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What is a Program?



Programs

What is a Program?

I A fulfillment of a customer’s requirements

I An idea in your head

I A sequence of characters

I A mathematical interpretation of a sequence of characters

I A file on a disk

I Ones and zeroes

I Electromagnetic states of a machine

In this class, we will typically take the view that a program is a sequence of
characters, respectively, its mathematical interpretation.

Though we recognize the close association to the other possible meanings.

A Programming Language describes what sequences are allowed (the syntax)
and what they mean (the semantics).
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A Brief History of Programming Languages

The first computer programs were written in machine language.

Machine language is just a sequence of ones and zeroes.

The computer interprets sequences of ones and zeroes as instructions that
control the central processing unit (CPU) of the computer. The length and
meaning of the sequences depends on the CPU.

Example

On the 6502, an 8-bit microprocessor used in the Apple II computer,
the following bits add 1 and 1: 10101001000000010110100100000001.

Or, using base 16, a common shorthand: A9016901.

Programming in machine language requires an extensive understanding of the
low-level details of the computer and is extremely tedious if you want to do
anything non-trivial.

But it is the most straightforward way to give instructions to the computer: no
extra work is required before the computer can run the program.



A Brief History of Programming Languages

Before long, programmers started looking for ways to make their job easier. The
first step was assembly language.

Assembly language assigns meaningful names to the sequences of bits that make
up instructions for the CPU.

A program called an assembler is used to translate assembly language into
machine language.

Example

The assembly code for the previous example is:
LDA #$01

ADC #$01

Question: How do you write an assembler?

Answer: in machine language!
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A Brief History of Programming Languages

As computers became more powerful and software more ambitious,
programmers needed more efficient ways to write programs.

This led to the development of high-level languages, the first being Fortran.

High-level languages have features designed to make things much easier for the
programmer.

In addition, they are largely machine-independent: the same program can be
run on different machines without rewriting it.

But high-level languages require a compiler . The compiler’s job is to convert
high-level programs into machine language. More on this later...

Question: How do you write a compiler?

Answer: in assembly language (at least the first time)
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Programming Languages

There are now thousands of programming languages.
Why are there so many?

I Evolution: old languages evolve into new ones as we discover better and
easier ways to do things:
Algol ⇒ Bcpl ⇒ C ⇒ C++ ⇒ Java ⇒ Scala

I Special Purposes: some languages are designed specifically to make a
particular task easier. For example, ML was originally designed to write
proof tactics for a theorem prover.

I Personal Preference: Programmers are opinionated and creative. If you
don’t like any existing programming language, why not create your own?
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Programming Languages

Though there are many languages, only a few are widely used.
What makes a language successful?



Programming Languages

I Expressive Power : Though all programming languages share the same
theoretical power (i.e. they are all Turing complete), it is often much easier
to accomplish a task in one language as opposed to another.

I Ease of Use for Novices: Basic, Logo, Pascal, and even Java owe
much their popularity to the fact that they are easy to learn.

I Ease of Implementation: Languages like Basic, Pascal, Java were
designed to be easily portable from one platform to another.

I Standardization: The weak standard for Pascal is one important reason it
declined in favor in the 1980’s.

I Open Source: C owes much of its popularity to being closely associated
with open source projects.

I Excellent Compilers: A lot of resources were invested into writing good
compilers for Fortran, one reason why it is still used today for many
scientific applications.

I Economics, Patronage, Inertia: Some languages are supported by large and
powerful organizations: Ada by the Department of Defense; C# by
Microsoft. Some languages live on because of a large amount of legacy
code.



Language Design

Language design is influenced by various viewpoints

I Programmers: Desire expressive features, predictable performance,
supportive development environment

I Implementors: Prefer languages to be simple and semantics to be precise

I Verifiers/testers: Languages should have rigorous semantics and
discourage unsafe constructs

The interplay of design and implementation in particular is emphasized in the
text and we will return to this theme periodically.



Classifying Programming Languages

Programming Paradigms
I Imperative (von Neumann): Fortran, Pascal, C, Ada

I programs have mutable storage (state) modified by assignments
I the most common and familiar paradigm

I Object-Oriented : Simula 67, Smalltalk, Ada, Java, C#, Scala
I data structures and their operations are bundled together
I inheritance, information hiding

I Functional (applicative): Scheme, Lisp, ML, Haskell
I based on lambda calculus
I functions are first-class objects
I side effects (e.g., assignments) discouraged

I Logical (declarative): Prolog, Mercury
I programs are sets of assertions and rules

I Scripting : Unix shells, Perl, Python, Tcl, Php, JavaScript
I Often used to glue other programs together.



Classifying Programming Languages

Hybrids

I Imperative + Object-Oriented : C++, Objective-C

I Functional + Logical : Curry, Oz

I Functional + Object-Oriented : OCaml, F#, OHaskell

Concurrent Programming

I Not really a category of programming languages

I Usually implemented with extensions within existing languages
I Pthreads in C
I Actors in Scala

I Some exceptions (e.g. dataflow languages)



Classifying Programming Languages

Compared to machine or assembly language, all others are high-level.

But within high-level languages, there are different levels as well.

Somewhat confusingly, these are also referred to as low-level and high-level.

I Low-level languages give the programmer more control (at the cost of
requiring more effort) over how the program is translated into machine
code.

I C, Fortran

I High-level languages hide many implementation details, often with some
performance cost

I Basic, Lisp, Scheme, ML, Prolog,

I Wide-spectrum languages try to do both:
I Ada, C++, (Java)

I High-level languages typically have garbage collection and are often
interpreted.

I The higher the level, the harder it is to predict performance (bad for
real-time or performance-critical applications)



Programming Idioms

I All general-purpose languages have essentially the same capabilities (all are
Turing-complete)

I But different languages can make the same task difficult or easy
I Try multiplying two Roman numerals

I Idioms in language A may be useful inspiration when writing in language B.



Programming Idioms

I Copying a string q to p in C:

while (*p++ = *q++) ;

I Removing duplicates from the list @xs in Perl:

my %seen = ();
@xs = grep { ! $seen{$_}++; } @xs;

I Computing the sum of numbers in list xs in ML:

foldl (fn (x, sum) => x + sum) 0 xs

or shorter

foldl (op +) 0 xs

Some of these may seem natural to you; others may seem counterintuitive.

One goal of this class is for you to become comfortable with many different
idioms.



Characteristics of Modern Languages

Modern general-purpose languages (e.g., Ada, C++, Java) have similar
characteristics:

I large number of features (grammar with several hundred productions, 500
page reference manuals, . . .)

I a complex type system

I procedural mechanisms

I object-oriented facilities

I abstraction mechanisms, with information hiding

I several storage-allocation mechanisms

I facilities for concurrent programming (relatively new in C++)

I facilities for generic programming (relatively new in Java)

I development support including editors, libraries, compilers

We will discuss many of these in detail this semester.



Programming Languages

Why study Programming Languages?

1. Understand obscure features: understanding notation and terminology
builds foundation for understanding complicated features

2. Make good choices when writing code: understanding benefits and costs
helps you make good choices when programming

3. Better debugging : sometimes you need to understand what’s going on
under the hood

4. Simulate useful features in languages that lack them: being exposed to
different idioms and paradigms broadens your set of tools and techniques

5. Make better use of language technology : parsers, analyzers, optimizers
appear in many contexts

6. Leverage extension languages: many tools are customizable via specialized
languages (e.g. emacs elisp)
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Compilation vs Interpretation

Compilation

I Translates a program into machine code (or something close to it, e.g. byte
code)

I Thorough analysis of the input language

I Nontrivial translation

Interpretation

I Executes a program one statement at a time using a virtual machine

I May employ a simple initial translator (preprocessor)

I Most of the work done by the virtual machine



Compilation overview

Major phases of a compiler:

1. Lexer : Text −→ Tokens

2. Parser : Tokens −→ Parse Tree

3. Intermediate code generation: Parse Tree −→ Intermed. Representation
(IR)

4. Optimization I : IR −→ IR

5. Target code generation: IR −→ assembly/machine language

6. Optimization II : target language −→ target language



Syntax and Semantics

Syntax refers to the structure of the language, i.e. what sequences of characters
are programs.

I Formal specification of syntax requires a set of rules

I These are often specified using grammars

Semantics denotes meaning:

I Given a program, what does it mean?

I Meaning may depend on context

We will not be covering semantic analysis (this is covered in the compilers
course), though you can read about it in chapter 4 if you are interested.

We now look at grammars in more detail.



Grammars

A grammar G is a tuple (Σ,N,S , δ), where:

I N is a set of non-terminal symbols

I S ∈ N is a distinguished non-terminal: the root or start symbol

I Σ is a set of terminal symbols, also called the alphabet. We require Σ to
be disjoint from N (i.e. Σ ∩ N = ∅).

I δ is a set of rewrite rules (productions) of the form:

ABC . . .→ XYZ . . .

where A,B,C,X,Y,Z are terminals and non-terminals.

Any sequence consisting of terminals and non-terminals is called a string .

The language defined by a grammar is the set of strings containing only
terminal symbols that can be generated by applying the rewriting rules starting
from S .



Grammars Example

I N = {S ,X ,Y }
I S = S

I Σ = {a, b, c}
I δ consists of the following rules:

I S → b
I S → XbY
I X → a
I X → aX
I Y → c
I Y → Yc

Some sample derivations:

I S → b

I S → XbY → abY → abc

I S → XbY → aXbY → aaXbY → aaabY → aaabc



The Chomsky hierarchy

I Regular grammars (Type 3)
I All productions have a single non-terminal on the left and a single terminal

and optionally a single non-terminal on the right
I The position of the non-terminal symbol with respect to the terminal

symbol on the right hand side of rules must always be the same in a single
grammar (i.e. always follows or always precedes)

I Recognizable by finite state automaton
I Used in lexers

I Context-free grammars (Type 2)
I All productions have a single non-terminal on the left
I Right side of productions can be any string
I Recognizable by non-deterministic pushdown automaton
I Used in parsers



The Chomsky hierarchy

I Context-sensitive grammars (Type 1)
I Each production is of the form αAβ → αγβ,
I A is a non-terminal, and α, β, γ are arbitrary strings (α and β may be

empty, but not γ)
I Recognizable by linear bounded automaton

I Recursively-enumerable grammars (Type 0)
I No restrictions
I Recognizable by turing machine



Regular expressions

An alternate way of describing a regular language over an alphabet Σ is with
regular expressions.
We say that a regular expression R denotes the language [[R]] (recall that a
language is a set of strings).
Regular expressions over alphabet Σ:

I ε denotes ∅
I a character x , where x ∈ Σ, denotes {x}
I (sequencing) a sequence of two regular expressions RS denotes
{αβ | α ∈ [[R]], β ∈ [[S ]]}

I (alternation) R | S denotes [[R]] ∪ [[S ]]

I (Kleene star) R∗ denotes the set of strings which are concatenations of
zero or more strings from [[R]]

I parentheses are used for grouping

I R? ≡ ε | R

I R+ ≡ RR∗



Regular grammar example

A grammar for floating point numbers:

Float → Digits | Digits .Digits
Digits → Digit | Digit Digits
Digit → 0|1|2|3|4|5|6|7|8|9

A regular expression for floating point numbers:

(0|1|2|3|4|5|6|7|8|9)+(.(0|1|2|3|4|5|6|7|8|9)+)?

The same thing in Perl:

[0 -9]+(\.[0 -9]+)?

or

\d+(\.\d+)?



Tokens

Tokens are the basic building blocks of programs:

I keywords (begin, end, while).

I identifiers (myVariable, yourType)

I numbers (137, 6.022e23)

I symbols (+, −)

I string literals (“Hello world”)

I described (mainly) by regular grammars

Example
: identifiers

Id→ Letter IdRest
IdRest→ ε | Letter IdRest | Digit IdRest

Other issues: international characters, case-sensitivity, limit of identifier length



Backus-Naur Form

Backus-Naur Form (BNF) is a notation for context-free grammars:

I alternation: Symb ::= Letter | Digit
I repetition: Id ::= Letter {Symb}

or we can use a Kleene star: Id ::= Letter Symb∗

for one or more repetitions: Int ::= Digit+

I option: Num ::= Digit+[. Digit∗]

Note that these abbreviations do not add to the expressive power of the
grammar.



Parse trees

A parse tree describes the way in which a string in the language of a grammar is
derived:

I root of tree is start symbol of grammar

I leaf nodes are terminal symbols

I internal nodes are non-terminal symbols

I an internal node and its descendants correspond to some production for
that non terminal

I top-down tree traversal represents the process of generating the given
string from the grammar

I construction of tree from string is parsing



Ambiguity

If the parse tree for a string is not unique, the grammar is ambiguous:

E ::= E + E | E ∗ E | Id

Two possible parse trees for A + B ∗ C:

I ((A + B) ∗ C)

I (A + (B ∗ C))

One solution: rearrange grammar:

E ::= E + T | T
T ::= T ∗ Id | Id

Why is ambiguity bad?
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Dangling else problem

Consider:
S ::= if E then S
S ::= if E then S else S

The string

if E1 then if E2 then S1 else S2

is ambiguous (Which then does else S2 match?)

Solutions:

I Pascal rule: else matches most recent if
I grammatical solution: different productions for balanced and unbalanced

if-statements

I grammatical solution: introduce explicit end-marker
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Lexing and Parsing

Lexer

I Reads sequence of characters of input program

I Produces sequence of tokens (identifiers, keywords, numbers, . . . )

I Specified by regular expressions

Parser

I Reads sequence of tokens

I Produces parse tree

I Specified by context-free grammars

Both lexers and parsers can be automatically generated from their grammars
using tools such as lex/flex respectively yacc/bison.


