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Lecture 7 — Concurrent Queues and Stacks
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The Five-Fold Path

Coarse-grained locking
Fine-grained locking
Optimistic synchronization
Lazy synchronization
Lock-free synchronization



Another Fundamental Problem

* | told you about
— Sets implemented by linked lists

* Next: queues
* Next: stacks



Queues & Stacks

* pool of items




Queues

eng( @)

Total order
First In
First out




Stacks

Total order
Last in
First out




Bounded

* Fixed capacity
« Good when resources an issue




Unbounded

« Unlimited capacity
o Often more convenient




Blocking

Block on attempt to remove

Q from empty stack or queue




Blocking

Block on attempt to add to full
bounded stack or queue
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Non-BIocking

Throw exception on attempt to

Q remove from empty stack or queue
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This Lecture

* Queue
— Bounded, blocking, lock-based
— Unbounded, non-blocking, lock-free

e Stack

— Unbounded, non-blocking lock-free
— Elimination-backoff algorithm
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Queue: Concurrency

eng() and deq()
work at different
ends of the object




Concurrency

o E
Challenge: what if
the queue is empty

or full?




Bounded Queue

head

tail

Sentinel
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Bounded Queue

head

tail

First actual item
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Bounded Queue

r

head

tail
deqLock
EL Lock out other

deq() calls
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Bounded Queue

r

head

deqLock 6
enqlLock
tL Lock out other

enq() calls
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Not Done Yet

r

Ol +— [N

head
tail

deqLock

enqlLock g
Need to tell whether

gueue is full or
empty
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r
head
tail

deqLock

enqlLock

Not Done Yet

N\

Ol +— [N

6
6

Max size Is 8 items
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Not Done Yet

tail
degLock 6

engLock

Incremented by enq()

Decremented by deq()

s
head
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r
head
tail

deqLock
enqlLock

size

Enqueuer

6

Ol +— [N

Lock enqlLock
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Enqueuer

s
s +—@F3— O
tail
deqLock
engLock Read size




r
head
tail

deqLock

enqlLock

Enqueuer

:' /  NoO need to

lock tall
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Enqueuer

s
head

tail

deqLock

enqlLock
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Enqueuer

r

head
tail

deqLock

enqlLock

getAndincrement()
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Enqueuer

s
head

tail

deqLock

enqlLock

Release lock

S
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Enqueuer

p
tail

deqLock

sl @k If queue was empty,

otify waliting dequeuers

size
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Unsuccesful Enqueuer

e
head

tail

deqLock

enqlLock

size

o= =




Dequeuer

e
head

tail

deqLock

enqlLock

Lock deqlLock

size

. J lii;%;;;;;|
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Dequeuer

( === \

]

tail =\

deqLock -
!
\  —

engLock v, Read sentinel's

. ' next field
Size \
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Dequeuer

e
head

tail

deqLock

enqlLock

size




Make first Node
new sentinel

Dequeuer
-
tail
deqLock -
enqlLock




Dequeuer

o L

deqLock

r

englock Decrement

6 s|ze

55—

size
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e
head
tail

deqLock

enqlLock

size

Dequeuer

deglLock
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Unsuccesful Degueuer

e
head
tail

deqLock

enqlLock

size




Bounded Queue

public class BoundedQueue<T> ({
ReentrantLock enqgqlock, deqLock;
Condition notEmptyCondition, notFullCondition;
AtomicInteger size;
Node head;
Node tail;
int capacity;
engLock = new ReentrantLock() ;
notFullCondition = enqlock.newCondition() ;
deqlock = new ReentrantLock() ;
notEmptyCondition = deqLock.newCondition() ;
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Bounded Queue

[ReentrantLock enqLock, deqLlock;

eng & deqg locks
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Bounded Queue Fields

Enq lock’s associated

ﬂ condition

[ notFullCondition = enqgLock.newCondition() ;|
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Bounded Queue Fields

( AtomicIntegers&

size: 0 to capacity
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Bounded Queue Fields

__—— Head and Tall

|

Node head}‘
Node tail;
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Eng Method Part One

public void eng (T x) {

boolean mustWakeDequeuers = false;
enqgLock.lock() ;

try {

while (size.get() == Capacity)

notFullCondition.await () ;

Node e = new Node (x) ;

tail.next = e;

tail = tail.next;

if (size.getAndIncrement() == 0)
mus tWakeDequeuers = true;
} finally ({

engLock.unlock () ;
}
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Eng Method Part One

[ enqLock.lock()L:

——. Lock and unlock
eng lock

engLock.unlock () ;

} finally ({
}
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Eng Method Part One

|

while (size.get() == capacity)
notFullCondition.await() ;

Wait while queue is full ...
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Eng Method Part One

while (size.get() == capacity)
notFullCondition.await() ;

when await() returns, you
might still fail the test !
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Be Afraid

|

while (size.get() == capacity)
notFullCondition.await () ;

After the loop: how do we know the
queue won’t become full again?
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Eng Method Part One

[

Node e = new Node (x) ;
tail.next = e;
tail = tail.next;

Add new node
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Eng Method Part One

|

if (size.getAndIncrement() == 0)
mustWakeDequeuers = true;

If qgueue was empty, wake
frustrated dequeuers
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L

Beware Lost Wake-LIns

waiting room

Queue empty
so signal ()

Critical Section
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Lost Wake-Up

W

Critical Section

O
O

waiting room
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Critical Section

Lost Wake-Up

waiting room

O
O
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Critical Section

Lost Wake-Up

waiting room

52



What's Wrong Here?

waiting room

H [ ]

O

Critical Section
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Eng Method Part Deux

public void enqg (T x) ({

if (mustWakeDequeuers) {
deqlock.lock() ;
try {
notEmptyCondition.signalAll () ;
} finally {
deqlock.unlock () ;
}
}
}
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Eng Method Part Deux

[if (mustWakeDequeuers) ({

Are there dequeuers to be signaled?
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Eng Method Part Deux

Lock and

unlock deq lock
[ deqLock.lock () ;

[deqLock.unlock()
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Eng Method Part Deux

Signal dequeuers that
gueue is no longer empty

notEmptyCondition.signalAll () ; ]
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The Eng() & Deq() Methods

 Share no locks
— That's good
 But do share an atomic counter

— Accessed on every method call
— That’s not so good

« Can we alleviate this bottleneck?
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Split the Counter

* The eng() method
— Increments only
— Cares only If value is capacity

* The deq() method

— Decrements only
— Cares only if value iIs zero
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Split Counter

Engueuer increments engSize
Dequeuer decrements degSize

When enqueuer runs out

— Locks degLock

— computes size = engSize - DeqSize
Intermittent synchronization

— Not with each method call
— Need both locks! (careful ...)
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A Lock-Free Queue

tail

Sentinel




Compare and Set




Enqueue




Enqueue




Logical Enqueue

sl =il
J @




Physical Enqueue




Enqueue

* These two steps are not atomic

* The tail field refers to either
— Actual last Node (good)
— Penultimate Node (not so good)

* Be prepared!
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Enqueue

« \What do you do if you find
— A trailing tail?
« Stop and help fix it

— If tail node has non-null next field
— CAS the queue’s talil field to tail.next
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When CASs Fall

* During logical enqueue
— Abandon hope, restart
— Still lock-free (why?)

* During physical enqueue
— Ignore it (why?)
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Dequeuer

'}
/ Read value

70



Make first Node
Dequeuer

new sentinel




Memory Reuse?

 \WWhat do we do with nodes after we
dequeue them?

« Java: let garbage collector deal?

« Suppose there is no GC, or we prefer
not to use It?
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Dequeuer

Can recycle

73



Simple Solution

Each thread has a free list of unused
gueue nodes

Allocate node: pop from list
Free node: push onto list
Deal with underflow somehow ...
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Why Recycling Is Hard

Want to
redirect
head from
gray g sa



Both Nodes Reclaimed

!
I
!
\ Free pool

. — ] _— L] — ] _— L] — ] _— L] — L]




One Node Recycled




Why Recycling is Hard




Recycle FAIL

OMG what went wrong?



The Dreaded ABA Problem

Head reference has value A
Thread reads value A
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Dreaded ABA continued

Head reference has value B
Node A freed
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Dreaded ABA continued

Head reference has value A again
Node A recycled and reinitialized
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Dreaded ABA continued

CAS succeeds because references match,
even though reference’s meaning has changed

S| — I
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The Dreaded ABA FAIL

 Is aresult of CAS() semantics
— blame Sun, Intel, AMD, ...

 Not with Load-Locked/Store-Conditional
— Good for IBM, ARM?
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Dreaded ABA — A Solution

Tag each pointer with a counter
Unique over lifetime of node
Pointer size vs word size Issues

Overflow?

— Don’t worry be happy?
— Bounded tags?

AtomicStampedReference class
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Atomic Stamped Reference

« AtomicStampedReference class
— Java.util.concurrent.atomic package

| Can get reference & stam

0 atomically ‘

f

.
‘L address ]
\_

Reference —=——

s

Stamp
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Concurrent Stack

 Methods

— push(x)

—pop()
 Last-in, First-out (LIFO) order
* Lock-Free!
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Empty Stack

36N




Push







Push













Push
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Pop







Lock-free Stack

public class LockFreeStack ({
private AtomicReference top =
new AtomicReference (null) ;
public boolean tryPush (Node node) {
Node o0ldTop = top.get();
node.next = oldTop;
return (top.compareAndSet (01ldTop, node))
}
public void push (T value) ({
Node node = new Node (value) ;
while (true) {
if (tryPush(node)) {
return;
} else backoff.backoff() ;

)
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Lock-free Stack

[public Boolean tryPush (Node node) { ]

tryPush attempts to push a node
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Lock-free Stack

[ Node o0ldTop = top.get();
\

Read top value
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Lock-free Stack

[ node.next = oldTop;

current top will be new node’s successor
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Lock-free Stack

[ return (top.compareAndSet (01ldTop, node)) ]

Try to swing top, return success or failure
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Lock-free Stack

[public void push (T wvalue) {

Push calls tryPush

106



Lock-free Stack

[Node node = new Node (value) ;

Create new node
107



Lock-free Stack

If tryPush() fails,
back off before retrying

A

(while (true) { h
if (tryPush(node)) ({
return;
} else backoff.backoff())

\.

108



Lock-free Stack

» Good
— No locking

* Bad
— Without GC, fear ABA
— Without backoff, huge contention at top
— In any case, no parallelism
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Big Question

* Are stacks inherently sequential?

 Reasons why
— Every pop() call fights for top item

 Reasons why not
— Stay tuned ...
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Elimination-Backoff Stack

e How to
— “turn contention into parallelism”

* Replace familiar
— exponential backoff

o With alternative
— elimination-backoff
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Observation

g

Push(©)

linearizable stack

Pop()

After an equal number
of pushes and pops,
stack stays the same
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ldea: Elimination Array

Push(Q©) stack
Pop()

Elimination
Array
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Push Collides With Pop

g

Push@©) stack
Pop()

No need to
‘ access stack
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No Collision

Push(© stack

n

Pop()

If pushes collide or
pops collide
access stack
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Elimination-Backoff Stack

* Lock-free stack + elimination array

* Access Lock-free stack,
— If uncontended, apply operation

— If contended, back off to elimination array
and attempt elimination
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Elimination-Backoff Stack

ol

Push©®

117

Pop()

s




Dynamic Range and Delay

Pick random range and
max waiting time based
on level of contention
encountered

g

Push©®
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Linearizability

« Un-eliminated calls
— linearized as before

« Eliminated calls:

— linearize pop() immediately after matching
push()
« Combination is a linearizable stack
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Un-Eliminated LI

120



Eliminated Lin

Collision
Point

! a - Red calls are

121
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Backoff Has Dual Effect

* Elimination introduces parallelism

« Backoff to array cuts contention on lock-
free stack

* Elimination in array cuts down number
of threads accessing lock-free stack
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Elimination Array

public class EliminationArray {
private static final int duration 5o o
private static final int timeUnit 5o oaf
Exchanger<T>[] exchanger;
public EliminationArray(int capacity) {
exchanger = new Exchanger [capacity];
for (int i = 0; i < capacity,; i++)
exchanger[i] = new Exchanger<T>() ;
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Elimination Array

(exchanger = new Exchanger[capacity]; )
for (int i = 0; i < capacity,; i++)
L exchanger[i] = new Exchanger<T>() ; )

——”””’7

An array of Exchangers ‘
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Digression: A Lock-Free
Exchanger

public class Exchanger<T> ({
AtomicStampedReference<T> slot
= new AtomicStampedReference<T>(null, O0);
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A Lock-Free Exchanger

[AtomicStampedReference<T> slot ]

T

Atomically modifiable
reference + status
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The Exchange

public T Exchange (T myItem, long nanos)
throws TimeoutException ({
long timeBound = System.nanoTime () + nanos;
int[] stampHolder = {EMPTY};
while (true) {
if (System.nanoTime () > timeBound)
throw new TimeoutException() ;
T herItem = slot.get (stampHolder) ;
int stamp = stampHolder|[O0];
switch (stamp) {
case EMPTY: .. // slot is free
case WAITING: .. // someone waiting for me
case BUSY: .. // others exchanging

}
}
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The Exchange

public T Exchange (T myItem, long nanos)
throws TimeoutException {

I/

‘ Item and timeout ‘

Art of Multiprocessor Programming 128



The Exchange

[int[] stampHolder = {EMPTY}; l

B

‘Array holds status ‘

Art of Multiprocessor Programming 129



The Exchange

while (true) {
if (System.nanoTime () > timeBound)
throw new TimeoutException() ;

Loop until timeout

130



The Exchange

[ T herItem

slot.get (stampHolder) ;
int stamp

stampHolder[O0] ;

B

‘Get other’s item and status ‘
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The Exchange

An Exchanger has three possible states

(

switch (stamp) { A
case EMPTY: .. // slot is free
case WAITING: .. // someone waiting for me
case BUSY: .. // others exchanging

\ J
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Lock-free Exchanger

P

133



Lock-free Exchanger

o EZ3
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Lock-free Exchanger

a1
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Lock-free Exchanger

In search of
partner ...
O
(o)

(. )
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L ock-free E

Try to exchange
item and set
status to BUSY
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Partner showed
up, take item and
reset to EMPTY

item status
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Partner showed
up, take item and
reset to EMPTY

item status
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Exchanger State EMPTY

case EMPTY: // slot is free
if (slot.CAS (herItem, myItem, EMPTY, WAITING)) {
while (System.nanoTime () < timeBound) {
herItem = slot.get (stampHolder) ;
if (stampHolder[0] == BUSY) {
slot.set (null, EMPTY)
return herItem;
}}
if (slot.CAS(myItem, null, WAITING, EMPTY)) {
throw new TimeoutException() ;
} else {
herItem = slot.get (stampHolder) ;
slot.set(null, EMPTY);
return herItem;
}
} break;
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Exchanger State EMPTY

[(slot.CAS (herItem, myItem, EMPTY, WAITING)) {]

B

Try to Insert myltem and
change state to WAITING
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Exchanger State EMPTY

herItem = slot.get (stampHolder) ;

while (System.nanoTime () < timeBound) {
if (stampHolder[0] == BUSY) {

Spin until either
myltem Is taken or timeout
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Exchanger State EMPTY

slot.set (null, EMPTY) ;
return herItem;

myltem was taken,
SO return herltem
that was put in its place
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Exchanger State EMPTY

Otherwise we ran out of time,
try to reset status to EMPTY
and time out

T

if (slot.CAS(myItem, null, WAITING, EMPTY)) {
throw new TimeoutException() ;

144



Exchanger State EMPTY

If reset failed,
someone showed up after all,
so take that item

else {
herItem = slot.get (stampHolder)
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Exchanger State EMPTY

Clear slot and take that item

slot.set (null, EMPTY) ;
return herItem;
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Exchanger State EMPTY

If initial CAS falled,
then someone else changed status
from EMPTY to WAITING,
So retry from start

[} break;
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States WAITING and BUSY

case WAITING: // someone waiting for me
if (slot.CAS (herItem, myItem, WAITING, BUSY))
return herItem;

break;

case BUSY: // others in middle of exchanging
break;

default: // impossible

break;

}
}
}
}
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States WAITING and BUSY

if (slot.CAS (herItem, myItem, WAITING, BUSY))
return herItem;

T

someone Is waiting to exchange,
so try to CAS my item in
and change state to BUSY
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States WAITING and BUSY

[return herItem; l

If successful, return other’s item,
otherwise someone else took It,
So try again from start
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States WAITING and BUSY

case BUSY:
[ break; &
If BUSY,

other threads exchanging,
SO start again
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The Exchanger Slot

« Exchanger is lock-free

* Because the only way an exchange can
fail Is If others repeatedly succeeded or
no-one showed up

* The slot we need does not require
symmetric exchange
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Back to the Stack: the
Elimination Array

public class EliminationArray ({

public T visit(T value, int range)
throws TimeoutException ({
int slot = random.nextInt (range) ;
int nanodur = convertToNanos (duration, timeUnit)) ;
return (exchanger|[slot] .exchange (value, nanodur)

H)
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Elimination Array

[public T visit (T value, int range) ]

b

visit the elimination array
with fixed value and range
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Elimination Array

[int slot = random.nextInt(range);l

AN

‘ Pick a random array entry

155



Elimination Array

‘ Exchange value or time out‘

]

[ return (exchanger|[slot] .exchange (value, nanodur) ]
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Elimination Stack Push

public void push (T value) {

while (true) {
if (tryPush(node)) {
return;
} else try {
T otherValue =
eliminationArray.visit(value,policy.range) ;
if (otherValue == null) {
return;

157



Elimination Stack Push

if (tryPush(node)) {
return;

First, try to push
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Elimination Stack Push

| If | failed, backoff & try to eliminate |

ST

e

.

N
} else try {
T otherValue =
eliminationArray.visit(value,policy.range);)
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Elimination Stack Push

‘Value pushed and range to try‘

l;le,})licy .range) ; ]
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Elimination Stack Push

Only pop() leaves null,
so elimination was successful

if (otherValue == null) {
return;
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Elimination Stack Push

‘ Otherwise, retry push() on lock-free stack‘
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Elimination Stack Pop

public T pop() {

while (true) {
if (tryPop()) {
return returnNode.value;
} else

try {
T otherValue =

eliminationArray.visit(null,policy.range;
if (otherValue !'= null) {
return otherValue;

}
)
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Elimination Stack Pop

If value not null, other thread is a push(),
so elimination succeeded

if ( otherValue '= null) {
return otherValue;
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Summary

We saw both lock-based and lock-free
Implementations of

gueues and stacks

Don’t be quick to declare a data
structure inherently sequential

— Linearizable stack is not inherently
sequential (though it is in worst case)

ABA Is a real problem, pay attention
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SOME RIGHTS RESERVED

This work i1s licensed under a

You are free:
— to Share — to copy, distribute and transmit the work
— to Remix — to adapt the work

Under the following conditions:

— Attribution. You must attribute the work to “The Art of
Multiprocessor Programming” (but not in any way that suggests that
the authors endorse you or your use of the work).

— Share Alike. If you alter, transform, or build upon this work, you
may distribute the resulting work only under the same, similar or a
compatible license.

For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to

— http://creativecommons.org/licenses/by-sa/3.0/.

Any of the above conditions can be waived if you get permission from
the copyright holder.

Nothing in this license impairs or restricts the author's moral rights.
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