Programming Paradigms for Concurrency
Lecture 5 — Monitors and Blocking
Synchronization

[HE AR1

MULTIPROCESSOR
PROGRAMMING

The Art of Multiprocessor Programming

What Should you do if you can't
get a lock?

« Keep trying

— “spin” or “busy-wait”

— Good If delays are short
* Give up the processor

— Good if delays are long
— Always good on uniprocessor

2(1)

What Should you do if you can't

get a lock?

Give up the processor
— Good if delays are long

~N

— Always good on uniprocessor

\ w
today’s focus

3

Producer/consumer based on a
FIFO Queue

public produce (Object x) {
mutex.lock () ;
try {

queue.enq(x) ;
} finally {

mutex.unlock () ;

}
}

The Need for
Modular Synchronization

Suppose gueue Is bounded:
* eng may block until gueue has room

 decision whether to block depends on
Internal state of the queue

Multiple producers/consumers:

» every thread needs to keep track of the
lock, the queue state, etc.

The Need for
Modular Synchronization

Suppose gueue Is bounded:
* eng may block until gueue has room

 decision whether to block depends on
Internal state of the queue

Multiple producers/consumers:

* every thread needs to keep track
lock, the queue state, etc.

Modular Synchronization

Let queue handle its own synchronization

* gueue has its own lock
— acquired by each method call
— released when the call returns

* If thread enqueues on a full queue

— gueue Iitself detects the problem

— suspend the caller and resume when the
gueue has room

Conditions

* a condition object Is associated with a lock

 condition objects allow a thread to

— temporarily release the lock and suspend
itself until awoken by another thread

— awake other threads that are currently
suspended

Monitors

The combination of

e an object and its methods

« a mutual exclusion lock

* and the lock’s condition objects
IS called a monitor

Monitors enable modular synchronization.

9

Java’s Lock Interface

public interface Lock {
void lock () ;
void lockInterruptibly ()
throws InterruptedException;
void tryLock() ;
void trylock (long time, TimeUnit unit);
Condition newCondition() ;

void unlock () ;

10

Java’'s Condition Interface

public interface Condition {
void await () throws InterruptedException;
boolean await(long time, TimeUnit unit)
throws InterruptedException;

void signal() ;
void signalAll () ;

11

Java’'s Condition Interface

public interface Condition ({
void await () throws InterruptedException;
boolean await(long time, TimeUnit unit)

throws InterruptedException;

— wake up one

void signaw -
[VOld B () ; waiting thread

12

Java’'s Condition Interface

public interface Condition ({
void await () throws InterruptedException;
boolean await(long time, TimeUnit unit)

throws InterruptedException;

void signal () ;

[void signalall () ;? wake up all
}

waiting threads

13

A Typical Monitor Execution

waiting

@ room

lock()
6 < ————— ’
lock critical
section

14

A Typical Monitor Execution

waiting
room

6 M < ————— ’
await(cond)

lock critical

section

15

A Typical Monitor Execution

waiting

C:Eég? room

&ock()

1
4 /
/
/7 /
/7
4
-, e
v rd
s -,
e -
- -
- -
”f ’/
e -
<----- ___- -
_‘——

lock critical
section

16

A Typical Monitor Execution

waiting
room

ok

lock critical
section

17

A Typical Monitor Execution

waiting

C:Eég? room

lock()
/7
, e
< ________ ’d’
-
lock critical

section

A Typical Monitor Execution

waiting

C:Eég? room

lock()

lock tical unlock()
ot gt N\ SemAno
section

19

A Typical Monitor Execution

=

waiting
room

lock(i\\\\ \

=
B
/

lock tical unlock()
ot gt N\ SemAno
section

20

A Typical Monitor Execution

room

Using Condition Objects

Condition condition = mutex.newCondition|() ;

mutex.lock() ;
try {
while (!property)
condition.await() ;

} catch (InterrupedException e) ({

Using Condition Objects

[Condition condition = mutex.newCondition();]

—

create new condition object

Using Condition Objects

[mutex.lock() ;]~

——— acquire the lock

Using Condition Objects

not happy
[('property) Z

Using Condition Objects

release the lock
and suspend

[condition.await() ,-]7 until notified

Using Condition Objects

try {

} catch (InterrupedException e) ({

[]> application specific response
}

Using Condition Objects

[]7 happy: property must hold

Example: Blocking Queue

public class BlockingQueue<T> ({
final Lock lock = new ReentrantLock () ;
final Condition notFull = lock.newCondition() ;
final Condition notEmpty = lock.newCondition() ;
final T[] items;
int tail, head, count;

public BlockingQueue (int capacity) {

items = new T[capacity];

Example: Blocking Queue

public class BlockingQueue<T> ({
[final Lock lock = new ReentrantLock();]

final Condition notFull™ lock.npwCondition () ;

final Condition notEmpty = .hewCondition() ;

final T[] items; _
mutual exclusion lock

int tail, head, count; _
for queue object

public BlockingQueue (int capacity) ({

items = new T[capacity];

Example: Blocking Queue

public class BlockingQueue<T> ({
final Lock lock = new ReentrantLock() ;
[final Condition notFull = lock.newCondition()J

final Condition notEmpty = ck .newCghdition() ;
final T[] items;

int tail, head, count; condition to walit on
If queue Is full

public BlockingQueue (int capacity) ({

items = new T[capacity];

Example: Blocking Queue

public class BlockingQueue<T> ({
final Lock lock = new ReentrantLock() ;

final Condition notFull = lock.newCondition() ;

[final Condition notEmpty = 1ock.newCondition()4

final T[] items; o~ —

int tail, head, count; condition to walit on
If queue Is empty

public BlockingQueue (int capacity) {

items = new T[capacity];

Example: Blocking Queue

public class BlockingQueue<T> ({
final Lock lock = new ReentrantLock() ;
final Condition notFull = lock.newCondition() ;

final Condition notEmpty = lock.newCondition() ;

[final T[] items; ?internal queue state

int tail, head, count; protected by lock

public BlockingQueue (int capacity) ({

items = new T[capacity];

Blocking Queue: engueue

public void enqg(T x) {
lock.lock();
try {
while (count == items.length())
notFull.await() ;

items[tail] = x;
if (++tail == items.length) tail = 0;
++count;

notEmpty.signal () ;
} finally { lock.unlock(); }

34

Blocking Queue: engueue

|

while (count == items.length())
notFull.await () ;

>

wait until queue
has space

35

Blocking Queue: engueue

(items[tail] = x; A
if (++tail == items.length) tail = 0;
\++count,; y

\/
gueue has space!

Insert element

36

Blocking Queue: engueue

public void eng (T x) {

lock.lock() ;
try {
while (count == items.length())
notFull.await() ;
items[tail] = x;
if (++tail == items.length) tail = 0;
++count;

[notEmpty. signal () ;? wake up one waiting
} finally { lock.unlock(); } consumer

37

Blocking Queue: degqueue

public T deq() {

lock.lock();

try {
while (count == 0)

notEmpty.await() ;

T x = items[head];
if (++head == items.length) head = 0;
—-—count;
notFull.signal() ;
return x;

} finally { lock.unlock(); }

Blocking Queue: degqueue

while (count == 0) wait until queue
notEmpty.await () ; IS nonempty

Blocking Queue: degqueue

m x = items[head];

N
if (++head == items.length) head = 0;

\——count; y

\/
gqueue nonempty!

retrieve next
element

Blocking Queue: degqueue

public T deq() {
lock.lock() ;
try {
while (count == 0)
notEmpty.await() ;
T x = items[head];
if (++head == items.length) head = 0;

-—-count; o
[notFull .signal () ; ? wake up one waiting
return x; producer

} finally { lock.unlock(); }

Improved engqueue?

public void enqg(T x) {
lock.lock() ;
try {
while (count == items.length())
notFull.await() ;

items[tail] = x;
if (++tail == items.length) tail =
++count;

if (count == 1) notEmpty.signal() ;
} finally { lock.unlock(); }

42

The Lost-Wakeup Problem

« Condition variables are inherently
vulnerable to lost wakeups

— one thread waits forever without realizing
that its waiting condition has become true

* Programming practices
— If In doubt, signal all waiting processes
— specify a timeout when waiting

43

Reentrant Locks

e same thread can acquire the lock multiple
times without blocking

e commonly used in OOP to handle reentrant
calls to locked objects

44

Using Reentrant Locks

public class AtomicArray<T> ({

final Lock lock = new ReentrantLock() ;

public T getAndSet(int i, T v) {
try { lock.lock() ;s
T old = get(i);
set(1, v);
return old;
} finally { lock.unlock(); } }
public T get() ({
try {lock.lock(); return item[i]; }
finally { lock.unlock(); }
public void set(int i, T v) { ... } }

Using Reentrant Locks

public class AtomicArray<T> {

final Lock lock = new ReentrantLock() ;

public T getAndSet(int i, T v) {
try { lock.lock() ;

T old = get(i)
set (i, v); reacquire lock

return old;
} finally { lock.unlock(); } }
public T get() ({
try {lock.lock(); return item[i]; }
finally { lock.unlock(); }
public void set(int i, T v) { ... } }

Our Own Reentrant Lock

public class SimpleReentrantLock implements Lock({
final Lock lock = new Simplelock() ;
final Condition cond = lock.newCondition() ;
int owner, holdCount;

public SimpleReentrantLock () {
owner = holdCount = 0;

47

Our Own Reentrant Lock

public class SimpleReentrantlLock implements Lock{

[final Lock lock new SimpleLock() ;

final Condition cond é\{gi:ﬁ/rféwCondition();
int owner, holdCount;

nonreentrant lock

public SimpleReentrantLock () ({

owner = holdCount = 0;

48

Our Own Reentrant Lock

public class SimpleReentrantLock implements Lock{

final Lock lock = new Simplelock () ;

[final Condition cond = lock.newCondition();]

int owner, holdCount;

public SimpleReentrantLock ()

owner = holdCount = 0;

condition to wait on if lock
IS held by other thread

49

Our Own Reentrant Lock

public class SimpleReentrantlLock implements Lock({
final Lock lock = new Simplelock() ;

final Condition cond = lock.newCondition|() ;

int[ownerlrhgigggiffz_-
’ thread ID of lock holder

public SimpleReentrantLock() {

owner = holdCount = 0;

50

Our Own Reentrant Lock

public class SimpleReentrantlLock implements Lock({
final Lock lock = new Simplelock() ;

final Condition cond = lock.newCondition|() ;

int owner, [holdCount;L_ counts how often lock

has been acquired by
public SimpleReentrantLock () { current owner

owner = holdCount = 0;

51

Our Own Reentrant Lock

public void lock () {
int me = ThreadID.get()
lock.lock() ;
try {
i1f (owner == me) {
++holdCount;

return;

}

while (holdCount !'= 0) condition.await();
owner = me;

holdCount = 1;
} finally { lock.unlock() } }

Our Own Reentrant Lock

public void lock () {

int me = ThreadID.get()
lock.lock() ;

try {

ﬁ —— .

1t (owner == me) { already holding the lock?
t+holdCount; then just increase counter
return;

J

while (holdCount !'= 0) condition.await() ;

owner = me,

holdCount = 1;
} finally { lock.unlock() } 1}

Our Own Reentrant Lock

public void lock () {

int me = ThreadID.get()
lock.lock() ;

try {
if (owner == me) {
++holdCount; otherwise, wait until lock Is
return; free and then take ownership
} T
(while (holdCount !'= 0) condition.await()f\

owner = me;
_ holdCount = 1;
} finally { lock.unlock() } 1}

Our Own Reentrant Lock

public void unlock () {
lock.lock() ;
try f{
if (holdCount == | |
owner != ThreadID.get()) {
throw new IllegalMonitorStateException() ;
}
if (--holdCount == 0) cond.signal() ;
} finally { lock.unlock() }

95

Our Own Reentrant Lock

fail, if lock Is released too often

/\
(if (holdCount == 0 || h

owner !'= ThreadID.get()) {

throw new IllegalMonitorStateException() ;

\} y,

56

Our Own Reentrant Lock

public void unlock () { gtherwise, decrement counter

lock.lock() ; and wake up one blocked thread

try { if lock is released
if (holdCount == 0 ||

owner !'= ThreadID.get()) {

throw new IllegalMonitoyStateEXxception() ;

}

[if (-—holdCount == 0) cond.signal() ;]
} finally { lock.unlock() }

57

Java’s built-in Monitors

e synchronized blocks and methods
acquire and release an implicit reentrant
lock

« access to an implicit condition object Is
provided via special methods
- wait()
- notify()
- notifyAll()

58

Simplified Blocking Queue: enqueue

public synchronized void eng (T x) {
while (count == items.length())

wait () ;
items[tail] = x;
if (++tail == items.length) tail = 0;
++count;

notifyAll () ;

59

Simplified Blocking Queue: dequeue

public synchronized T deqg() {
while (count == 0)
wait () ;
T x = i1tems[head];
if (++head == items.length) head = 0;
—-—count;
notifyAll () ;

return x;

60

Simplified Blocking Queue: dequeue

Lost Wakeup in Simplified Queue
with notify()

waiting

enq(Oqu(l)\ enq(2)

o

lock gueue state: []
capacity=1

62

Lost Wakeup in Simplified Queue
with notify()

waiting

@ @ room

enq(l)\ enqii)///

o

lock Queue state: []
capacity=1

63

Lost Wakeup in Simplified Queue
with notify()

waiting

@ @ room
a

enq(l)\ enq(2)

o

lock dueue state: [0]\ notify()
capacity=1

64

Lost Wakeup in Simplified Queue
with notify()

waiting

C D room

enq(2)

o

lock dueue state: [0]
capacity=1

65

Lost Wakeup in Simplified Queue
with notify()

waiting
room

I
/
/

o

lock dueue state: [0]
capacity=1

66

Lost Wakeup in Simplified Queue
with notify()

waiting
room

I
/
/

o R

lock dueue state: [0]
capacity=1

67

Lost Wakeup in Simplified Queue
with notify()

waiting
room

“ “
/ /
/ /
/ /7
Vs d
V2 pd
enqg(1 ‘ _c
W) “ena(2)
---"" __-- -
e -

lock dueue state: [0]
capacity=1

68

Lost Wakeup in Simplified Queue
with notify()

waiting

& & & =
/ /
/ /
/ /
/ /
Vs d
V2 pd
Id e

deq() deq()\ deq()

enq(1) .- .-"enq(2)
______ - "”’/
e _—---

lock dueue state: [0]
capacity=1

69

Lost Wakeup in Simplified Queue
with notify()

waiting

@ Ci ; room
I /
/ /
/ /
/ /
Vs d
V2 pd
,'
bl
”
’/

lock dueue state: [0]
capacity=1

70

Lost Wakeup in Simplified Queue
with notify()

waiting

@ Ci ; room
I /
/ /
/ /
/ /
Vs d
V2 pd
,'
bl
”
’/

lock dueue state: [] notify()

capacity=1 M

71

Lost Wakeup in Simplified Queue
with notify()

waiting

S T T g
M (S

enq(1) | dGQ() deq

/
/
/
/
\\ //
> -
_-~"enq(2)
T

lock dueue state: []
capacity=1

72

Lost Wakeup in Simplified Queue
with notify()

waiting

CS%%S) CE ;) room
\
\
\

/
/
/

,f’énq(Z)

lock gueue state: []
capacity=1

73

Lost Wakeup in Simplified Queue
with notify()

waiting

CS%%S) CE ;) room
1 1
7/ /
/ //
// ,/

enq(1) °. dei§>///

> — L
de // /,
q’(’),/ /” enq(z)
<--"" __--7
é ______

lock gueue state: []
capacity=1

74

Lost Wakeup in Simplified Queue
with notify()

waiting

CS%%S) room
/] 1
7/ /
/ //
// ,/

\

enq(1)

N\
\\9 ., .
de e i
é__,’ "”¢
¢ - - ---"

lock gueue state: []
capacity=1

75

Lost Wakeup in Simplified Queue

=

\

enq(1)

with notify()

waiting
room

1 / /
/ / /
/ / /
/7 /
// d 4
P 4

N
\\
6>

-
-
-
-
—
—— -
—— ——

lock

gueue state: []
capacity=1

76

Lost Wakeup in Simplified Queue
with notify()

waiting
room

1 / /
/ / /

/ /l //

// 7/ 4
2 7/ 7’
/ L Cd
,/ ’/, /’
- - /’

o R

lock gueue state: []
capacity=1

77

Lost Wakeup in Simplified Queue
with notify()

waiting
room

(AR RN
/ / /
/ / /
,/ 7 7
P '/ '/
deq})’,»’ ,,f’énq(z),*’,
é——” ———— - ””’/
<--"T __--"T deq()

lock dueue state: [1]™\ notify()
capacity=1

78

Lost Wakeup in Simplified Queue
with notify()

waiting
room
(LT N
/I /,
deq()

é'— ,” ”’/

________ deq()
 I—

lock dueue state: [1]™\ notify()
capacity=1

79

Lost Wakeup in Simplified Queue

with notify ()

waiting
room
1 ,I
deq()

lock gueue state: [1]
capacity=1

80

Lost Wakeup in Simplified Queue
with notify ()

waiting
room

o &

lock gueue state: [1]
capacity=1

81

Lost Wakeup in Simplified Queue

o

lock

with notify ()

waiting
room

1 / /
/ / /
/ / /
/ /
// 7/ 4
2. 7/

-
-
-
-
-—
__——
— — ——

gueue state: [1]
capacity=1

remaining threads are stuck!

82

Readers-Writers Lock

e shared objects often have the property that
their methods can be partitioned into

— readers: return information about the object
— writers: actually modify the object

 no need for readers to synchronize with
each other

83

Readers-Writers Lock

public interface ReadWritelock ({
Lock readlock() ;
Lock writelock() ;

84

Readers-Writers Lock

public SimpleReadWriteLock implements
ReadWritelock {

int readers = 0;

boolean writer = false;

Lock lock = new Reentrantlock() ;

Condition condition = lock.newCondition() ;
Lock readlLock = new Readlock() ;

Lock writelock = new Writelock() ;

Lock readlock () { return readLock; }

Lock writelock() { return writelock; }

Readers-Writers Lock

public SimpleReadWritelLock implements

ReadWriteLock {
[_ ~______ nhumber of current
int readers = O;J readers

boolean writer = false;

Lock lock = new Reentrantlock() ;

Condition condition = lock.newCondition() ;
Lock readlLock = new Readlock() ;

Lock writelock = new WritelLock() ;

Lock readlock () { return readLock; }

Lock writelock() { return writelock; }

Readers-Writers Lock

public SimpleReadWriteLock implements
ReadWritelLock {

int readers = 0;
[boolean writer = false;? IS there a writer?

Lock lock = new ReentrantLock () ;

Condition condition = lock.newCondition() ;
Lock readlLock = new Readlock() ;

Lock writelock = new WritelLock() ;

Lock readlock () { return readLock; }

Lock writelock() { return writelock; }

Readers-Writers Lock

public SimpleReadWriteLock implements

ReadWritelLock { _
int readers = 0; protects internal state

boolean writer = false: of this lock
[Lock lock = new ReentrantLock() ;

Condition condition = lock.newCondition () ;

Lock readlock = new ReadLock() ;
Lock writel.ock = new Writelock() ;
Lock readlock () { return readLock; }

Lock writelock() { return writelock; }

Readers-Writers Lock

public SimpleReadWriteLock implements
ReadWritelLock {

S eeclEEe —) condition to wait on if

boolean writer = false; |OCKIS taken

Lock lock = new Reentrantletk() ;

[Condition condition = lock.newCondition();]

Lock readlock = new ReadLock() ;
Lock writel.ock = new Writelock() ;
Lock readlock () { return readLock; }

Lock writelock() { return writelock; }

Readers-Writers Lock

public SimpleReadWriteLock implements
ReadWritelLock {

_ the actual read and
int readers = 0;

write lock
boolean writer = false; e locks

Lock lock = new Reentran ck/() ;
Condition condition ~lock.ne¢wCondition() ;
[%ock readLock = new ReadLock () ;]

Lock writelock = new WriteLock () ;

Lock readlock () { return readLock; }

Lock writelock () { return writelock; }

(implemented by inner classes)

Inner ReadlLock class

class Readlock {
public void lock() {
lock.lock() ;
try {
while (writer) {
condition.await() ;
}
readers++;
} finally { lock.unlock(); }

91

Inner ReadlLock class

‘while (writer) { wait until no writer
condition.await () ; holds the lock

)

92

Inner ReadlLock class

class Readlock {
public void lock() {
lock.lock () ;
try {
while (writer) {

condition.await()/ ji4crease the

} number of readers
[readers++;

} finally { lock.unlock(); }

93

Inner ReadlLock class

class Readlock {

public void unlock() ({
lock.lock() ;
try {
readers--;
if (readers == 0)
condition.signalAll () ;
} finally { lock.unlock(); }

Inner ReadlLock class

class Readlock {

public void unlock () {

lock.lock () ;
() decrease the

tr
- / number of readers
| readers--;

if (readers == 0)

condition.signalAll() ;
} finally { lock.unlock(); }

95

Inner ReadlLock class

class ReadLock {

public void unlock () {

lock.lock () ; no more readers,

try { then wake up
readers--; waiting writers
if (readers == 0)

[condition.signalAll () ;

} finally { lock.unlock(); }

96

Inner WriteLock class

class Writelock {
public void lock() {

lock.lock() ;

try {
while (readers > 0 || writer) {

condition.await() ;

}
writer = true;

} finally { lock.unlock(); }

97

Inner WriteLock class

wait until lock Is free

_—7

‘while (readers > 0 || writer) {

condition.await () ;

J J

98

Inner WriteLock class

class WriteLock {
public void lock () {
lock.lock () ;
try {
while (readers > 0 || writer) {

condition.await () ;

}
[Writer = true; ? take the IOCk

} finally { lock.unlock(); }

99

Inner WriteLock class

class Writelock {

public void unlock() ({
lock.lock() ;
try {
writer = false;
condition.signalAll () ;
} finally { lock.unlock(); }

100

Inner WriteLock class

class WriteLock {

public void unlock () {

lock.lock () ;
release the lock

try {
[writer = false;l

condition.signalAll () ;
} finally { lock.unlock(); }

101

Inner WriteLock class

class WriteLock {

public void unlock () {

lock.1lock () ; wake up waiting
try { readers and writers

writer = false;
[condition.signalAll();

} finally { lock.unlock(); }

102

Fair Readers-Writers Lock

e Problem with SimpleReadWritelLock

— usually readers are much more frequent
than writers

— writers may be locked out for a long time
 |dea: give priority to writers

103

FIFO Readers-Writers Lock

public FifoReadWriteLock implements ReadWriteLock {
int readAcquires = O;
int readReleases = 0;
boolean writer = false;
Lock lock = new ReentrantLock (true) ;
Condition condition = lock.newCondition() ;
Lock readLock = new ReadLock() ;
Lock writelock = new WritelLock() ;
Lock readlock () { return readLock; }
Lock writelock() { return writelock; }

104

FIFO Readers-Writers Lock

public FifoReadWriteLock implements ReadWriteLock {

int readAcquires = 0:? count releases and acquires

[int readReleases = 0;] of readers separately
boolean writer = false;

Lock lock = new ReentrantLock (true) ;
Condition condition = lock.newCondition() ;
Lock readlLock = new Readlock() ;

Lock writelock = new Writelock() ;

Lock readlock () { return readLock; }

Lock writelock () { return writelock; }

105

FIFO Readers-Writers Lock

public FifoReadWriteLock implements ReadWriteLock {

int readAcquires = 0;

int readReleases = 0; create FIFO lock

boolean writer = false;
Lock lock =[new ReentrantLock (true) ;

Condition condition = lock.newCondition() ;

Lock readLock = new ReadLock() ;
Lock writelock = new Writelock() ;
Lock readlock () { return readlLock; }

Lock writelock () { return writelock; }

106

Inner ReadlLock class

class Readlock {
public void lock() {
lock.lock() ;
try {
while (writer) {
condition.await() ;
}
readAcquires++;
} finally { lock.unlock(); }

107

Inner ReadlLock class

class Readlock {

public void unlock() ({
lock.lock() ;
try {
readReleases++;
if (readReleases == ReadAcquires)
condition.signalAll () ;
} finally { lock.unlock(); }

108

Inner WriteLock class

class Writelock {

public void lock() {
lock.lock() ;

try {
while (writer) condition.await() ;
writer = true;
while (readAcquires !'= readReleases)

condition.await () ;

} finally { lock.unlock(); }

109

Inner WriteLock class

class WriteLock {
public void lock() { first wait for writers to
lock.lock () ; release the lock

try { ///N\\\\‘

[while (writer) condition.await();]

writer = true;
while (readAcquires !'= readReleases)
condition.await() ;
} finally { lock.unlock(); }

110

Inner WritelLock class

class WriteLock { _
public void lock() ({ block writers and

lock.lock() ; readers from
try { acquiring the lock

while (wri ondition.await() ;
[writer = true;

while (readAcquires !'= readReleases)

condition.await () ;
} finally { lock.unlock(); }

111

Inner WriteLock class

class WriteLock ({ wait for all readers
public void lock() { who already acquired
lock.1lock() ; the lock to release it
try {

while (writer) conditioh. it();
writer = true;
[%hile (readAcquires != readReleasesj
condition.await() ;
} finally { lock.unlock(); 1}

112

Inner WriteLock class

class Writelock {
public void unlock () {

writer = false;

condition.signalAll () ;

113

