

enqlLock

Lock deqlLock

size

. J lii;%;;;;;|

30

Dequeuer

(=== \

]

tail =\

deqLock -
!
\ —

engLock v, Read sentinel's

. ' next field
Size \

31

Dequeuer

e
head

tail

deqLock

enqlLock

size

Make first Node
new sentinel

Dequeuer
-
tail
deqLock -
enqlLock

Dequeuer

o L

deqLock

r

englock Decrement

6 s|ze

55—

size

34

e
head
tail

deqLock

enqlLock

size

Dequeuer

deglLock

35

Unsuccesful Degueuer

e
head
tail

deqLock

enqlLock

size

Bounded Queue

public class BoundedQueue<T> ({
ReentrantLock enqgqlock, deqLock;
Condition notEmptyCondition, notFullCondition;
AtomicInteger size;
Node head;
Node tail;
int capacity;
engLock = new ReentrantLock() ;
notFullCondition = enqlock.newCondition() ;
deqlock = new ReentrantLock() ;
notEmptyCondition = deqLock.newCondition() ;

37

Bounded Queue

[ReentrantLock enqLock, deqLlock;

eng & deqg locks

38

Bounded Queue Fields

Enq lock’s associated

ﬂ condition

[notFullCondition = enqgLock.newCondition() ;|

39

Bounded Queue Fields

(AtomicIntegers&

size: 0 to capacity

40

Bounded Queue Fields

__—— Head and Tall

|

Node head}‘
Node tail;

41

Eng Method Part One

public void eng (T x) {

boolean mustWakeDequeuers = false;
enqgLock.lock() ;

try {

while (size.get() == Capacity)

notFullCondition.await () ;

Node e = new Node (x) ;

tail.next = e;

tail = tail.next;

if (size.getAndIncrement() == 0)
mus tWakeDequeuers = true;
} finally ({

engLock.unlock () ;
}

42

Eng Method Part One

[enqLock.lock()L:

——. Lock and unlock
eng lock

engLock.unlock () ;

} finally ({
}

43

Eng Method Part One

|

while (size.get() == capacity)
notFullCondition.await() ;

Wait while queue is full ...

44

Eng Method Part One

while (size.get() == capacity)
notFullCondition.await() ;

when await() returns, you
might still fail the test !

45

Be Afraid

|

while (size.get() == capacity)
notFullCondition.await () ;

After the loop: how do we know the
queue won’t become full again?

46

Eng Method Part One

[

Node e = new Node (x) ;
tail.next = e;
tail = tail.next;

Add new node

47

Eng Method Part One

|

if (size.getAndIncrement() == 0)
mustWakeDequeuers = true;

If qgueue was empty, wake
frustrated dequeuers

48

L

Beware Lost Wake-LIns

waiting room

Queue empty
so signal ()

Critical Section

49

Lost Wake-Up

W

Critical Section

O
O

waiting room

50

Critical Section

Lost Wake-Up

waiting room

O
O

51

Critical Section

Lost Wake-Up

waiting room

52

What's Wrong Here?

waiting room

H []

O

Critical Section

53

Eng Method Part Deux

public void enqg (T x) ({

if (mustWakeDequeuers) {
deqlock.lock() ;
try {
notEmptyCondition.signalAll () ;
} finally {
deqlock.unlock () ;
}
}
}

54

Eng Method Part Deux

[if (mustWakeDequeuers) ({

Are there dequeuers to be signaled?

55

Eng Method Part Deux

Lock and

unlock deq lock
[deqLock.lock () ;

[deqLock.unlock()

56

Eng Method Part Deux

Signal dequeuers that
gueue is no longer empty

notEmptyCondition.signalAll () ;]

57

The Eng() & Deq() Methods

 Share no locks
— That's good
 But do share an atomic counter

— Accessed on every method call
— That’s not so good

« Can we alleviate this bottleneck?

58

Split the Counter

* The eng() method
— Increments only
— Cares only If value is capacity

* The deq() method

— Decrements only
— Cares only if value iIs zero

59

Split Counter

Engueuer increments engSize
Dequeuer decrements degSize

When enqueuer runs out

— Locks degLock

— computes size = engSize - DeqSize
Intermittent synchronization

— Not with each method call
— Need both locks! (careful ...)

60

A Lock-Free Queue

tail

Sentinel

Compare and Set

Enqueue

Enqueue

Logical Enqueue

sl =il
J @

Physical Enqueue

Enqueue

* These two steps are not atomic

* The tail field refers to either
— Actual last Node (good)
— Penultimate Node (not so good)

* Be prepared!

67

Enqueue

« \What do you do if you find
— A trailing tail?
« Stop and help fix it

— If tail node has non-null next field
— CAS the queue’s talil field to tail.next

68

When CASs Fall

* During logical enqueue
— Abandon hope, restart
— Still lock-free (why?)

* During physical enqueue
— Ignore it (why?)

69

Dequeuer

'}
/ Read value

70

Make first Node
Dequeuer

new sentinel

Memory Reuse?

 \WWhat do we do with nodes after we
dequeue them?

« Java: let garbage collector deal?

« Suppose there is no GC, or we prefer
not to use It?

72

Dequeuer

Can recycle

73

Simple Solution

Each thread has a free list of unused
gueue nodes

Allocate node: pop from list
Free node: push onto list
Deal with underflow somehow ...

74

Why Recycling Is Hard

Want to
redirect
head from
gray g sa

Both Nodes Reclaimed

!
I
!
\ Free pool

. —] _— L] —] _— L] —] _— L] — L]

One Node Recycled

Why Recycling is Hard

Recycle FAIL

OMG what went wrong?

The Dreaded ABA Problem

Head reference has value A
Thread reads value A

80

Dreaded ABA continued

Head reference has value B
Node A freed

81

Dreaded ABA continued

Head reference has value A again
Node A recycled and reinitialized

82

Dreaded ABA continued

CAS succeeds because references match,
even though reference’s meaning has changed

S| — I

83

The Dreaded ABA FAIL

 Is aresult of CAS() semantics
— blame Sun, Intel, AMD, ...

 Not with Load-Locked/Store-Conditional
— Good for IBM, ARM?

84

Dreaded ABA — A Solution

Tag each pointer with a counter
Unique over lifetime of node
Pointer size vs word size Issues

Overflow?

— Don’t worry be happy?
— Bounded tags?

AtomicStampedReference class

85

Atomic Stamped Reference

« AtomicStampedReference class
— Java.util.concurrent.atomic package

| Can get reference & stam

0 atomically ‘

f

.
‘L address]
_

Reference —=——

s

Stamp

86

Concurrent Stack

 Methods

— push(x)

—pop()
 Last-in, First-out (LIFO) order
* Lock-Free!

87

Empty Stack

36N

Push

Push

Push

95

Pop

Lock-free Stack

public class LockFreeStack ({
private AtomicReference top =
new AtomicReference (null) ;
public boolean tryPush (Node node) {
Node o0ldTop = top.get();
node.next = oldTop;
return (top.compareAndSet (01ldTop, node))
}
public void push (T value) ({
Node node = new Node (value) ;
while (true) {
if (tryPush(node)) {
return;
} else backoff.backoff() ;

)

101

Lock-free Stack

[public Boolean tryPush (Node node) {]

tryPush attempts to push a node

102

Lock-free Stack

[Node o0ldTop = top.get();
\

Read top value

103

Lock-free Stack

[node.next = oldTop;

current top will be new node’s successor

104

Lock-free Stack

[return (top.compareAndSet (01ldTop, node))]

Try to swing top, return success or failure

105

Lock-free Stack

[public void push (T wvalue) {

Push calls tryPush

106

Lock-free Stack

[Node node = new Node (value) ;

Create new node
107

Lock-free Stack

If tryPush() fails,
back off before retrying

A

(while (true) { h
if (tryPush(node)) ({
return;
} else backoff.backoff())

\.

108

Lock-free Stack

» Good
— No locking

* Bad
— Without GC, fear ABA
— Without backoff, huge contention at top
— In any case, no parallelism

109

Big Question

* Are stacks inherently sequential?

 Reasons why
— Every pop() call fights for top item

 Reasons why not
— Stay tuned ...

110

Elimination-Backoff Stack

e How to
— “turn contention into parallelism”

* Replace familiar
— exponential backoff

o With alternative
— elimination-backoff

111

Observation

g

Push(©)

linearizable stack

Pop()

After an equal number
of pushes and pops,
stack stays the same

112

ldea: Elimination Array

Push(Q©) stack
Pop()

Elimination
Array

113

Push Collides With Pop

g

Push@©) stack
Pop()

No need to
‘ access stack

114

No Collision

Push(© stack

n

Pop()

If pushes collide or
pops collide
access stack

115

Elimination-Backoff Stack

* Lock-free stack + elimination array

* Access Lock-free stack,
— If uncontended, apply operation

— If contended, back off to elimination array
and attempt elimination

116

Elimination-Backoff Stack

ol

Push©®

117

Pop()

s

Dynamic Range and Delay

Pick random range and
max waiting time based
on level of contention
encountered

g

Push©®

118

Linearizability

« Un-eliminated calls
— linearized as before

« Eliminated calls:

— linearize pop() immediately after matching
push()
« Combination is a linearizable stack

119

Un-Eliminated LI

120

Eliminated Lin

Collision
Point

! a - Red calls are

121

zability

Backoff Has Dual Effect

* Elimination introduces parallelism

« Backoff to array cuts contention on lock-
free stack

* Elimination in array cuts down number
of threads accessing lock-free stack

122

Elimination Array

public class EliminationArray {
private static final int duration 5o o
private static final int timeUnit 5o oaf
Exchanger<T>[] exchanger;
public EliminationArray(int capacity) {
exchanger = new Exchanger [capacity];
for (int i = 0; i < capacity,; i++)
exchanger[i] = new Exchanger<T>() ;

123

Elimination Array

(exchanger = new Exchanger[capacity];)
for (int i = 0; i < capacity,; i++)
L exchanger[i] = new Exchanger<T>() ;)

——”””’7

An array of Exchangers ‘

124

Digression: A Lock-Free
Exchanger

public class Exchanger<T> ({
AtomicStampedReference<T> slot
= new AtomicStampedReference<T>(null, O0);

125

A Lock-Free Exchanger

[AtomicStampedReference<T> slot]

T

Atomically modifiable
reference + status

126

The Exchange

public T Exchange (T myItem, long nanos)
throws TimeoutException ({
long timeBound = System.nanoTime () + nanos;
int[] stampHolder = {EMPTY};
while (true) {
if (System.nanoTime () > timeBound)
throw new TimeoutException() ;
T herItem = slot.get (stampHolder) ;
int stamp = stampHolder|[O0];
switch (stamp) {
case EMPTY: .. // slot is free
case WAITING: .. // someone waiting for me
case BUSY: .. // others exchanging

}
}

127

The Exchange

public T Exchange (T myItem, long nanos)
throws TimeoutException {

I/

‘ Item and timeout ‘

Art of Multiprocessor Programming 128

The Exchange

[int[] stampHolder = {EMPTY}; l

B

‘Array holds status ‘

Art of Multiprocessor Programming 129

The Exchange

while (true) {
if (System.nanoTime () > timeBound)
throw new TimeoutException() ;

Loop until timeout

130

The Exchange

[T herItem

slot.get (stampHolder) ;
int stamp

stampHolder[O0] ;

B

‘Get other’s item and status ‘

131

The Exchange

An Exchanger has three possible states

(

switch (stamp) { A
case EMPTY: .. // slot is free
case WAITING: .. // someone waiting for me
case BUSY: .. // others exchanging

\ J

132

Lock-free Exchanger

P

133

Lock-free Exchanger

o EZ3

134

Lock-free Exchanger

a1

135

Lock-free Exchanger

In search of
partner ...
O
(o)

(.)

136

L ock-free E

Try to exchange
item and set
status to BUSY

137

Partner showed
up, take item and
reset to EMPTY

item status

138

Partner showed
up, take item and
reset to EMPTY

item status

139

Exchanger State EMPTY

case EMPTY: // slot is free
if (slot.CAS (herItem, myItem, EMPTY, WAITING)) {
while (System.nanoTime () < timeBound) {
herItem = slot.get (stampHolder) ;
if (stampHolder[0] == BUSY) {
slot.set (null, EMPTY)
return herItem;
}}
if (slot.CAS(myItem, null, WAITING, EMPTY)) {
throw new TimeoutException() ;
} else {
herItem = slot.get (stampHolder) ;
slot.set(null, EMPTY);
return herItem;
}
} break;
140

Exchanger State EMPTY

[(slot.CAS (herItem, myItem, EMPTY, WAITING)) {]

B

Try to Insert myltem and
change state to WAITING

141

Exchanger State EMPTY

herItem = slot.get (stampHolder) ;

while (System.nanoTime () < timeBound) {
if (stampHolder[0] == BUSY) {

Spin until either
myltem Is taken or timeout

142

Exchanger State EMPTY

slot.set (null, EMPTY) ;
return herItem;

myltem was taken,
SO return herltem
that was put in its place

143

Exchanger State EMPTY

Otherwise we ran out of time,
try to reset status to EMPTY
and time out

T

if (slot.CAS(myItem, null, WAITING, EMPTY)) {
throw new TimeoutException() ;

144

Exchanger State EMPTY

If reset failed,
someone showed up after all,
so take that item

else {
herItem = slot.get (stampHolder)

140

Exchanger State EMPTY

Clear slot and take that item

slot.set (null, EMPTY) ;
return herItem;

146

Exchanger State EMPTY

If initial CAS falled,
then someone else changed status
from EMPTY to WAITING,
So retry from start

[} break;

147

States WAITING and BUSY

case WAITING: // someone waiting for me
if (slot.CAS (herItem, myItem, WAITING, BUSY))
return herItem;

break;

case BUSY: // others in middle of exchanging
break;

default: // impossible

break;

}
}
}
}

148

States WAITING and BUSY

if (slot.CAS (herItem, myItem, WAITING, BUSY))
return herItem;

T

someone Is waiting to exchange,
so try to CAS my item in
and change state to BUSY

149

States WAITING and BUSY

[return herItem; l

If successful, return other’s item,
otherwise someone else took It,
So try again from start

150

States WAITING and BUSY

case BUSY:
[break; &
If BUSY,

other threads exchanging,
SO start again

151

The Exchanger Slot

« Exchanger is lock-free

* Because the only way an exchange can
fail Is If others repeatedly succeeded or
no-one showed up

* The slot we need does not require
symmetric exchange

152

Back to the Stack: the
Elimination Array

public class EliminationArray ({

public T visit(T value, int range)
throws TimeoutException ({
int slot = random.nextInt (range) ;
int nanodur = convertToNanos (duration, timeUnit)) ;
return (exchanger|[slot] .exchange (value, nanodur)

H)

153

Elimination Array

[public T visit (T value, int range)]

b

visit the elimination array
with fixed value and range

154

Elimination Array

[int slot = random.nextInt(range);l

AN

‘ Pick a random array entry

155

Elimination Array

‘ Exchange value or time out‘

]

[return (exchanger|[slot] .exchange (value, nanodur)]

156

Elimination Stack Push

public void push (T value) {

while (true) {
if (tryPush(node)) {
return;
} else try {
T otherValue =
eliminationArray.visit(value,policy.range) ;
if (otherValue == null) {
return;

157

Elimination Stack Push

if (tryPush(node)) {
return;

First, try to push

158

Elimination Stack Push

| If | failed, backoff & try to eliminate |

ST

e

.

N
} else try {
T otherValue =
eliminationArray.visit(value,policy.range);)

159

Elimination Stack Push

‘Value pushed and range to try‘

l;le,})licy .range) ;]

160

Elimination Stack Push

Only pop() leaves null,
so elimination was successful

if (otherValue == null) {
return;

161

Elimination Stack Push

‘ Otherwise, retry push() on lock-free stack‘

162

Elimination Stack Pop

public T pop() {

while (true) {
if (tryPop()) {
return returnNode.value;
} else

try {
T otherValue =

eliminationArray.visit(null,policy.range;
if (otherValue !'= null) {
return otherValue;

}
)

163

Elimination Stack Pop

If value not null, other thread is a push(),
so elimination succeeded

if (otherValue '= null) {
return otherValue;

164

Summary

We saw both lock-based and lock-free
Implementations of

gueues and stacks

Don’t be quick to declare a data
structure inherently sequential

— Linearizable stack is not inherently
sequential (though it is in worst case)

ABA Is a real problem, pay attention

165

SOME RIGHTS RESERVED

This work i1s licensed under a

You are free:
— to Share — to copy, distribute and transmit the work
— to Remix — to adapt the work

Under the following conditions:

— Attribution. You must attribute the work to “The Art of
Multiprocessor Programming” (but not in any way that suggests that
the authors endorse you or your use of the work).

— Share Alike. If you alter, transform, or build upon this work, you
may distribute the resulting work only under the same, similar or a
compatible license.

For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to

— http://creativecommons.org/licenses/by-sa/3.0/.

Any of the above conditions can be waived if you get permission from
the copyright holder.

Nothing in this license impairs or restricts the author's moral rights.

166

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

