Programming Paradigms for Concurrency
Lecture 4 — Spin Locks and Contention

[HE AR

MULTIPROCESSOR
PROGRAMMING

The Art of Multiprocessor Programming

Focus so far: Correctness

 Models

— Accurate (1 never lied to you)
— But idealized (so | forgot to mention a few things)

* Protocols
— Elegant
— Important
— But naive

New Focus: Performance

 Models

— More complicated (not the same as complex!)
— Still focus on principles (not soon obsolete)

* Protocols
— Elegant (in their fashion)

— Important (why else would we pay attention)
— And realistic (your mileage may vary)

Kinds of Architectures

« SISD (Uniprocessor)
— Single instruction stream
— Single data stream

« SIMD (Vector)
— Single instruction
— Multiple data
« MIMD (Multiprocessors)

— Multiple instruction
— Multiple data.

Kinds of Architectures

« MIMD (Multiprocessors)
— Multiple instruction
. — Multiple data.

(1)

Our space

MIMD Architectures
A

%
g
o o ¢

Shared Bus Distributed

 Memory Contention
« Communication Contention
« Communication Latency

Today: Revisit Mutual Exclusion

 Performance, not just correctness

* Proper use of multiprocessor
architectures

* A collection of locking algorithms...

7(1)

What Should you do if you can't
get a lock?

« Keep trying

— “spin” or “busy-wait”

— Good If delays are short
* Give up the processor

— Good if delays are long
— Always good on uniprocessor

8(1)

What Should you do if you can't

get a lock?

. @eep trying
— “spin” or “busy-wait”

. Good If delays are short

* Glve up the proc
— Good If delays are long

— Always good on uniprocessor

\

our focus

9

Basic Spin-Lock

B o
“;'55
s

o

= —"
spin critical Resets I_ock
lock section upon exit

10

Performance

* Experiment
— n threads
— Increment shared counter 1 million times

 How long should it take?
 How long does it take?

11

Basic Spin-Lock

..lock introduces

==4 TN

"9

uential bottleneck

“

Resets lock

spin critical (
/ lock section upon exit

)

12

Basic Spin-Lock

l‘ ...lock suffers from contention
C§ /',

\ %
=1 B

spin critical Resets I_ock
/ lock section upon exit

13

Basic Spin-Lock

l‘ ...lock suffers from contention
C§ /',

\ %
=1 B

spin critical Resets I_ock
/ lock section upon exit

Notice: these are distinct
phenomena

14

Basic Spin-Lock

l‘ ...lock suffers from contention
C§ /',

\ %
=1 B

spin critical Resets I_ock
/ lock section upon exit

Seq Bottleneck = no parallelism

15

Basic Spin-Lock

l‘ ...lock suffers from contention
<5,
~0[&

/ spin critical Resets lock

lock section upon exit

Contention = ??77?

16

time

Graph

no speedup
because of
sequential

4)

%Ieneck y
ideal

threads

17

time

Mystery #1

filter lock

What Is
threads Joing

Test-and-Set

Boolean value

Test-and-set (TAS)

— Swap true with current value

— Return value tells if prior value was true or
false

Can reset just by writing false
TAS aka “getAndSet”

19

Test-and-Set

public class AtomicBoolean {
boolean value;

public synchronized boolean
getAndSet (boolean newValue) ({

boolean prior = value;
value = newValue;
return prior;

}
}

20 (5)

Test-and-Set

[public class AtomicBoolean ({]

Package
java.util.concurrent.atomic

21

Test-and-Set

-

public synchronized boolean
getAndSet (boolean newValue) ({

boolean prior = value;
value = newValue;

~N

\ return prior; ‘\\\\\J/____)

Swap old and new

values

22

Test-and-Set

AtomicBoolean lock
= new AtomicBoolean (false)

boolean prior = lock.getAndSet (true)

23

Test-and-Set

[boolean prior = lock.getAndSet(true)]

\/

Swapping in true is called
“test-and-set” or TAS

24 (5)

Test-and-Set Locks

* Locking
— Lock is free: value Is false
— Lock is taken: value Is true

* Acquire lock by calling TAS
— If result is false, you win
— If result Is true, you lose

* Release lock by writing false

25

Test-and-set Lock

class TASlock {
AtomicBoolean state =
new AtomicBoolean (false) ;

void lock () {
while (state.getAndSet(true)) ({}

}

void unlock () {
state.set (false) ;

b}

26

Test-and-set Lock

|

AtomicBoolean state =
new AtomicBoolean (false) ;

Lock state iIs AtomicBoolean

27

Test-and-set Lock

[while (state.getAndSet (true)) {}]

"

Keep trying until lock acquired

28

Test-and-set Lock

Release lock by resetting
state to false

[state.set (false) ;

29

Space Complexity

TAS spin-lock has small “footprint”
N thread spin-lock uses O(1) space
As opposed to O(n) Filter/Bakery

How did we overcome the Q(n) lower
bound?

We used a Read-Modify-Write (RMW)
operation...

30

Test-and-Test-and-Set Locks

 Lurking stage
— Wait until lock “looks” free
— Spin while read returns true (lock taken)

* Pouncing state
— As soon as lock “looks” available
— Read returns false (lock free)
— Call TAS to acquire lock
— If TAS loses, back to lurking

31

Test-and-test-and-set Lock

class TTASlock {
AtomicBoolean state =
new AtomicBoolean (false) ;

void lock () {
while (true) {
while (state.get()) {}
if (!'state.getAndSet(true))
return;

32

Test-and-test-and-set Lock

[while (state.get()) {1}

Walit until lock looks free

33

Test-and-test-and-set Lock

Then try to

acquire It
if (!'state.getAndSet(true))
return;

34

time

Mystery #2

e

threads

TAS lock

TTAS lock

|deal

35

Mystery

* Both
— TAS and TTAS
— Do the same thing (in our model)

« Except that
— TTAS performs much better than TAS
— Neither approache is ideal

36

Opinion

« Our memory abstraction is broken

e TAS & TTAS methods

— Are provably the same (in our model)
— Except they aren't (in field tests)

* Need a more detailed model ...

37

Bus-Based Architectures

MIM

>

<>

memory

38

Bus-Based Architectures

~

Random access memory

(10s of cycles)

J

 —

=

memory

39

/_Bu&Based_Amhjleatur\es

Shared Bus
*Broadcast medium
One broadcaster at a time
*Processors and memory all

Bus

\\ “snoop”
| | _//\/_\/
<

=

>

memory

40

Busﬁ

er-Processor Caches
Small
*Fast: 1 or 2 cycles
Address & state information

memory

41

Jargon Watch

» Cache hit
—“| found what | wanted in my cache”
— Good Thing™

42

Jargon Watch

» Cache hit
—“| found what | wanted in my cache”
— Good Thing™

e Cache miss

— “l had to shlep all the way to memory for
that data”

— Bad Thing™

43

Cave Canem

* This model is still a simplification
— But not in any essential way
— lllustrates basic principles

* Will discuss complexities later

44

Processor Issues Load Request

MQ@

Bus

E
memory IEEW

45

2racessor Issues Load Request
data
Oo,
| | |

==
memory IEEN

46

Memory Responds

8 8

Bus

Got your

A

data right
here

Oo. memory

47

memory

48

Processc

Gimme
data
, Oo,

sues Load Request

memory

49

Processor Issues Load Request
| got
data

memory

50

Qther Processor Responds
| got
& e
| | |
==
memory

51

Other Processor Responds

8 =

=
memory

52

Modify Cached Data

QI@

_data [data [|

==
memory IEEW

53 (1)

Modify Cached Data

25 B

<: |data| | |

memory

>

54 (1)

Modify Cached Data

QI@

| data [EEEEEE

==

memory IEEW

95

Modify Cached Data

I@

| data |

Bus
What's up with the othe '
coples’> hﬁ ata

Cache Coherence

* \We have lots of copies of data
— Original copy in memory
— Cached copies at processors
* Some processor modifies its own copy

— What do we do with the others?
— How to avoid confusion?

Y

Write-Back Caches

* Accumulate changes in cache

* Write back when needed
— Need the cache for something else
— Another processor wants it

* On first modification

— Invalidate other entries
— Requires non-trivial protocol ...

58

Write-Back Caches

« Cache entry has three states
— Invalid: contains raw seething bits
— Valid: | can read but | can’t write

— Dirty: Data has been modified
* Intercept other load requests
» Write back to memory before using cache

59

Invalidate

MI@

| data EEEEEE

Bus

==

memory [EZ

60

Invalidate
ine!
o O mine

memory [EZ

61

Invalidate

memory [EZ

62

Invalidate

Other caches lose read permission]

| data |

memory

63

Invalidate

Other caches lose read permission]

! data |

_{ This cache acquires write permission J

64

Invalidate

P/ A A

: : N
g Memory provides data only If not present
INn any cache, so no need to change it

now (expensive)

.

=

memory

65

Another Processor Asks for Data

memory [EZ

66

memory [EZ

67

End of the Day ...

meml Reading OK, no Writing‘

68

Mutual Exclusion

« What do we want to optimize?
— Bus bandwidth used by spinning threads
— Release/Acquire latency
— Acquire latency for idle lock

69

Simple TASLock

 TAS Invalidates cache lines
* Spinners

— Miss in cache

— Go to bus

 Thread wants to release lock
— delayed behind spinners

70

Test-and-test-and-set

« Wait until lock “looks” free
— Spin on local cache
— No bus use while lock busy

 Problem: when lock is released
— Invalidation storm ...

71

Local Spinning while Lock Is
Busy

MIM

(}

memory I

72

On Release

&

73

On Release
Everyone misses,

rereads

74 (1)

On Release
Everyone tries TAS

75 (1)

Problems

* Everyone misses
— Reads satisfied sequentially

* Everyone does TAS
— Invalidates others’ caches

* Eventually quiesces after lock acquired
— How long does this take?

76

Measuring Quiescence Time
l@l‘<_—’

« Acquire lock
« Pause without using bus é"i—
» Use bus heavily N

If pause > quiescence time,

critical section duration independent of number of threads
If pause < quiescence time,
critical section duration slower with more threads

77

Quiescence Time

Increses
linearly with

the number of
processors for
bus architecture

time

threads

78

Mystery Explained

TAS lock

TTAS lock

time

|deal

~
Better than TAS

but still not as
good as ideal

thread

Solution: Introduce Delay

* |f the lock looks free
« But | fail to get it

* There must be contention
» Better to back off than to collide again

B
.‘ﬁ

time -- ' I spin lock
r,d rld

80

Dynamic Example:
Exponential Backoff

N
“‘“b

spin lock

time --

4ad
If | fail to get lock
— wait random duration before retry

— Each subsequent failure doubles
expected walit

81

Exponential Backoff Lock

public class Backoff implements lock ({

public void lock() {
int delay = MIN DELAY;
while (true) {
while (state.get()) {}
if ('lock.getAndSet (true))
return;
sleep(random() % delay)
if (delay < MAX DELAY)
delay = 2 * delay;
1}

82

Exponential Backoff Lock

| int delay = MIN DELAY;

FIXx minimum delay

83

Exponential Backoff Lock

[while (state.get()) {}

Walit until lock looks free

84

Exponential Backoff Lock

if ('lock.getAndSet (true))
return;

If we win, return

85

Exponential Backoff Lock

Back off for random duration

[sleep(random() % delay) ;

86

Exponential Backoff Lock

Double max delay, within reason

|

if (delay < MAX DELAY)
delay = 2 * delay;

87

time

Spin-Waiting Overhead

TTAS Lock

Backoff lock

threads

88

Backoff: Other Issues

 Good

— Easy to implement
— Beats TTAS lock

 Bad

— Must choose parameters carefully
— Not portable across platforms

89

|dea

 Avoid useless invalidations
— By keeping a queue of threads

 Each thread

— Notifies next in line
— Without bothering the others

90

Anderson Queue Lock
idle

next
=) &h

flags

T|F|F|F|F|F|F

91

Anderson Queue Lock

acquiring

next
U " getAndincrement

flags

T|F|F|F|F|F|F|F

92

Anderson Queue Lock

acquiring

next
{ " getAndincrement

flags

T|F|F|F|F|F|F|F

93

Anderson Queue Lock

acquired

next

94

Anderson Queue Lock

acquired acquiring

flags

T|F|F|F|F|F|F

95

Anderson Queue Lock

acquired acquiring

next
[|

flags getAndincrement

T|FF|IF|F|F|F|F|F

Anderson Queue Lock

acquired acquiring

next

{

flags getAndincrement

T|FFI | F|F|F|F|F

Anderson Que

next

acquired ¢

98

Anderson Queue Lock

released acquired

next

flags

99

Anderson Queue Lock

released acquired
next

100

Anderson Queue Lock

class ALock implements Lock ({
boolean|[] flags={true, false,..,false};
AtomicInteger next

= new AtomicInteger (0) ;
ThreadlLocal<Integer> mySlot;

101

Anderson Queue Lock

[boolean[] flags={true, false, .., false};]

o

One flag per thread

102

Anderson Queue Lock

AtomicInteger next
= new AtomicInteger (0) ;

Next flag to use

103

Anderson Queue Lock

[ThreadLocal<Integer> mySlot;]

Thread-local variable

104

Anderson Queue Lock

public lock() {
mySlot = next.getAndIncrement() ;
while (!'flags[mySlot %$ n]) {}:

flags[mySlot % n] = false;
}

public unlock () {
flags[(mySlot+l) % n] = true;
}

105

Anderson Queue Lock

[mySlot = next.getAndIncrement() ;]

Take next slot

106

Anderson Queue Lock

| while (!flags[mySlot % n]) {}; |

Spin until told to go

107

Anderson Queue Lock

[flags [myslot % n] = false;]

N

Prepare slot for re-use

108

Anderson Queue Lock

Tell next thread to go
|

l
&1ags[(my$lot+1) % n] = true;

109

Local Spinning

released acquired
next

Spin
OF on
my

bit

flags

FIF|F|F| F|F

[Unfortunately many bits share cache Iine]

110

False Sharing

released acquwed
Spin

on

Spinning thread
gets cache
Invalidation on
F F account of store
by threads it is

\ \not waiting for/
Line 1l Line 2

Result:
contention

The Solution: Padding

released acquired

Performance

TTAS

« Shorter handover than
backoff

queue ° Curve is practically flat
« Scalable performance

113

Anderson Queue Lock

Good

— First truly scalable lock
—Simple, easy to implement
—Back to FIFO order (like Bakery)

114

Anderson Queue Lock

Bad

—Space hog...
—One bit per thread =» one cache line
per thread

 What if unknown number of threads?

« What iIf small number of actual
contenders?

115

Craig-Landin-Hagersten Lock

* FIFO order

« Small, constant-size overhead per
thread

116

Initially
idle

i

|

117

Initially

—— Queue tall

118

Initially

Lock Is free

119

Initially
idle

i

|

120

Purple Wants the Lock

acquiring

i

|

121

Purple Wants the Lock

acquiring

/4
.

P

122

Purple Wants the Lock

acquiring

i

Swap

tail

123

Purple Has the Lock

acquired

&
-

= [

——

true

124

Red Wants the Lock

acquired acquiring

tail
-

125

Red Wants the Lock

acquired acquiring

L

Swap

false true true

126

Red Wants the Lock

acquired acquiring

&
L D)

-

127

Red Wants the Lock

acquired acquiring

*
*
L 2
L 2
L 2

.

L
0‘ .

* L
. L

L

. L

O‘ *
“ "
€ X

tail
-

128

Red Wants the Lock

acquired acquiring

ﬁ

\

\ Implicit
\ Linked list
&

tail ‘

L_J

129

acquired

i

Red Wants the | ock

oSG
by

mm [
\ g J

130

Red Wants the ! ock

acquired ¢ % |

Actually, it
» spins on
tail

cached copy

131

Purple Releases

release acquiring

o

o

\J\)

tail
[] false false true
\ Art of Multiprocessor Programming /

132

Purple Releases

released acquired

i

tall
=

133

Space Usage

o et
— L = number of locks
— N = number of threads

 ALock
— O(LN)

« CLH lock
— O(L+N)

134

CLH Queue Lock

class Qnode {
AtomicBoolean locked =

new AtomicBoolean (true) ;

135

CLH Queue Lock

[AtomicBoolean locked =

new AtomicBoolean (true) ;

}

Not released yet

136

CLH Queue Lock

class CLHLock implements Lock ({
AtomicReference<Qnode> tail;
ThreadLocal<Qnode> myNode
= new Qnode () ;
public void lock () {
Onode pred
= tail.getAndSet (myNode) ;
while (pred.locked) ({}
}}

137

CLH Queue Lock

[AtomicReference<Qnode> tail;]

Queue tall

138

CLH Queue Lock

ThreadLocal<Qnode> myNode
= new Qnode () ;

\

Thread-local Qnode

139

CLH Queue Lock

Swap in my node

Qnode pred
= tail.getAndSet (myNode) ;

140

CLH Queue Lock

Spin until predecessor
releases lock

[while (pred.locked) {}

141

CLH Queue Lock

Class CLHLock implements Lock {

public void unlock () ({
myNode. locked.set (false) ;
myNode = pred;

}

}

142

CLH Queue Lock

[myNode.1ocked.set(false)

Notify successor

143

CLH Queue Lock

[myNode = pred;

Recycle
predecessor’'s node

144

CLH Queue Lock

[myNode = pred;

(we don’t actually reuse myNode.
Code in book shows how it’s done.)

145

CLH Lock

 Good

— Lock release affects predecessor only
— Small, constant-sized space

 Bad

— Doesn’t work for uncached NUMA
architectures

146

NUMA Architecturs

* Acronym:
— Non-Uniform Memory Architecture

* lllusion:
— Flat shared memory

 Truth:

— No caches (sometimes)
— Some memory regions faster than others

147

NUMA Machines

Spinning on local

memory Is fast
148

N

MA Machines
%\'
4

¢ @

Spinning on remote
memory Is slow

149

CLH Lock

* Each thread spins on predecessor’s
memory

* Could be far away ...

150

Mellor-Crummey-Scott Lock

 FIFO order
* Spin on local memory only
« Small, Constant-size overhead

151

Initially

152

Acquiring

acquiring

" (allocate Qnode)

153

Acquiring

acquired

154

Acquiring

acquired

o
q un. 7

155

Acquired

acquired

156

Acquiring

acquired ACqUINY

tail

Acquiring

acquiring

i
;”\/—\» ﬂ’“'

acquired

i

Acquiring

acquiring

_

= ——. [
159

acquired

i

Acqum

C"I

acquired

i

tail

||||¥\\~__//"-_"“->

160

Acquiri;
=

acquired
' I

161

Acquiring

acquiring

°0
I O

acquired

i

162

MCS Queue Lock

class QOnode {
boolean locked = false;
ONode next null;

}

163

MCS Queue Lock

class MCSLock implements Lock ({
AtomicReference tail;
public void lock() {

Onode gqnode = new Qnode() ;

Onode pred = tail.getAndSet (gnode) ;

if (pred '= null) {

gqnode. locked = true;

pred.next = gnode;

while (qnode.locked) ({}

1}

164

MCS Queue Lock

Make a

QNode
[Qnode gnode = new Qnode() ;

165

MCS Queue Lock

[Qnode pred = tail.getAndSet (gnode) ;]

— |

add my Node to
the tail of
gueue

166

MCS Queue Lock

if (pred '= null) {

gqnode. locked = true;

_ pred.next = gnode;

J

Fix If qgueue was
non-empty

167

MCS Queue Lock

Wait until
unlocked

| while (qnode.locked) {}

168

MCS Queue Unlock

class MCSLock implements Lock ({
AtomicReference tail;
public void unlock () {
if (gnode.next == null) {
if (tail.CAS(gnode, null)
return;
while (gnode.next == null) {}
}

gnode.next.locked = false;

b}

169

MCS Queue Lock

[if (gnode.next == null) {

Missing
successor
?

170

MCS Queue Lock

If really no successor,

return [\\\\\\k

[if (tail.CAS(gnode, null)]

return;

171

MCS Queue Lock

Otherwise wait for
successor to catch up

IS

[while (qgnode.next == null) {}]

172

MCS Queue Lock

Pass lock to successor

[qnode.next.locked = false;l

173

Purple Release

releasing swap

174

Purple Release

\

By looking at the queue, | see
releasi another thread is active

175

Purple Release

By looking at the queue, | see
another thread Is active

releasi

4

, 1

A

false | have to wait for that
thread to finish

I |
\

176

Purple Release

releasing prepare to spin

177

Purple Release

releasing spinning

178

Purple Release

releasing spinning

179

Purple Release

releasing Acquired lock

i

i
—

180

Abortable Locks

« What If you want to give up waiting for a
lock?

* For example
— Timeout
— Database transaction aborted by user

181

Back-off Lock

* Aborting Is trivial

— Just return from lock() call
« Extra benefit:

— No cleaning up

— Walit-free

— Immediate return

182

Queue Locks

« Can'tjust quit
— Thread in line behind will starve
* Need a graceful way out

183

Queue Locks

spinning spinning spinning

184

Queue Locks

locked spinning spinning

false

185

Queue Locks

locked

spinning

186

Queue Locks

locked

false

187

Queue Locks

spinning spinning spinning

188

Queue Locks

spinning spinning

189

locked

false

Queue Locks

spinning

190

Queue Locks

spinning

191

Queue Locks

pwned

=

192

Abortable CLH Lock

* When a thread gives up
— Removing node in a wait-free way Is hard

e |dea:
— |let successor deal with It.

193

Initially
idle

i

Pointer to
predecessor
(or null)

194

Initially

idle o
Distinguished
avalilable node

" means lock is
,_/ free
tail

=

A

195

Acquiring

acquiring

tail } -

196

. Null predecessor
Acqumng means lock not

acquiring released or

" aborted
—-)
=

197

Acquiring

acquiring

e

Swap

I
A

198

Acquiring

acquiring

199

Acquired

locked

Reference to
AVAILABLE means
lock Is free.

200

Normal Case

locked spinning spinning

Null means lock Is
not free & request
not aborted

One Thread Aborts

locked

=
—|

Timed out Spinning

i~
-

202

Successor Notices

locked Timed out spinning
I
3
O

Non-Null means
predecessor
aborted or done

203

Recycle Predecessor’'s Node

locked spinning

i i~
—>.->||. .->||.

204

Spin on Earlier Node

Iocked spinning

-

205

Spin on Earlier Node

released spinning
o

The lock Is now
mine

-
B

Time-out Lock

public class TOLock implements Lock {
static Qnode AVAILABLE
= new Qnode () ;
AtomicReference<Qnode> tail;
ThreadlLocal<Qnode> myNode;

207

Time-out Lock
static Qnode AVAILABLE
[= new Qnode() ; l
\‘
AVAILABLE node
signifies free lock

208

Time-out Lock

[AtomicReference<Qnode> tail;]

N

Tail of the queue

209

Time-out Lock

[ThreadLocal<Qnode> myNode ;

Remember my node ...

210

Time-out Lock

public boolean lock (long timeout) {
Onode gnode = new Qnode() ;
myNode. set (gnode) ;
gqnode.prev = null;

OQnode myPred = tail.getAndSet (gnode) ;

if (myPred== null
| | myPred.prev == AVAILABLE) ({

return true;

211

Time-out Lock

6node gqnode = new Qnode() ; A

myNode. set (gnode) ;

@node.prev = null;

Create & Initialize node

212

Time-out Lock

[Qnode myPred = tail.getAndSet(qnodeJ;

Swap with tail

213

Time-out Lock

(-)
if (myPred == null

| | myPred.prev == AVAILABLE)| {

return true;

b \/_)

If predecessor absent or
released, we are done

214

locked spinning spinning

Time-out LOgK i~
=

=

long start = now() ;
while (now()- start < timeout) {
Qnode predPred = myPred.prev;

if (predPred == AVAILABLE) {
return true;

} else if (predPred '= null) {
myPred = predPred;

215

Time-out Lock

long start = now() ;
while (now()- start < timeout) {

Keep trying for a while

216

Time-out Lock

[Qnode predPred = myPred.prev;

Spin on predecessor’s
prev field

217

Time-out Lock

[if (predPred == AVAILABLE) ({

return true;

Predecessor released lock

218

Time-out Lock

} else if (predPred !'= null)
myPred = predPred;
Predecessor aborted,
advance one

219

Time-out Lock

if ('tail.compareAndSet (gnode, myPred))
gqnode .prev = myPred;

return false;

What do | do when | time out?

220

Time-out Lock

if ('tail.compareAndSet (gnode, myPred))
gqnode .prev = myPred;

Do | have a successor?
If CAS falls, | do.
Tell it about myPred

221

Time-out Lock

gnode .prev = myPred;

[return false;

If CAS succeeds: no
successor, simply return false

222

Time-Out Unlock

public void unlock () {
Onode gnode = myNode.get() ;
if ('tail.compareAndSet (gnode, null))
gnode.prev = AVAILABLE;

223

Time-out Unlock

gqnode.prev = AVAILABLE;

N

If CAS failed:
SuUcCcessor exists,
notify It can enter

[if ('tail.compareAndSet (qnode, null))]

224

Timing-out Lock

[if ('tail.compareAndSet (gqnode, null))]

CAS successful: set tail to
null, no clean up since no
successor waiting

225

One Lock To Rule Them All?

 TTAS+Backoff, CLH, MCS, Tolock...
* Each better than others in some way
* There Is no one solution

* Lock we pick really depends on:
— the application
— the hardware
— which properties are important

226

SOME RIGHTS RESERVED

This work i1s licensed under a

You are free:
— to Share — to copy, distribute and transmit the work
— to Remix — to adapt the work

Under the following conditions:

— Attribution. You must attribute the work to “The Art of Multiprocessor
Programming” (but not in any way that suggests that the authors endorse
you or your use of the work).

— Share Alike. If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license.

For any reuse or distribution, you must make clear to others the license terms of
this work. The best way to do this is with a link to

— http://creativecommons.org/licenses/by-sa/3.0/.

Any of the above conditions can be waived if you get permission from the
copyright holder.

Nothing in this license impairs or restricts the author's moral rights.

227

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

