Object-Oriented Programming
CSCI-UA 0470-001

Instructor: Thomas Wies

Object-oriented programming is an
exceptionally bad idea which could
only have originated in California.

Edsger Dijkstra

Object-Oriented Programming (OOP)

Object-oriented programming is claimed to
promote greater flexibility and maintainability in
programming, and is widely popular in large-scale
software engineering. Wikipedia

T COULD RESTRUCTURE | | EH, SCREW GQOD PRACTICE.
THE PROGRAMS FLOW | | HOW BAD CAN 1T BE?

OR ljSE ONE LITTLE goto main-sub3;
GOTD" INSTEAD. i

\
E)ﬁ i ; IH *COMPILE*

http://xkcd.com/292/

The Goal of this Course

* Learn how to build and evolve large-scale
programs using object-oriented programming
— Design:
How do we think in objects?
e design patterns
— Language Primitives:
How do we express object orientation?

* classes, interfaces, inheritance, method dispatch, generics,
operator overloading, and reflection

— Language Implementation:
How do we realize OO primitives?

* virtual method dispatch with vtables, static overloading
resolution, and automatic memory management

How Do We Achieve This Goal?

* In-class lectures and discussions
— lectures to introduce topics and techniques
— in-class exercises to deepen understanding

* Individual homework assignments that give a
structured introduction to tools and concepts.

* Course project: A translator from Java to C++

— Written in Java, using the XTC toolkit for source-to-
source transformers

— Two versions, with second version improving on first
version

— Teams of 4-6 students

From Java to C++

* Input: Java with inheritance and virtual
methods

— But without interfaces, nested classes, enums,
generics, ...
e Output: C++ without inheritance and virtual
methods

— l.e., a better C with namespaces, classes, operator
overloading

Two Versions

e Version 1

— Challenge: Implement inheritance and virtual
methods in translator

— Due mid-term, with in-class presentation and written
report

* \ersion 2

— Challenge: Implement method overloading and
automatic memory management

— Due end-of-term, again with presentation and written
report

Don't Panic

* | will try and structure your approach to the
project such that you are not overwhelmed

 We will have regular meetings

e XTC provides a lot of functionality
— Though you need to learn how to use it

But Why?

Translator from Java to C++?

* |s areal, large-scale program (and not just a toy)
— Domain with biggest promised impact of OOP

* Exposes you to implementation of OOP primitives
— While also integrating Java and C++

* Requires you to learn and build on existing tools

— Common scenario in practice

Two Versions of Translator?

* Educational best practice

— “Students can try, fail, receive feedback, and try
again without impact on grade.” (Ken Bains)

* Software engineering best practice

— “Plan to throw one away; you will, anyhow.”
(Frederick Brooks Jr.)

Teams of Students?

Places emphasis on collaborative learning
Prepares you for reality in industry and academia
Helps me keep the feedback process manageable

Allows for ‘Pair Programming’

Pair Programming

* Programming is sometimes thought of as a
solitary act. It doesn’t have to be!

* Programming in pairs
— yields more readable code
— fewer bugs
— is more productive (!!)
— shares knowledge
— is more fun

Test-driven Development

* This course is, in part, emulating real software
engineering.

* Write test for small parts of your application,
end-to-end tests on every additional feature is
inefficient and a difficult way to debug.

e Test-driven approach using JUnit and sbt

Operational Details

Important Dates

Class: M & W 2:00 - 3:15pm in Silv 206

Office hour: W 4:00 - 5:00pm in 60FA 403
Midterm Presentations: Wednesday, Nov 1
Final Exam: Monday, Dec 13 (no midterm exam)

Final Presentations: Monday, Dec 18

Textbooks (not strictly required)

Rather than making you buy more books | will rely on
free online resources where | can

For Java, “Object-Oriented Design & Patterns”
— 2nd edition by Cay Horstmann

For C++, “C++ for Java Programmers”
— 1st edition by Mark Weiss

In the long term, you may want a good reference for C++
— “The C++ Programming Language.”, by Bjarne Stroustrup

Online Resources

Piazza - Online discussion and announcements

NYU Classes - Grade posting

Github — Homework assighments, project, and
class notes and source code

Website

— Shows requirements for project

— Lists reading assignments, class notes
— Provides links to useful material

Grading

* 50% for group projects

— Typically, same grade assigned to all members of
group

— Every group will grade all other groups; peer
grades are advisory

e 20% for individual assignments
* 30% for final exam

Homework Policies

Grading criteria for project and homework assignments will
be published.

Homework must be submitted before the announced date
and time deadline for full credit.

For every 24 hours late you lose 10%

Late homework will not be accepted after the late deadline.
(usually a week)

If you turn in a homework that does not compile, it will not
be accepted. You can resubmit according to the above rules.

Expectations

e Course is a lot of work, but will be fun and
rewarding

e Attendance is important. Not everything
discussed will be captured online.

* You drive your project's development! No
handholding.

Rules & Resources

You must do all assignments on your own, without any
collaboration!

You must do the projects as a group, but not with other groups
and without consulting previous years' students, code, etc.

You should help other students and groups on specific
technical issues, but you must acknowledge such interactions
in code comments.

If you need help, first stop is Piazza. If you have the question,
then almost certainly someone else does.

— |If a student does not give a satisfactory answer, | will chime in.

— If that does not solve your issue, visit me or a grader in office hours.
Teams can make appointments with me any time.

— We will schedule some required meetings throughout the semester.

Three Languages

* Source Language — Java 1.6

— No nested classes, anonymous classes, interfaces, enumes,
annotations, generics, the enhanced for loop varargs,
automatic boxing and unboxing, synchronization, strictfp,
transient and volatile fields and no new Java 8 features

— Assume good input
* Target Language — C++

— No virtual methods, inheritance, templates (mostly) and
no new C++11 features

— Support for basic classes, exceptions, and name spaces
* Translator language — Java 1.8
— The kitchen sink

Toolchain

Linux or OS X.

— Windows is not advised. | will give instructions and support for Ubuntu and
OS X.

— | will provide instructions on installing a VM for Ubuntu on Windows.

Intelli) & CLion.
— In a project this complex, you really need good tools.

— These IDEs are very good. While its not strictly mandatory, | recommend to
use these as much of the project will utilize their capabilities.

— Full versions are available for free under a student license.
Sbt, XTC, Git, JUnit, Astyle...
— Real software engineering tools!

— Your first homework will be a detailed guide on installing most of these
tools.

— You will need them!!
Homework 1 will deal with setting up the toolchain.

Challenges

How to translate Java class hierarchies into C++
without inheritance

How to implement Java's virtual method dispatch
in C++ without virtual method dispatch

How to select the right overloaded method (using
a symbol table)

How to automatically manage memory without an
existing garbage collector (using smart pointers)

Team make-up

* 4-6 students
* one speaker

— main contact point with me
— ceremonial role

* key to success is to divide and conquer.

Team Selection

At the end of class, we will take a few minutes to
go around and introduce ourselves to each and
chat a bit.

You may want to look for students with
complementary expertise. Java? C++? Git? etc..

Use Piazza to "advertise" yourself to potential
teammates.

Important: fill out the survey that | sent out.
| will select the teames.

