Programming Paradigms for Concurrency
Lecture 4 — Spin Locks and Contention
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The Art of Multiprocessor Programming



Focus so far: Correctness

 Models

— Accurate (1 never lied to you)
— But idealized (so | forgot to mention a few things)

* Protocols
— Elegant
— Important
— But naive



New Focus: Performance

 Models

— More complicated (not the same as complex!)
— Still focus on principles (not soon obsolete)

* Protocols
— Elegant (in their fashion)

— Important (why else would we pay attention)
— And realistic (your mileage may vary)



Kinds of Architectures

« SISD (Uniprocessor)
— Single instruction stream
— Single data stream

« SIMD (Vector)
— Single instruction
— Multiple data
« MIMD (Multiprocessors)

— Multiple instruction
— Multiple data.



Kinds of Architectures

« MIMD (Multiprocessors)
— Multiple instruction
. — Multiple data.

(1)

Our space



MIMD Architectures
A

%
g
o o ¢

Shared Bus Distributed

 Memory Contention
« Communication Contention
« Communication Latency



Today: Revisit Mutual Exclusion

 Performance, not just correctness

* Proper use of multiprocessor
architectures

* A collection of locking algorithms...
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What Should you do if you can't
get a lock?

« Keep trying

— “spin” or “busy-wait”

— Good If delays are short
* Give up the processor

— Good if delays are long
— Always good on uniprocessor
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What Should you do if you can't

get a lock?

. @eep trying
— “spin” or “busy-wait”

. Good If delays are short

* Glve up the proc
— Good If delays are long

— Always good on uniprocessor

\

our focus
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Basic Spin-Lock

B o
“;'55
s

o
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spin  critical Resets I_ock
lock section upon exit
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Performance

* Experiment
— n threads
— Increment shared counter 1 million times

 How long should it take?
 How long does it take?
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Basic Spin-Lock

..lock introduces

==4 TN

"9

uential bottleneck

“

Resets lock

spin  critical (
/ lock section upon exit

)
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Basic Spin-Lock

l‘ ...lock suffers from contention
C§ /',

\ %
=1 B

spin  critical Resets I_ock
/ lock section upon exit

13



Basic Spin-Lock

l‘ ...lock suffers from contention
C§ /',

\ %
=1 B

spin  critical Resets I_ock
/ lock section upon exit

Notice: these are distinct
phenomena
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Basic Spin-Lock

l‘ ...lock suffers from contention
C§ /',

\ %
=1 B

spin  critical Resets I_ock
/ lock section upon exit

Seq Bottleneck = no parallelism
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Basic Spin-Lock

l‘ ...lock suffers from contention
<5,
~0[ &

/ spin  critical Resets lock

lock section upon exit

Contention = ??77?
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time

Graph

no speedup
because of
sequential

4 )

%Ieneck y
ideal

threads
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time

Mystery #1

filter lock

What Is
threads Joing




Test-and-Set

Boolean value

Test-and-set (TAS)

— Swap true with current value

— Return value tells if prior value was true or
false

Can reset just by writing false
TAS aka “getAndSet”
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Test-and-Set

public class AtomicBoolean {
boolean value;

public synchronized boolean
getAndSet (boolean newValue) ({

boolean prior = value;
value = newValue;
return prior;

}
}
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Test-and-Set

[public class AtomicBoolean ({ ]

Package
java.util.concurrent.atomic
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Test-and-Set

-

public synchronized boolean
getAndSet (boolean newValue) ({

boolean prior = value;
value = newValue;

~N

\ return prior; ‘\\\\\J/____)

Swap old and new

values
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Test-and-Set

AtomicBoolean lock
= new AtomicBoolean (false)

boolean prior = lock.getAndSet (true)
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Test-and-Set

[boolean prior = lock.getAndSet(true)]

\/

Swapping in true is called
“test-and-set” or TAS
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Test-and-Set Locks

* Locking
— Lock is free: value Is false
— Lock is taken: value Is true

* Acquire lock by calling TAS
— If result is false, you win
— If result Is true, you lose

* Release lock by writing false
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Test-and-set Lock

class TASlock {
AtomicBoolean state =
new AtomicBoolean (false) ;

void lock () {
while (state.getAndSet(true)) ({}

}

void unlock () {
state.set (false) ;

b}
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Test-and-set Lock

|

AtomicBoolean state =
new AtomicBoolean (false) ;

Lock state iIs AtomicBoolean
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Test-and-set Lock

[while (state.getAndSet (true)) {} ]

"

Keep trying until lock acquired

28



Test-and-set Lock

Release lock by resetting
state to false

[ state.set (false) ;
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Space Complexity

TAS spin-lock has small “footprint”
N thread spin-lock uses O(1) space
As opposed to O(n) Filter/Bakery

How did we overcome the Q(n) lower
bound?

We used a Read-Modify-Write (RMW)
operation...
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Test-and-Test-and-Set Locks

 Lurking stage
— Wait until lock “looks” free
— Spin while read returns true (lock taken)

* Pouncing state
— As soon as lock “looks” available
— Read returns false (lock free)
— Call TAS to acquire lock
— If TAS loses, back to lurking
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Test-and-test-and-set Lock

class TTASlock {
AtomicBoolean state =
new AtomicBoolean (false) ;

void lock () {
while (true) {
while (state.get()) {}
if (!'state.getAndSet(true))
return;
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Test-and-test-and-set Lock

[while (state.get()) {1}

Walit until lock looks free
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Test-and-test-and-set Lock

Then try to

acquire It
if (!'state.getAndSet(true))
return;
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time

Mystery #2

e

threads

TAS lock

TTAS lock

|deal
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Mystery

* Both
— TAS and TTAS
— Do the same thing (in our model)

« Except that
— TTAS performs much better than TAS
— Neither approache is ideal
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Opinion

« Our memory abstraction is broken

e TAS & TTAS methods

— Are provably the same (in our model)
— Except they aren't (in field tests)

* Need a more detailed model ...
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Bus-Based Architectures

MIM

>

<>

memory
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Bus-Based Architectures

~

Random access memory

(10s of cycles)

J

 —

=

memory
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/_Bu&Based_Amhjleatur\es

Shared Bus
*Broadcast medium
One broadcaster at a time
*Processors and memory all

Bus

\\ “snoop”
| | \_//\/_\/
<

=

>

memory
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Busﬁ

er-Processor Caches
Small
*Fast: 1 or 2 cycles
Address & state information

memory
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Jargon Watch

» Cache hit
—“| found what | wanted in my cache”
— Good Thing™
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Jargon Watch

» Cache hit
—“| found what | wanted in my cache”
— Good Thing™

e Cache miss

— “l had to shlep all the way to memory for
that data”

— Bad Thing™
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Cave Canem

* This model is still a simplification
— But not in any essential way
— lllustrates basic principles

* Will discuss complexities later
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Processor Issues Load Request

MQ@

Bus

E
memory IEEW
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2racessor Issues Load Request
data
Oo,
| | |

==
memory IEEN
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Memory Responds

8 8

Bus

Got your

A

data right
here

Oo. memory
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memory
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Processc

Gimme
data
, Oo,

sues Load Request

memory
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Processor Issues Load Request
| got
data

memory
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Qther Processor Responds
| got
& e
| | |
==
memory
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Other Processor Responds

8 =

=
memory
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Modify Cached Data

QI@

_data [ data [ |

==
memory IEEW
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Modify Cached Data

25 B

<: |data| | |

memory

>
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Modify Cached Data

QI@

| data [EEEEEE

==

memory IEEW
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Modify Cached Data

I@

| data |

Bus
What's up with the othe '
coples’> hﬁ ata




Cache Coherence

* \We have lots of copies of data
— Original copy in memory
— Cached copies at processors
* Some processor modifies its own copy

— What do we do with the others?
— How to avoid confusion?

Y



Write-Back Caches

* Accumulate changes in cache

* Write back when needed
— Need the cache for something else
— Another processor wants it

* On first modification

— Invalidate other entries
— Requires non-trivial protocol ...
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Write-Back Caches

« Cache entry has three states
— Invalid: contains raw seething bits
— Valid: | can read but | can’t write

— Dirty: Data has been modified
* Intercept other load requests
» Write back to memory before using cache
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Invalidate

MI@

| data EEEEEE

Bus

==

memory [EZ
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Invalidate
ine!
o O mine

memory [EZ
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Invalidate

memory [EZ
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Invalidate

Other caches lose read permission ]

| data |

memory

63



Invalidate

Other caches lose read permission ]

! data |

_{ This cache acquires write permission J
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Invalidate

P/ A A

: : N
g Memory provides data only If not present
INn any cache, so no need to change it

now (expensive)

.

=

memory
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Another Processor Asks for Data

memory [EZ
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memory [EZ
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End of the Day ...

meml Reading OK, no Writing‘
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Mutual Exclusion

« What do we want to optimize?
— Bus bandwidth used by spinning threads
— Release/Acquire latency
— Acquire latency for idle lock
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Simple TASLock

 TAS Invalidates cache lines
* Spinners

— Miss in cache

— Go to bus

 Thread wants to release lock
— delayed behind spinners

70



Test-and-test-and-set

« Wait until lock “looks” free
— Spin on local cache
— No bus use while lock busy

 Problem: when lock is released
— Invalidation storm ...
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Local Spinning while Lock Is
Busy

MIM

(}

memory I
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On Release

&
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On Release
Everyone misses,

rereads
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On Release
Everyone tries TAS
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Problems

* Everyone misses
— Reads satisfied sequentially

* Everyone does TAS
— Invalidates others’ caches

* Eventually quiesces after lock acquired
— How long does this take?
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Measuring Quiescence Time
l@l‘<_—’

« Acquire lock
« Pause without using bus é"i—
» Use bus heavily N

If pause > quiescence time,

critical section duration independent of number of threads
If pause < quiescence time,
critical section duration slower with more threads

77



Quiescence Time

Increses
linearly with

the number of
processors for
bus architecture

time

threads
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Mystery Explained

TAS lock

TTAS lock

time

|deal

~
Better than TAS

but still not as
good as ideal

thread




Solution: Introduce Delay

* |f the lock looks free
« But | fail to get it

* There must be contention
» Better to back off than to collide again

B
.‘ﬁ

time -- ' I spin lock
r,d rld
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Dynamic Example:
Exponential Backoff

N
“‘“b

spin lock

time --

4ad
If | fail to get lock
— wait random duration before retry

— Each subsequent failure doubles
expected walit
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Exponential Backoff Lock

public class Backoff implements lock ({

public void lock() {
int delay = MIN DELAY;
while (true) {
while (state.get()) {}
if ('lock.getAndSet (true))
return;
sleep(random() % delay)
if (delay < MAX DELAY)
delay = 2 * delay;
1}
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Exponential Backoff Lock

| int delay = MIN DELAY;

FIXx minimum delay
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Exponential Backoff Lock

[ while (state.get()) {}

Walit until lock looks free
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Exponential Backoff Lock

if ('lock.getAndSet (true))
return;

If we win, return
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Exponential Backoff Lock

Back off for random duration

[sleep(random() % delay) ;
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Exponential Backoff Lock

Double max delay, within reason

|

if (delay < MAX DELAY)
delay = 2 * delay;

87



time

Spin-Waiting Overhead

TTAS Lock

Backoff lock

threads
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Backoff: Other Issues

 Good

— Easy to implement
— Beats TTAS lock

 Bad

— Must choose parameters carefully
— Not portable across platforms
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|dea

 Avoid useless invalidations
— By keeping a queue of threads

 Each thread

— Notifies next in line
— Without bothering the others
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Anderson Queue Lock
idle

next
=) &h

flags

T|F|F|F|F|F|F
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Anderson Queue Lock

acquiring

next
U " getAndincrement

flags

T|F|F|F|F|F|F|F
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Anderson Queue Lock

acquiring

next
{ " getAndincrement

flags

T|F|F|F|F|F|F|F
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Anderson Queue Lock

acquired

next
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Anderson Queue Lock

acquired acquiring

flags

T|F|F|F|F|F|F
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Anderson Queue Lock

acquired acquiring

next
[ |

flags getAndincrement

T|FF|IF|F|F|F|F|F




Anderson Queue Lock

acquired acquiring

next

{

flags getAndincrement

T|FFI | F|F|F|F|F




Anderson Que

next

acquired ¢
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Anderson Queue Lock

released acquired

next

flags
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Anderson Queue Lock

released acquired
next
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Anderson Queue Lock

class ALock implements Lock ({
boolean|[] flags={true, false,..,false};
AtomicInteger next

= new AtomicInteger (0) ;
ThreadlLocal<Integer> mySlot;

101



Anderson Queue Lock

[boolean[] flags={true, false, .., false}; ]

o

One flag per thread
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Anderson Queue Lock

AtomicInteger next
= new AtomicInteger (0) ;

Next flag to use
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Anderson Queue Lock

[ThreadLocal<Integer> mySlot;]

Thread-local variable
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Anderson Queue Lock

public lock() {
mySlot = next.getAndIncrement() ;
while (!'flags[mySlot %$ n]) {}:

flags[mySlot % n] = false;
}

public unlock () {
flags[ (mySlot+l) % n] = true;
}

105



Anderson Queue Lock

[mySlot = next.getAndIncrement() ; ]

Take next slot
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Anderson Queue Lock

| while (!flags[mySlot % n]) {}; |

Spin until told to go
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Anderson Queue Lock

[flags [myslot % n] = false; ]

N

Prepare slot for re-use
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Anderson Queue Lock

Tell next thread to go
|

l
&1ags[(my$lot+1) % n] = true;

109



Local Spinning

released acquired
next

Spin
OF on
my

bit

flags

FIF|F|F| F|F

[Unfortunately many bits share cache Iine]
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False Sharing

released acquwed
Spin

on

Spinning thread
gets cache
Invalidation on
F F account of store
by threads it is

\ \not waiting for/
Line 1l Line 2

Result:
contention




The Solution: Padding

released acquired




Performance

TTAS

« Shorter handover than
backoff

queue ° Curve is practically flat
« Scalable performance

113



Anderson Queue Lock

Good

— First truly scalable lock
—Simple, easy to implement
—Back to FIFO order (like Bakery)
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Anderson Queue Lock

Bad

—Space hog...
—One bit per thread =» one cache line
per thread

 What if unknown number of threads?

« What iIf small number of actual
contenders?
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Craig-Landin-Hagersten Lock

* FIFO order

« Small, constant-size overhead per
thread

116



Initially
idle

i

|
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Initially

——  Queue tall
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Initially

Lock Is free
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Initially
idle

i

|
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Purple Wants the Lock

acquiring

i

|
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Purple Wants the Lock

acquiring

/4
.

P
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Purple Wants the Lock

acquiring

i

Swap

tail
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Purple Has the Lock

acquired

&
-

= [

——

true
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Red Wants the Lock

acquired acquiring

tail
-
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Red Wants the Lock

acquired acquiring

L

Swap

false true true
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Red Wants the Lock

acquired acquiring

&
L D)

-
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Red Wants the Lock

acquired acquiring

*
*
L 2
L 2
L 2

.

L
0‘ .

* L
. L

L

. L

O‘ *
“ "
€ X

tail
-
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Red Wants the Lock

acquired acquiring

ﬁ

\

\ Implicit
\ Linked list
&

tail ‘

L_J
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acquired

i

Red Wants the | ock

oSG
by

mm [
\ g J
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Red Wants the ! ock

acquired ¢ % |

Actually, it
» spins on
tail

cached copy
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Purple Releases

release acquiring

o

o

\J\ )

tail
[ ] false false true
\ Art of Multiprocessor Programming /
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Purple Releases

released acquired

i

tall
=
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Space Usage

o et
— L = number of locks
— N = number of threads

 ALock
— O(LN)

« CLH lock
— O(L+N)
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CLH Queue Lock

class Qnode {
AtomicBoolean locked =

new AtomicBoolean (true) ;

135



CLH Queue Lock

[AtomicBoolean locked =

new AtomicBoolean (true) ;

}

Not released yet
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CLH Queue Lock

class CLHLock implements Lock ({
AtomicReference<Qnode> tail;
ThreadLocal<Qnode> myNode
= new Qnode () ;
public void lock () {
Onode pred
= tail.getAndSet (myNode) ;
while (pred.locked) ({}
}}
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CLH Queue Lock

[AtomicReference<Qnode> tail; ]

Queue tall

138



CLH Queue Lock

ThreadLocal<Qnode> myNode
= new Qnode () ;

\

Thread-local Qnode
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CLH Queue Lock

Swap in my node

Qnode pred
= tail.getAndSet (myNode) ;

140



CLH Queue Lock

Spin until predecessor
releases lock

[while (pred.locked) {}
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CLH Queue Lock

Class CLHLock implements Lock {

public void unlock () ({
myNode. locked.set (false) ;
myNode = pred;

}

}

142



CLH Queue Lock

[myNode.1ocked.set(false)

Notify successor

143



CLH Queue Lock

[myNode = pred;

Recycle
predecessor’'s node
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CLH Queue Lock

[myNode = pred;

(we don’t actually reuse myNode.
Code in book shows how it’s done.)
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CLH Lock

 Good

— Lock release affects predecessor only
— Small, constant-sized space

 Bad

— Doesn’t work for uncached NUMA
architectures
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NUMA Architecturs

* Acronym:
— Non-Uniform Memory Architecture

* lllusion:
— Flat shared memory

 Truth:

— No caches (sometimes)
— Some memory regions faster than others
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NUMA Machines

Spinning on local

memory Is fast
148



N

MA Machines
%\'
4

¢ @

Spinning on remote
memory Is slow

149



CLH Lock

* Each thread spins on predecessor’s
memory

* Could be far away ...
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Mellor-Crummey-Scott Lock

 FIFO order
* Spin on local memory only
« Small, Constant-size overhead
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Initially

152



Acquiring

acquiring

" (allocate Qnode)
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Acquiring

acquired
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Acquiring

acquired

o
q un. 7
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Acquired

acquired
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Acquiring

acquired ACqUINY

tail




Acquiring

acquiring

i
;”\/—\» ﬂ’“'

acquired

i




Acquiring

acquiring

_

= ——. [
159

acquired

i




Acqum

C"I

acquired

i

tail

||||¥\\~__//"-_"“->
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Acquiri;
=

acquired
' I
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Acquiring

acquiring

°0
I O

acquired

i

162



MCS Queue Lock

class QOnode {
boolean locked = false;
ONode next null;

}
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MCS Queue Lock

class MCSLock implements Lock ({
AtomicReference tail;
public void lock() {

Onode gqnode = new Qnode() ;

Onode pred = tail.getAndSet (gnode) ;

if (pred '= null) {

gqnode. locked = true;

pred.next = gnode;

while (qnode.locked) ({}

1}
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MCS Queue Lock

Make a

QNode
[ Qnode gnode = new Qnode() ;

165



MCS Queue Lock

[Qnode pred = tail.getAndSet (gnode) ; ]

— |

add my Node to
the tail of
gueue
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MCS Queue Lock

if (pred '= null) {

gqnode. locked = true;

_ pred.next = gnode;

J

Fix If qgueue was
non-empty

167



MCS Queue Lock

Wait until
unlocked

| while (qnode.locked) {}
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MCS Queue Unlock

class MCSLock implements Lock ({
AtomicReference tail;
public void unlock () {
if (gnode.next == null) {
if (tail.CAS(gnode, null)
return;
while (gnode.next == null) {}
}

gnode.next.locked = false;

b}

169



MCS Queue Lock

[ if (gnode.next == null) {

Missing
successor
?
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MCS Queue Lock

If really no successor,

return [\\\\\\k

[ if (tail.CAS(gnode, null) ]

return;

171



MCS Queue Lock

Otherwise wait for
successor to catch up

IS

[while (qgnode.next == null) {}]
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MCS Queue Lock

Pass lock to successor

[qnode.next.locked = false;l

173



Purple Release

releasing swap

174



Purple Release

\

By looking at the queue, | see
releasi another thread is active
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Purple Release

By looking at the queue, | see
another thread Is active

releasi

4

, 1

A

false | have to wait for that
thread to finish

I |
\
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Purple Release

releasing prepare to spin
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Purple Release

releasing spinning
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Purple Release

releasing spinning
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Purple Release

releasing Acquired lock

i

i
—
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Abortable Locks

« What If you want to give up waiting for a
lock?

* For example
— Timeout
— Database transaction aborted by user

181



Back-off Lock

* Aborting Is trivial

— Just return from lock() call
« Extra benefit:

— No cleaning up

— Walit-free

— Immediate return
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Queue Locks

« Can'tjust quit
— Thread in line behind will starve
* Need a graceful way out
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Queue Locks

spinning spinning spinning

184



Queue Locks

locked spinning spinning

false
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Queue Locks

locked

spinning
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Queue Locks

locked

false

187



Queue Locks

spinning spinning spinning

188



Queue Locks

spinning spinning

189



locked

false

Queue Locks

spinning
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Queue Locks

spinning

191



Queue Locks

pwned

=
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Abortable CLH Lock

* When a thread gives up
— Removing node in a wait-free way Is hard

e |dea:
— |let successor deal with It.

193



Initially
idle

i

Pointer to
predecessor
(or null)
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Initially

idle o
Distinguished
avalilable node

" means lock is
,_/ free
tail

=

A
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Acquiring

acquiring

tail } -

196



. Null predecessor
Acqumng means lock not

acquiring released or

" aborted
—-)
=
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Acquiring

acquiring

e

Swap

I
A
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Acquiring

acquiring

199



Acquired

locked

Reference to
AVAILABLE means
lock Is free.
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Normal Case

locked spinning spinning

Null means lock Is
not free & request
not aborted




One Thread Aborts

locked

=
—|

Timed out  Spinning

i~
-

202



Successor Notices

locked Timed out spinning
I
3
O

Non-Null means
predecessor
aborted or done
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Recycle Predecessor’'s Node

locked spinning

i i~
—>.->||. .->||.
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Spin on Earlier Node

Iocked spinning

-

205




Spin on Earlier Node

released spinning
o

The lock Is now
mine

-
B




Time-out Lock

public class TOLock implements Lock {
static Qnode AVAILABLE
= new Qnode () ;
AtomicReference<Qnode> tail;
ThreadlLocal<Qnode> myNode;
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Time-out Lock
static Qnode AVAILABLE
[ = new Qnode() ; l
\‘
AVAILABLE node
signifies free lock
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Time-out Lock

[AtomicReference<Qnode> tail; ]

N

Tail of the queue

209



Time-out Lock

[ThreadLocal<Qnode> myNode ;

Remember my node ...
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Time-out Lock

public boolean lock (long timeout) {
Onode gnode = new Qnode() ;
myNode. set (gnode) ;
gqnode.prev = null;

OQnode myPred = tail.getAndSet (gnode) ;

if (myPred== null
| | myPred.prev == AVAILABLE) ({

return true;
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Time-out Lock

6node gqnode = new Qnode() ; A

myNode. set (gnode) ;

@node.prev = null;

Create & Initialize node
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Time-out Lock

[Qnode myPred = tail.getAndSet(qnodeJ;

Swap with tail

213



Time-out Lock

(- )
if (myPred == null

| | myPred.prev == AVAILABLE)| {

return true;

b \/_)

If predecessor absent or
released, we are done

214




locked spinning spinning

Time-out LOgK i~
=

=

long start = now() ;
while (now()- start < timeout) {
Qnode predPred = myPred.prev;

if (predPred == AVAILABLE) {
return true;

} else if (predPred '= null) {
myPred = predPred;
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Time-out Lock

long start = now() ;
while (now()- start < timeout) {

Keep trying for a while

216



Time-out Lock

[ Qnode predPred = myPred.prev;

Spin on predecessor’s
prev field

217



Time-out Lock

[ if (predPred == AVAILABLE) ({

return true;

Predecessor released lock

218



Time-out Lock

} else if (predPred !'= null)
myPred = predPred;
Predecessor aborted,
advance one
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Time-out Lock

if ('tail.compareAndSet (gnode, myPred))
gqnode .prev = myPred;

return false;

What do | do when | time out?

220



Time-out Lock

if ('tail.compareAndSet (gnode, myPred))
gqnode .prev = myPred;

Do | have a successor?
If CAS falls, | do.
Tell it about myPred
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Time-out Lock

gnode .prev = myPred;

[return false;

If CAS succeeds: no
successor, simply return false
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Time-Out Unlock

public void unlock () {
Onode gnode = myNode.get() ;
if ('tail.compareAndSet (gnode, null))
gnode.prev = AVAILABLE;
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Time-out Unlock

gqnode.prev = AVAILABLE;

N

If CAS failed:
SuUcCcessor exists,
notify It can enter

[if ('tail.compareAndSet (qnode, null)) ]
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Timing-out Lock

[ if ('tail.compareAndSet (gqnode, null)) ]

CAS successful: set tail to
null, no clean up since no
successor waiting
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One Lock To Rule Them All?

 TTAS+Backoff, CLH, MCS, Tolock...
* Each better than others in some way
* There Is no one solution

* Lock we pick really depends on:
— the application
— the hardware
— which properties are important
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SOME RIGHTS RESERVED

This work i1s licensed under a

You are free:
— to Share — to copy, distribute and transmit the work
— to Remix — to adapt the work

Under the following conditions:

— Attribution. You must attribute the work to “The Art of Multiprocessor
Programming” (but not in any way that suggests that the authors endorse
you or your use of the work).

— Share Alike. If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license.

For any reuse or distribution, you must make clear to others the license terms of
this work. The best way to do this is with a link to

— http://creativecommons.org/licenses/by-sa/3.0/.

Any of the above conditions can be waived if you get permission from the
copyright holder.

Nothing in this license impairs or restricts the author's moral rights.
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