
G22.2110-003 Programming Languages - Fall 2012
Lecture 4

Thomas Wies

New York University



Review

Last week

I Control Structures

I Selection

I Loops

I Adding Invariants



Outline

I Subprograms

I Calling Sequences

I Parameter Passing

I Recursion

Sources:
PLP, 3.6, 6.6, 8.1 - 8.3



Subprograms

I The basic abstraction mechanism

I Functions correspond to the mathematical notion of computation:

input −→ output

I Procedures affect the environment, and are called for their
side-effects

I Pure functional model possible but rare (Haskell)

I Hybrid model most common: functions can have (limited) side
effects



Activation Records

Recall that subroutine calls rely heavily on use of the stack .

Each time a subroutine is called, space on the stack is allocated for the
objects needed by the subroutine.

This space is called a stack frame or activation record .

The stack pointer contains the address of either the last used location or
the next unused location on the stack.

The frame pointer points into the activation record of a subroutine so
that any objects allocated on the stack can be referenced with a static
offset from the frame pointer.



Activation Records

Why not use an offset from the stack pointer to reference subroutine
objects?

There may be objects that are allocated on the stack whose size is
unknown at compile time.

These objects get allocated above the frame pointer so that objects
whose size is known at compile time can still be accessed quickly.



Activation Records

Why not use an offset from the stack pointer to reference subroutine
objects?

There may be objects that are allocated on the stack whose size is
unknown at compile time.

These objects get allocated above the frame pointer so that objects
whose size is known at compile time can still be accessed quickly.



Activation Records

Why not use an offset from the stack pointer to reference subroutine
objects?

There may be objects that are allocated on the stack whose size is
unknown at compile time.

These objects get allocated last so that objects whose size is known at
compile time can still be accessed quickly via a known offset from the
frame pointer.

Example

procedure foo (size : integer) is
M : array (1..size , 1.. size) of real;
...
begin

...
end



Typical Activation Record

Stack pointer −→

Frame pointer −→

Variable-length
Objects

Temporaries

Local
Variables

Saved Values
of Registers etc.

Return address



Managing Activation Records

When a subroutine is called, a new activation record is created and
populated with data.
The management of this task involves both the caller and the callee.

I The calling sequence refers to code executed by the caller just
before and just after a subroutine call.

I The prologue refers to activation record management code executed
at the beginning of a subroutine.

I The epilogue refers to activation record management code executed
at the end of a subroutine.

Sometimes the term calling sequence is used to refer to the combined
operations of the caller, prologue, and epilogue.



Calling Sequence

Calling a subroutine

I Pass parameters

I Save return address

I Update static chain

I Change program counter

I Move stack pointer

I Save register values, including frame pointer

I Move frame pointer

I Initialize objects



Calling Sequence

Finishing a subroutine

I Finalize (destroy) objects

I Pass return value(s) back to caller

I Restore register values, including frame pointer

I Restore stack pointer

I Restore program counter



Calling Sequence

Are there advantages to having the caller or callee perform various tasks?

If possible, have the callee perform tasks: task code needs to occur only
once, rather than at every call site.

Some tasks (e.g. parameter passing) must be performed by the caller.



Calling Sequence

Are there advantages to having the caller or callee perform various tasks?

If possible, have the callee perform tasks: task code needs to occur only
once, rather than at every call site.

Some tasks (e.g. parameter passing) must be performed by the caller.



Calling Sequence

Are there advantages to having the caller or callee perform various tasks?

If possible, have the callee perform tasks: task code needs to occur only
once, rather than at every call site.

Some tasks (e.g. parameter passing) must be performed by the caller.



Saving Registers

One difficult question is whether the caller or callee should be in charge
of saving registers.

What would the caller have to do to ensure proper saving of registers?

Save all registers currently being used by caller.

What would the callee have to do to ensure proper saving of registers?

Save all registers that will be used by callee.

Which is better?
Could be either one–no clear answer.

In practice, many processors (including MIPS and x86) compromise: half
the registers are caller-save and half are callee-save.

Register Windows offer an alternative: each routine has access only to a
small window of a large number of registers; when a subroutine is called,
the window moves, overlapping a bit to allow parameter passing.



Saving Registers

One difficult question is whether the caller or callee should be in charge
of saving registers.

What would the caller have to do to ensure proper saving of registers?

Save all registers currently being used by caller.

What would the callee have to do to ensure proper saving of registers?

Save all registers that will be used by callee.

Which is better?
Could be either one–no clear answer.

In practice, many processors (including MIPS and x86) compromise: half
the registers are caller-save and half are callee-save.

Register Windows offer an alternative: each routine has access only to a
small window of a large number of registers; when a subroutine is called,
the window moves, overlapping a bit to allow parameter passing.



Saving Registers

One difficult question is whether the caller or callee should be in charge
of saving registers.

What would the caller have to do to ensure proper saving of registers?

Save all registers currently being used by caller.

What would the callee have to do to ensure proper saving of registers?

Save all registers that will be used by callee.

Which is better?
Could be either one–no clear answer.

In practice, many processors (including MIPS and x86) compromise: half
the registers are caller-save and half are callee-save.

Register Windows offer an alternative: each routine has access only to a
small window of a large number of registers; when a subroutine is called,
the window moves, overlapping a bit to allow parameter passing.



Saving Registers

One difficult question is whether the caller or callee should be in charge
of saving registers.

What would the caller have to do to ensure proper saving of registers?

Save all registers currently being used by caller.

What would the callee have to do to ensure proper saving of registers?

Save all registers that will be used by callee.

Which is better?
Could be either one–no clear answer.

In practice, many processors (including MIPS and x86) compromise: half
the registers are caller-save and half are callee-save.

Register Windows offer an alternative: each routine has access only to a
small window of a large number of registers; when a subroutine is called,
the window moves, overlapping a bit to allow parameter passing.



Saving Registers

One difficult question is whether the caller or callee should be in charge
of saving registers.

What would the caller have to do to ensure proper saving of registers?

Save all registers currently being used by caller.

What would the callee have to do to ensure proper saving of registers?

Save all registers that will be used by callee.

Which is better?

Could be either one–no clear answer.

In practice, many processors (including MIPS and x86) compromise: half
the registers are caller-save and half are callee-save.

Register Windows offer an alternative: each routine has access only to a
small window of a large number of registers; when a subroutine is called,
the window moves, overlapping a bit to allow parameter passing.



Saving Registers

One difficult question is whether the caller or callee should be in charge
of saving registers.

What would the caller have to do to ensure proper saving of registers?

Save all registers currently being used by caller.

What would the callee have to do to ensure proper saving of registers?

Save all registers that will be used by callee.

Which is better?
Could be either one–no clear answer.

In practice, many processors (including MIPS and x86) compromise: half
the registers are caller-save and half are callee-save.

Register Windows offer an alternative: each routine has access only to a
small window of a large number of registers; when a subroutine is called,
the window moves, overlapping a bit to allow parameter passing.



Saving Registers

One difficult question is whether the caller or callee should be in charge
of saving registers.

What would the caller have to do to ensure proper saving of registers?

Save all registers currently being used by caller.

What would the callee have to do to ensure proper saving of registers?

Save all registers that will be used by callee.

Which is better?
Could be either one–no clear answer.

In practice, many processors (including MIPS and x86) compromise: half
the registers are caller-save and half are callee-save.

Register Windows offer an alternative: each routine has access only to a
small window of a large number of registers; when a subroutine is called,
the window moves, overlapping a bit to allow parameter passing.



Calling a Subroutine

Stack pointer −→

Frame pointer −→

Caller
Activation Record

Calling Sequence (before)



Calling a Subroutine

Stack pointer −→

Frame pointer −→

Caller
Activation Record

Calling Sequence (before)



Typical Calling Sequence

Stack pointer −→

Frame pointer −→

Caller-Saved
Registers

Caller
Activation Record

Calling Sequence (before)
1. Save caller-save registers



Typical Calling Sequence

Stack pointer −→

Frame pointer −→

Arguments

Caller-Saved
Registers

Caller
Activation Record

Calling Sequence (before)
1. Save caller-save registers
2. Push arguments on stack



Typical Calling Sequence

Stack pointer −→

Frame pointer −→

Return address

Arguments

Caller-Saved
Registers

Caller
Activation Record

Calling Sequence (before)
1. Save caller-save registers
2. Push arguments on stack
3. Jump to subroutine, saving

return address on stack

Prologue



Typical Calling Sequence

Stack pointer −→

Frame pointer −→

Return address

Arguments

Caller-Saved
Registers

Caller
Activation Record

Calling Sequence (before)
1. Save caller-save registers
2. Push arguments on stack
3. Jump to subroutine, saving

return address on stack
Prologue



Typical Calling Sequence

Stack pointer −→
Frame pointer −→

Saved fp

Return address

Arguments

Caller-Saved
Registers

Caller
Activation Record

Calling Sequence (before)
1. Save caller-save registers
2. Push arguments on stack
3. Jump to subroutine, saving

return address on stack
Prologue
1. Save old fp, set new fp



Typical Calling Sequence

Stack pointer −→

Frame pointer −→

Callee-Saved
Registers

Saved fp

Return address

Arguments

Caller-Saved
Registers

Caller
Activation Record

Calling Sequence (before)
1. Save caller-save registers
2. Push arguments on stack
3. Jump to subroutine, saving

return address on stack
Prologue
1. Save old fp, set new fp
2. Save callee-save registers



Typical Calling Sequence

Stack pointer −→

Frame pointer −→

Variable-length
Objects

Temporaries

Local
Variables

Callee-Saved
Registers

Saved fp

Return address

Arguments

Caller-Saved
Registers

Caller
Activation Record

Calling Sequence (before)
1. Save caller-save registers
2. Push arguments on stack
3. Jump to subroutine, saving

return address on stack
Prologue
1. Save old fp, set new fp
2. Save callee-save registers



Typical Calling Sequence

Stack pointer −→

Frame pointer −→

Callee-Saved
Registers

Saved fp

Return address

Arguments

Caller-Saved
Registers

Caller
Activation Record

Calling Sequence (before)
1. Save caller-save registers
2. Push arguments on stack
3. Jump to subroutine, saving

return address on stack
Prologue
1. Save old fp, set new fp
2. Save callee-save registers
Epilogue

1. Restore callee-save registers



Typical Calling Sequence

Stack pointer −→

Frame pointer −→

Callee-Saved
Registers

Saved fp

Return address

Arguments

Caller-Saved
Registers

Caller
Activation Record

Calling Sequence (before)
1. Save caller-save registers
2. Push arguments on stack
3. Jump to subroutine, saving

return address on stack
Prologue
1. Save old fp, set new fp
2. Save callee-save registers
Epilogue
1. Restore callee-save registers



Typical Calling Sequence

Stack pointer −→
Frame pointer −→

Saved fp

Return address

Arguments

Caller-Saved
Registers

Caller
Activation Record

Calling Sequence (before)
1. Save caller-save registers
2. Push arguments on stack
3. Jump to subroutine, saving

return address on stack
Prologue
1. Save old fp, set new fp
2. Save callee-save registers
Epilogue
1. Restore callee-save registers
2. Restore frame pointer



Typical Calling Sequence

Stack pointer −→

Frame pointer −→

Return address

Arguments

Caller-Saved
Registers

Caller
Activation Record

Calling Sequence (before)
1. Save caller-save registers
2. Push arguments on stack
3. Jump to subroutine, saving

return address on stack
Prologue
1. Save old fp, set new fp
2. Save callee-save registers
Epilogue
1. Restore callee-save registers
2. Restore frame pointer
3. Jump to return address



Typical Calling Sequence

Stack pointer −→

Frame pointer −→

Arguments

Caller-Saved
Registers

Caller
Activation Record

Calling Sequence (before)
1. Save caller-save registers
2. Push arguments on stack
3. Jump to subroutine, saving

return address on stack
Prologue
1. Save old fp, set new fp
2. Save callee-save registers
Epilogue
1. Restore callee-save registers
2. Restore frame pointer
3. Jump to return address
Calling Sequence (after)



Typical Calling Sequence

Stack pointer −→

Frame pointer −→

Caller-Saved
Registers

Caller
Activation Record

Calling Sequence (before)
1. Save caller-save registers
2. Push arguments on stack
3. Jump to subroutine, saving

return address on stack
Prologue
1. Save old fp, set new fp
2. Save callee-save registers
Epilogue
1. Restore callee-save registers
2. Restore frame pointer
3. Jump to return address
Calling Sequence (after)
1. Restore caller-save registers



Typical Calling Sequence

Stack pointer −→

Frame pointer −→

Caller
Activation Record

Calling Sequence (before)
1. Save caller-save registers
2. Push arguments on stack
3. Jump to subroutine, saving

return address on stack
Prologue
1. Save old fp, set new fp
2. Save callee-save registers
Epilogue
1. Restore callee-save registers
2. Restore frame pointer
3. Jump to return address
Calling Sequence (after)
1. Restore caller-save registers



Optimizations

Leaf routines
A leaf routine is one which does not call any subroutines.

Leaf routines can avoid pushing the return address on the stack: it can
just be left in a register.

If a leaf routine is sufficiently simple (no local variables), it may not even
need a stack frame at all.

Inlining
Another optimization is to inline a function: inserting the code for the
function at every call site.

What are advantages and disadvantages of inlining?

I Advantages: avoid overhead, enable more compiler optimizations

I Disadvantages: increases code size, can’t always do it (i.e. recursive
procedures)



Optimizations

Leaf routines
A leaf routine is one which does not call any subroutines.

Leaf routines can avoid pushing the return address on the stack: it can
just be left in a register.

If a leaf routine is sufficiently simple (no local variables), it may not even
need a stack frame at all.

Inlining
Another optimization is to inline a function: inserting the code for the
function at every call site.

What are advantages and disadvantages of inlining?

I Advantages: avoid overhead, enable more compiler optimizations

I Disadvantages: increases code size, can’t always do it (i.e. recursive
procedures)



Optimizations

Leaf routines
A leaf routine is one which does not call any subroutines.

Leaf routines can avoid pushing the return address on the stack: it can
just be left in a register.

If a leaf routine is sufficiently simple (no local variables), it may not even
need a stack frame at all.

Inlining
Another optimization is to inline a function: inserting the code for the
function at every call site.

What are advantages and disadvantages of inlining?

I Advantages: avoid overhead, enable more compiler optimizations

I Disadvantages: increases code size, can’t always do it (i.e. recursive
procedures)



Optimizations

Leaf routines
A leaf routine is one which does not call any subroutines.

Leaf routines can avoid pushing the return address on the stack: it can
just be left in a register.

If a leaf routine is sufficiently simple (no local variables), it may not even
need a stack frame at all.

Inlining
Another optimization is to inline a function: inserting the code for the
function at every call site.

What are advantages and disadvantages of inlining?

I Advantages: avoid overhead, enable more compiler optimizations

I Disadvantages: increases code size, can’t always do it (i.e. recursive
procedures)



Parameter Passing

Definitions

I Formal parameters are the names that appear in the declaration of
the subroutine.

I Actual parameters or arguments refer to the expressions passed to a
subroutine at a particular call site.

// formal parameters: a, b, c

function f (int a, int b, int c)
...

// arguments: i, 2/i, g(i,j)

f(i, 2/i, g(i,j));



Parameter passing

Modes
What does a reference to a formal parameter in the execution of a
subroutine mean in terms of the actual parameters?

It depends on the parameter mode.

I by value: formal is bound to value of actual

I by reference: formal is bound to location of actual

I by copy-return: formal is bound to value of actual; upon return from
routine, actual gets copy of formal

I by name: formal is bound to expression for actual; expression
evaluated whenever needed; writes to parameter are allowed (and
can affect other parameters!)

I by need : formal is bound to expression for actual; expression
evaluated the first time its value is needed; cannot write to
parameters

What are the advantages of passing by need?



Parameter passing

Modes
What does a reference to a formal parameter in the execution of a
subroutine mean in terms of the actual parameters?

It depends on the parameter mode.

I by value: formal is bound to value of actual

I by reference: formal is bound to location of actual

I by copy-return: formal is bound to value of actual; upon return from
routine, actual gets copy of formal

I by name: formal is bound to expression for actual; expression
evaluated whenever needed; writes to parameter are allowed (and
can affect other parameters!)

I by need : formal is bound to expression for actual; expression
evaluated the first time its value is needed; cannot write to
parameters

What are the advantages of passing by need?



Parameter passing

Modes
What does a reference to a formal parameter in the execution of a
subroutine mean in terms of the actual parameters?

It depends on the parameter mode.

I by value: formal is bound to value of actual

I by reference: formal is bound to location of actual

I by copy-return: formal is bound to value of actual; upon return from
routine, actual gets copy of formal

I by name: formal is bound to expression for actual; expression
evaluated whenever needed; writes to parameter are allowed (and
can affect other parameters!)

I by need : formal is bound to expression for actual; expression
evaluated the first time its value is needed; cannot write to
parameters

How does reference differ from copy-return?



Reference vs Copy-Return

Consider the following Pascal program:

var
global: integer := 10;
another: integer := 2;

procedure confuse (var first , second: integer );
begin

first := first + global;
second := first * global;

end;
begin

confuse(global , another ); /* first and global */
/* are aliased */

end

I different results if by reference or by copy-return

I such programs are considered erroneous in Ada

I passing by value with copy-return is less error-prone



Parameter Passing in C

I C: parameter passing is always by value: assignment to formal is
assignment to local copy

I passing by reference can be simulated by using pointers

void incr (int *x) {
(*x)++;

}
incr(& counter ); /* pointer to counter */

I no need to distinguish between functions and procedures: void
indicates side-effects only



Parameter Passing in C++

I default is by-value (same semantics as C)

I explicit reference parameters also allowed:

void incr (int& y) {
y++;

}

// compiler knows declaration of incr ,

// builds reference

incr(counter );

I semantic intent can be indicated by qualifier:

// passed by reference , but call cannot

// modify it

void f (const double& val);



Parameter Passing in Java

I semantics of assignment to parameter differs for primitive types and
for classes:

I primitive types have value semantics
I objects have reference semantics

I consequence: methods can modify objects

I for formals of primitive types: assignment allowed, only affects local
copy

I for objects: final means that formal is read-only



Parameter Passing in Ada

I goal: separate semantic intent from implementation

I parameter modes:

I in : read-only in subprogram
I out : write in subprogram
I in out : read-write in subprogram

I independent of whether binding by value, by reference, or by
copy-return

I in : bind by value or reference
I out : bind by reference or copy-return
I in out : bind by reference or by value/copy-return

I functions can only have in parameters



Passing Subroutines as Parameters

C and C++ allow parameters which are pointers to subroutines:

void (*pf) (int);
// pf is a pointer to a function that takes

// an int argument and returns void

typedef void (*PROC)(int);
// type abbreviation clarifies syntax

void do_it (int d) { ... }

void use_it (PROC);

PROC ptr = &do_it;

use_it(ptr);
use_it (&do_it );

Are there any implementation challenges for this kind of subroutine call?



Passing Subroutines as Parameters

Not really: can be implemented in the same way as a usual subroutine
call: in particular the referencing environment can stay the same.

What if a nested subroutine is passed as a parameter?



Passing Subroutines as Parameters

Not really: can be implemented in the same way as a usual subroutine
call: in particular the referencing environment can stay the same.

What if a nested subroutine is passed as a parameter?



Passing Subroutines as Parameters

procedure A(I : integer; procedure P);
procedure B;
begin

writeln(I);
end;

begin
if I > 1 then P
else A(2, B);

end;

procedure C; begin end;

begin
A(1, C);

end.

What does this program print?



Passing Subroutines as Parameters

What if a nested subroutine is passed as a parameter?

Deep Binding
A closure must be created and passed in place of the subroutine.

A closure is a reference to a subroutine together with its referencing
environment.

When a subroutine is called through a closure, the referencing
environment from when the closure was created is restored as part of the
calling sequence.

Shallow Binding
When a subroutine is called, it uses the current referencing environment.

Shallow binding is typically the default in languages with dynamic
scoping.



Passing Subroutines as Parameters

What if a nested subroutine is passed as a parameter?

Deep Binding
A closure must be created and passed in place of the subroutine.

A closure is a reference to a subroutine together with its referencing
environment.

When a subroutine is called through a closure, the referencing
environment from when the closure was created is restored as part of the
calling sequence.

Shallow Binding
When a subroutine is called, it uses the current referencing environment.

Shallow binding is typically the default in languages with dynamic
scoping.



Passing Subroutines as Parameters

procedure A(I : integer; procedure P);
procedure B;
begin

writeln(I);
end;

begin
if I > 1 then P
else A(2, B);

end;

procedure C; begin end;

begin
A(1, C);

end.

Deep Binding: Since the value of I is 1 when the closure for B is created,
the program prints 1.



Syntactic sugar

I Default values for in-parameters (Ada)

function Incr (Base: Integer;
Inc: Integer := 1)

return Integer;

I Incr(A(J)) equivalent to Incr(A(J), 1)

I also available in C++

int f (int first ,
int second = 0,
char *handle = 0);

I named associations (Ada):

Incr(Inc => 17, Base => A(I));



Variable number of parameters

printf("this is %d a format %d string", x, y);

I within body of printf, need to locate as many actuals as
placeholders in the format string

I solution: place parameters on stack in reverse order

return address

actual 1 (format string)

...

actual n-1

actual n



First-class functions: implementation implications

Allowing functions as first-class values forces heap allocation of
activation record.

I environment of function definition must be preserved until the point
of call: activation record cannot be reclaimed if it creates functions

I functional languages require more complex run-time management
I higher-order functions: functions that take (other) functions as

arguments and/or return functions
I powerful
I complex to implement efficiently
I imperative languages restrict their use
I (a function that takes/returns pointers to functions can be considered

a higher-order function)



Recursion

In order to understand recursion, you must first understand recursion.

Recursion is when a subroutine is called from within itself.



Recursion

In order to understand recursion, you must first understand recursion.

Recursion is when a subroutine is called from within itself.



Recursion

In order to understand recursion, you must first understand recursion.

Recursion is when a subroutine is called from within itself.

Example

int fact(int n)
{

if (n == 0) return 1;
else return n * fact(n-1);

}

Note that recursion requires a stack-based subroutine calling protocol.



Recursion

In order to understand recursion, you must first understand recursion.

Recursion is when a subroutine is called from within itself.

Example

int fact(int n)
{

if (n == 0) return 1;
else return n * fact(n-1);

}

Note that recursion requires a stack-based subroutine calling protocol.



Recursion

What are some advantages and disadvantages of using recursion?

I Advantages: often conceptually easier, and easier to understand
code

I Disadvantages: usually slower, can lead to stack overflow

There is one case when recursion can be implemented without using a
stack frame for every call:

A tail recursive subroutine is one in which no additional computation
ever follows a recursive call.

For tail recursive subroutines, the compiler can reuse the current
activation record at the time of the recursive call, eliminating the need to
allocate a new one.



Recursion

What are some advantages and disadvantages of using recursion?

I Advantages: often conceptually easier, and easier to understand
code

I Disadvantages: usually slower, can lead to stack overflow

There is one case when recursion can be implemented without using a
stack frame for every call:

A tail recursive subroutine is one in which no additional computation
ever follows a recursive call.

For tail recursive subroutines, the compiler can reuse the current
activation record at the time of the recursive call, eliminating the need to
allocate a new one.



Recursion

What are some advantages and disadvantages of using recursion?

I Advantages: often conceptually easier, and easier to understand
code

I Disadvantages: usually slower, can lead to stack overflow

There is one case when recursion can be implemented without using a
stack frame for every call:

A tail recursive subroutine is one in which no additional computation
ever follows a recursive call.

For tail recursive subroutines, the compiler can reuse the current
activation record at the time of the recursive call, eliminating the need to
allocate a new one.



Recursion

What are some advantages and disadvantages of using recursion?

I Advantages: often conceptually easier, and easier to understand
code

I Disadvantages: usually slower, can lead to stack overflow

There is one case when recursion can be implemented without using a
stack frame for every call:

A tail recursive subroutine is one in which no additional computation
ever follows a recursive call.

For tail recursive subroutines, the compiler can reuse the current
activation record at the time of the recursive call, eliminating the need to
allocate a new one.


