
G22.2110-003 Programming Languages - Fall 2012
Week 14 - Part 1

Thomas Wies

New York University



Review

Last lecture

I Exceptions



Outline

Today:

I Generic Programming

Sources for today’s lecture:

I PLP, ch. 8.4

I Programming in Scala, ch. 19, 20.6



Generic programming

Subroutines provide a way to abstract over values.

Generic programming lets us abstract over types.

Examples:

I A sorting algorithm has the same structure, regardless of the types
being sorted

I Stack primitives have the same semantics, regardless of the objects
stored on the stack.

One common use:

I algorithms on containers: updating, iteration, search

Language models:

I C: macros (textual substitution) or unsafe casts
I Ada: generic units and instantiations
I C++, Java, C#, Scala: generics (also called templates)
I ML: parametric polymorphism, functors



Parameterizing software components

Construct Parameter(s):

array bounds, element type
subprogram values (arguments)
Ada generic package values, types, packages
Ada generic subprogram values, types
C++ class template values, types
C++ function template values, types
Java generic classes
Scala generic types (and implicit values)
ML function values (including other functions)
ML type constructor types
ML functor values, types, structures



Templates in C++

template <typename T>
class Array {
public:

explicit Array (size_t ); // constructor

T& operator [] (size_t ); // subscript operator

... // other operations

private:
... // a size and a pointer to an array

};

Array <int > V1 (100); // instantiation

Array <int > V2; // use default constructor

typedef Array <employee > Dept; // named instance



Type and value parameters

template <typename T, unsigned int i>
class Buffer {

T v[i]; // storage for buffer

unsigned int sz; // total capacity

unsigned int count; // current contents

public:
Buffer () : sz(i), count (0) { }
T read ();
void write (const T& elem);

};

Buffer <Shape *, 100> picture;



Template Does not Guarantee Success

template <typename T>
class List {

struct Link { // for a list node

Link *pre , *succ; // doubly linked

T val;
Link (Link *p, Link *s, const T& v)

: pre(p), succ(s), val(v) { }
};
Link *head;

public:
void print (std:: ostream& os) {

for (Link *p = head; p; p = p->succ)
// will fail if operator << does

// not exist for T

os << p->val << "\n";
}

};



Function templates

Instantiated implicitly at point of call:

template <typename T>
void sort (vector <T>&) { ... }

void testit (vector <int >& vi) {
sort(vi); // implicit instantiation

// can also write sort <int >(vi);

}



Functions and function templates

Templates and regular functions overload each other:

template <typename T> class Complex {...};

template <typename T> T sqrt (T); // template

template <typename T> Complex <T> sqrt (Complex <T>);
// different algorithm

double sqrt (double ); // regular function

void testit (Complex <double > cd) {
sqrt (2); // sqrt <int >

sqrt (2.0); // sqrt (double ): regular function

sqrt(cd); // sqrt <Complex <double > >

}



Iterators and containers

I Containers are data structures to manage collections of items

I Typical operations: insert, delete, search, count
I Typical algorithms over collections use:

I imperative languages: iterators
I functional languages: map, fold

interface Iterator<E> {
boolean hasNext (); // returns true if there are

// more elements

E next (); // returns the next element

void remove (); // removes the current element

// from the collection

};



The Standard Template Library

The Standard Template Library (STL) is a set of useful data structures
and algorithms in C++, mostly to handle collections.

I Sequential containers: list, vector, deque

I Associative containers: set, map

We can iterate over these using (what else?) iterators.
Iterators provided (for vector<T>):

vector <T>:: iterator
vector <T>:: const_iterator
vector <T>:: reverse_iterator
vector <T>:: const_reverse_iterator

Note: Almost no inheritance used in STL.



Iterators in C++

For standard collection classes, we have member functions begin and
end that return iterators.

We can do the following with an iterator p (subject to restrictions):
*p “Dereference” it to get the element it points to
++p, p++ Advance it to point to the next element
--p, p-- Retreat it to point to the previous element
p+i Advance it i times
p-i Retreat it i times

A sequence is defined by a pair of iterators:

I the first points to the first element in the sequence

I the second points to one past the last element in the sequence

There are a variety of operations that work on sequences.



Iterator example 1

#include <vector >
#include <iostream >
using namespace std;
int main() {

vector <int > v;
for (int i = 0; i < 10; ++i) v.push_back(i);
// Print list

vector <int >:: iterator it;
for (it = v.begin (); it != v.end(); ++it) {

cout << *it << " ";
}
cout << endl << endl;
// Use reverse iterator to print in reverse order

vector <int >:: reverse_iterator rit;
for (rit = v.rbegin (); rit != v.rend (); ++rit) {

cout << *rit << " ";
}
cout << endl;

}



Iterator example 2

#include <vector>
#include <string>
#include <iostream>

using namespace std;

int main () {
vector<string> ss(20); // initialize to 20 empty strings

for (int i = 0; i < 20; i++)
ss[i] = string(1, ’a’+i); // assign "a", "b", etc.

vector<string>::iterator loc =
find(ss.begin(), ss.end(), "d"); // find first "d"

cout << "found: " << *loc
<< " at position " << loc - ss.begin()
<< endl;

}



STL algorithms, part 1

STL provides a wide variety of standard algorithms on sequences.

Example: finding an element that matches a given condition

// Find first 7 in the sequence

list<int>::iterator p = find(c.begin(), c.end(), 7);

#include <algorithm>

// Find first number less than 7 in the sequence

bool less_than_7 (int v) {
return v < 7;

}

list<int>::iterator p = find_if(c.begin(), c.end(),
less_than_7);



STL algorithms, part 2

Example: doing something for each element of a sequence

It is often useful to pass a function or something that acts like a function:

#include <iostream >
#include <algorithm >

template <typename T>
class Sum {

T res;
public:

Sum (T i = 0) : res(i) { } // initialize

void operator () (T x) { res += x; } // accumulate

T result () const { return res; } // return sum

};

void f (list <double >& ds) {
Sum <double > sum;
sum = for_each(ds.begin(), ds.end(), sum);
cout << "the sum is " << sum.result () << "\n";

}



C++ templates are Turing complete

Templates in C++ allow for arbitrary computation to be done
at compile time!

template <int N>
struct Factorial {

enum { V = N * Factorial <N-1>::V };
};

template <>
struct Factorial <1> {

enum { V = 1 };
};

void f () {
const int fact12 = Factorial <12>::V;
cout << fact12 << endl; // 479001600

}



Generics in Java

Only class parameters

Implementation by type erasure: all instances share the same code

interface Collection <E> {
public void add (E x);
public Iterator <E> iterator ();

}

Collection <Thing> is a parametrized type

Collection (by itself) is a raw type!



Generic methods in Java

class Collection <A extends Comparable <A>> {
public A max () {

Iterator <A> xi = this.iterator ();
A biggest = xi.next ();
while (xi.hasNext ()) {

A x = xi.next ();
if (biggest.compareTo(x) < 0)

biggest = x;
}
return biggest;

}
...

}



Generic Programming in Scala

Scala supports two orthogonal generic programming concepts:

Type parameters

I allowed in traits, classes, objects, and methods

I implementation by type erasure like in Java

I no notion of raw types, generic classes are only type constructors
I issues related to subtype polymorphism

I variance annotations
I lower and upper bounds, view bounds

I can simulate type classes with context bounds

Abstract types

I traits and classes can have types as members

I like other members, types can be abstract



Generic classes in Scala

A simple generic functional queue implementation:

class Queue[T] private (private val elems: List[T]) {
def enqueue(x: T) = new Queue(x :: elems)
def dequeue() =
(elems.last, new Queue(elems dropRight 1))

}

object Queue {
def apply[T](xs: T*) = new Queue(xs.toList.reverse)

}

scala> val intQueue = Queue(1,2,3)
q: Queue[Int] = Queue@58804a77

scala> q.dequeue
res0: Int = 1



Generic classes and subtyping

Consider a generic class

class C[T] { ... }

If S is a subtype of U (denoted S <: U), what does this mean for the
types C[S] and C[U]?

Is it safe to use values of type C[S] in place of values of type C[U] or
vice versa?

I if C[S] <: C[U], then C is said to be covariant in T

I if C[U] <: C[S], then C is said to be contravariant in T

I otherwise C is said to be invariant in T.



Variance annotations

Unlike Java, Scala allows the programmer to specify the variance of
type parameters.

I class C[+T] { ... } specifies that C is covariant in T

I class C[-T] { ... } specifies that C is contravariant in T

I class C[T] { ... } specifies that C is invariant in T

The correctness of these variance annotations is checked by the compiler.

In Java, generic classes are always invariant (with the exception of
Array, which is covariant in the element type).

This restriction in Java can be alleviated using raw types but their
correct usage can only be checked at run time.



When is covariance safe?

C is covariant in a type parameter T means that a value of type C[S] is
usable as a C[U] if each values of type S is useable as a U.

This is not always possible:

class Cell[T](init: T) {
private[this] var current = init
def get = current
def set(x: T) { current = x }

}

Suppose Cell was covariant in T. Then we could do the following:

val c1 = new Cell[String]("abc")
val c2: Cell[Any] = c1 // OK, because Cell is covariant

c2.set(1) // OK, because Int <: Any

val s: String = c1.get // Bzzzt! - c1 now stores an Int



Java arrays revisited

An array is essentially an indexed sequence of cells.

Java’s arrays are covariant in their element type. This is unsafe:

class A { ... }
class B extends A { ... }

B[] b = new B[5];
A[] a = b; // allowed (a and b are now aliases)

a[1] = new A(); // Bzzzt! (ArrayStoreException)

Therefore, the JVM has to check the correctness of array stores at run
time, which is expensive.

In Scala, arrays are invariant in their element type.



Checked Variance Annotations

The Scala type checker ensures the safety of all variance annotations.

This gives stronger correctness guarantees at compile time and avoids
expensive run-time checks.

In particular, a covariant Cell class will be rejected by the compiler:

class Cell[+T](init: T) {
private[this] var current = init
def get = current
def set(x: T) { current = x }

}

error: covariant type T occurs in

contravariant position in type T of value x



Covariant queues

What about Queue?

Is it covariant in its type parameter?

class Queue[+T] private (private val elems: List[T]) {
def enqueue(x: T) = new Queue(x :: elems)
def dequeue() =
(elems.last, new Queue(elems dropRight 1))

}

It seems like this should be OK, since there is no mutable state.



Covariant queues

What about Queue?

Is it covariant in its type parameter?

class Queue[+T] private (private val elems: List[T]) {
def enqueue(x: T) = new Queue(x :: elems)
def dequeue() =
(elems.last, new Queue(elems dropRight 1))

}

It seems like this should be OK, since there is no mutable state.



A hypothetical counterexample

class StrangeQueue extends Queue[Int] {
override def enqueue(x: Int) {
println(math.sqrt(x))
super.enqueue(x)

}
}

val x: Queue[Any] = new StrangeQueue
// OK, because StrangeQueue <: Queue[Int] <: Queue[Any]

x.enqueue("abc") // Bzzzt! - Int expected

The compiler will reject the covariance annotation in Queue:
scala> class Queue[+T] (...) { def enqueue(x: T) = ... }

error: covariant type T occurs in

contravariant position in type T of value x



Lower bounds

Method enqueue is safe, as long as the given value is of a supertype U of
type parameter T.

We can encode this using a lower bound constraint.

class Queue[+T] private (private val elems: List[T]) {
def enqueue[U >: T](x: U) = new Queue[U](x :: elems)
...

}

Now we can use Queue covariantly and the compiler will reject the class
StrangeQueue.



Contravariance

Contravariance annotations are useful for type parameters that only
occur in contravariant positions:

trait OutputChannel[-T] {
def write(x: T)

}

It is safe to substitute an OutputChannel[AnyRef] for an
OutputChannel[String].

Co- and contravariance annotations may also be used in combination:

trait Function1[-S, +T] {
def apply(x: S): T

}



The Ordered trait

Scala provides a trait for representing ordered types:

trait Ordered[T] extends java.lang.Comparable[T] {
abstract def compare(that: T): Int
def <(that: T) = (this compare that) < 0
def >(that: T) = (this compare that) > 0
def <=(that: T) = (this compare that) <= 0
def >=(that: T) = (this compare that) >= 0
...

}



The Ordered trait

Ordered can be mixed into other classes to enable convenient
comparison of values:

class Person(val surName: String, val lastName: String)
extends Ordered[Person] {
def compare(that: Person) =
(lastName + surName) compareToIgnoreCase
(that.lastName + that.surName)

override def toString = surName + " " + lastName
}

scala> val robert = new Person("Robert", "Jones")
robert: Person = Robert Jones

scala> val sally = new Person("Sally", "Smith")
sally: Person = Sally Smith

scala> robert < sally
res0: Boolean = true



Upper bounds

We can use upper bounds to constrain type parameters.

def mergeSort[T <: Ordered[T]](xs: List[T]): List[T] = {
def merge(xs: List[T], ys: List[T]): List[T] =
(xs, ys) match {
case (Nil, _) => ys
case (_, Nil) => xs
case (x :: xs1, y :: ys1) =>
if (x < y) x :: merge(xs1, ys)
else y :: merge(xs, ys1)

}
val n = xs.length / 2
if (n == 0) xs else {
val (ys, zs) = xs splitAt n
merge(mergeSort(ys), mergeSort(zs))

}
}



Limitations of upper bounds

Upper bounds can be quite restrictive:

scala> mergeSort(List(3,1,2))

error: inferred type arguments [Int] do

not conform to method mergeSort ’s type

parameter bounds [T <: Ordered[T]]

The type Int does not extend Ordered[Int], but we can convert an
Int to an Ordered[Int].



View bounds

Define a view that implicitly converts Int to Ordered[Int]

implicit def int2ordered(x: Int): Ordered[Int] =
new Ordered[Int] {
override def compare(that: Int) =
if (x < that) -1 else if (x == that) 0 else -1

}

and replace the upper bound in mergeSort by a view bound

def mergeSort[T <% Ordered[T]](xs: List[T]): List[T] = ...

The view bound specifies that T can be viewed as an Ordered[T].

scala> mergeSort(List(3,1,2))
res0: List[Int] = List(1,2,3)



The Ordering trait

What if we have more than one ordering on a type T?

Scala’s API provides a trait Ordering.

An object of type Ordering[T] defines one strategy of ordering T.

For many basic types of Scala orderings are already implicitly defined.

trait IntOrdering extends Ordering[Int] {
override def compare(x: Int , y: Int) =

if (x < y) -1
else if (x == y) 0
else 1

}
implicit object Int extends IntOrdering



Context bounds

We can use a context bound to express that the type parameter T of
mergeSort has an associated implicit object of type Ordering[T]

def mergeSort[T : Ordering](xs: List[T]): List[T] = {
def merge(xs: List[T], ys: List[T]): List[T] =
(xs, ys) match {
case (Nil, _) => ys
case (_, Nil) => xs
case (x :: xs1, y :: ys1) =>
if (implicitly[Ordering[T]].lt(x, y))
x :: merge(xs1, ys)

else y :: merge(xs, ys1)
}

val n = xs.length / 2
if (n == 0) xs else {
val (ys, zs) = xs splitAt n
merge(mergeSort(ys), mergeSort(zs))

}
}



Abstract types

Disadvantage of type parameters

I Parameterization over many types tends to lead to an explosion of
bound parameters for encoding variances.

I Also, type parameters cannot be partially instantiated.

Alternative to type parameters

I Scala allows types as members of classes and traits.

I Type members can also be abstract.

I Abstract types are useful for encoding complex variance constraints.



Cows don’t eat fish

class Food
abstract class Animal {
def eat(food: Food)

}
class Grass extends Food
class Cow extends Animal {
override def eat(food: Grass) {} // this won’t compile,

// but if it did, ...

}
class Fish extends Food
val bessy: Animal = new Cow
bessy eat (new Fish) // ... you could feed fish to cows



Abstract types in action

class Food
abstract class Animal {
type SuitableFood <: Food
def eat(food: SuitableFood)

}
class Grass extends Food
class Fish extends Food
class Cow extends Animal {
type SuitableFood = Grass
override def eat(food: Grass) {}

}

scala> val bessy: Animal = new Cow
bessy: Animal = Cow@2e3919

scala> bessy eat (new Fish)

error: type mismatch;

found : Fish

required: bessy.SuitableFood



Functors in ML

Why functors, when we have parametric polymorphic functions and type
constructors (e.g. containers)?

I Functors can take structures as arguments. This is not possible with
functions or type constructors.

I Sometimes a type needs to be parameterized on a value. This is not
possible with type constructors.



Priority queues revisited

datatype order = LESS | EQUAL | GREATER

signature PRIORITY_QUEUE =
sig
type ’a prio_queue
exception EmptyQueue
val empty : (’a * ’a -> order) -> ’a prio_queue
val isEmpty : ’a prio_queue -> bool
val insert : ’a * ’a prio_queue -> ’a prio_queue
val min : ’a prio_queue -> ’a option
val delMin : ’a prio_queue -> ’a prio_queue

end

Problem:
Dependence of type ’a queue on the ordering on ’a is not made explicit.



Modified priority queue signature

First step: make element type part of the signature

signature PRIORITY_QUEUE =
sig
type elem
type prio_queue
exception EmptyQueue
val empty : prio_queue
val isEmpty : prio_queue -> bool
val insert : elem * prio_queue -> prio_queue
val min : prio_queue -> elem option
val delMin : prio_queue -> prio_queue

end



PriorityQueue functor

Second step: abstract over element type and compare function

functor PriorityQueue(type elem
val compare : elem * elem -> order)

:> PRIORITY_QUEUE where type elem = elem =
struct
type elem = elem
type prio_queue = elem list
exception EmptyQueue
val empty = []
...
fun insert (y, []) = [y]
| insert (y, x :: xs) =
if compare (y, x) = GREATER then x :: insert (y, xs)
else y :: x :: xs

...
end



Functor instantiation

Third step: instantiate the functor

structure IntPQ =
PriorityQueue (type elem = int

compare = Int.compare)

structure StringPQ =
PriorityQueue (type elem = string

compare = String.compare)

fun cmp (x, y) = case Int.compare (x, y) of
GREATER => LESS

| LESS => GREATER
| EQUAL => EQUAL

structure RevIntPQ = PriorityQueue (type elem = int
compare = cmp)



More on functors

Functors can also abstract over entire structures:

signature ORDERING =
sig
type elem
val compare: elem * elem -> order

end

functor PriorityQueue (structure Elem : ORDERING) :>
PRIORITY_QUEUE =

struct
type elem = Elem.elem
...

end



Higher-order functors

SML/NJ in addition supports higher-order functors

signature DI_GRAPH =
sig
type vertex
type label
type graph
...

end

funsig SHORTEST_PATHS_FN
(structure DiGraph : DI_GRAPH where type label = int) =

sig
type graph = DiGraph.graph
type vertex = DiGraph.vertex
type cost = int
val shortestPaths : graph * vertex -> (vertex * cost) list

end



Higher-order functors (Cont’d)

funsig PRIORITY_QUEUE_FN
(type elem
val compare : elem * elem -> order) =

PRIORITY_QUEUE where type elem = elem

functor Dijkstra
(functor PqFn : PRIORITY_QUEUE_FN) : SHORTEST_PATHS_FN =

struct
functor (structure G : DI_GRAPH where type label = int) =
struct
fun cmp ((_,c1), (_,c2)) = Int.compare (c1, c2)
structure Pq = PqFn(type elem = G.vertex * int

val compare = cmp)
...

end
end


