CSCI-UA.0201

Computer Systems Organization

Concurrency – Correctness of Concurrent Objects

Thomas Wies

wies@cs.nyu.edu

https://cs.nyu.edu/wies

Concurrent Computation

Objectivism

- What is a concurrent object?
 - How do we **describe** one?
 - How do we **implement** one?
 - How do we tell if it is correct?

Objectivism

- What is a concurrent object?
 - How do we **describe** one?

— How do we tell if it is correct?

FIFO Queue: Enqueue Method

FIFO Queue: Enqueue Method

FIFO Queue: Dequeue Method

FIFO Queue: Dequeue Method

Lock-Based Queue

CAPACITY = 8

Lock-Based Queue

Fields protected by single shared lock

CAPACITY = 8

A Lock-Based Queue

```
head
                                           tail
                            CAPACITY-1 Y Z
typedef struct
  int head, tail;
  void* items[CAPACITY];
  phread mutex t lock;
 queue t;
                    Fields protected by
                    single shared lock
```

Lock-Based Queue

Lock-Based deq()


```
int deq(queue_t q, void **elem) {
  int res;
  pthread_mutex_lock(&q->lock);
  if (q->tail == q->head) res = 0;
  else {
    *elem = q->items[q->head % CAPACITY];
    q->head++;
                                                      tail
                                           head
    res = 1;
  pthread mutex unlock(&q->lock);
  return res;
```

Acquire Lock


```
int deq(queue_t q, void **elem) {
                                       Acquire lock at
 int rec.
                                        method start
 pthread_mutex_lock(&q->lock);
 if (q->tail == q->head) res = 0;
 else {
    *elem = q->items[q->head % CAPACITY];
    q->head++;
                                                     tail
    res = 1;
  pthread mutex unlock(&q->lock);
  return res;
```

Check if Non-Empty


```
int deq(queue_t q, void **elem) {
  int res;
  pthread mutex lock(&a->lock):
 if (q->tail == q->head) res = 0;
 else {
    *elem = q->items[q->head % CAPACITY];
   q->head++;
                                                     tail
                                          head
    res = 1;
                                      capacity-1
 pthread_mutex_unlock(&q->lock);
  return res;
                 If queue empty
                 return "failure"
```

Modify the Queue

Modify the Queue

Modify the Queue


```
int deq(queue_t q, void **elem) {
 int res;
  pthread_mutex_lock(&q->lock);
  if (q->tail == q->head) res = 0;
  else {
    *elem = q->items[q->head % CAPACITY];
    q->head++;
                                                    tail
    res = 1;
                                     capacity-1 YZ
 pthread_mutex_unlock(&q->]
  return res;
             Queue not empty?
      Remove item and update head
```

Release the Lock


```
int deq(queue_t q, void **elem) {
 int res;
  pthread_mutex_lock(&q->lock);
  if (q->tail == q->head) res = 0;
 else {
    *elem = q->items[q->head % CAPACITY];
    q->head++;
                                                     tail
                                          head
    res = 1;
 pthread_mutex_unlock(&q->lock);
 return res;
             Release lock no
               matter what!
```

```
int deq(queue_t q, void **elem) {
 int res;
  pthread_mutex_lock(&q->lock);
  if (q->tail == q->head) res = 0;
 else {
    *elem = q->items[q->head % CAPACITY];
   q->head++;
   res = 1;
  pthread mutex unlock(&q->lock);
 return res;
```

```
int deq(queue_t q, void **elem) {
 int res;
  pthread_mutex_lock(&q->lock);
 if (q->tail == q->head) res = 0;
 else {
    *elem = q->items[q->head % CAPACITY];
   q->head++;
   res = 1;
                  modifications are mutually exclusive...
                  Should be correct because
  pthread_mutex_unlock(&q->lock);
 return res;
```

Now consider the following implementation

- The same thing without mutual exclusion
- For simplicity, only two threads
 - One thread enq only
 - The other deq only


```
int deq(queue_t q, void **elem) {
  if (q->tail == q->head) return = 0;
  *elem = q->items[q->head % CAPACITY];
 q->head++;
                                                     tail
 return 1;
                                       capacity-1
int enq(queue t q, void *x) {
  if (tail-head == CAPACITY) return 0:
 q->items[q->tail % CAPACITY] = x;
 q->tail++;
 return 1;
                               No lock needed!
```

```
int deq(queue t q, void **elem) {
  if (q->tail == q->head) return = 0;
  *elem = q->items[q->head % CAPACITY];
 q->head++;
 return 1;
int enq(queue t q, void *x) {
  if (tail-head == CAPACITY) return 0;
 q->items[q->tail % CAPACITY] = x;
 q->tail++;
 return 1;
```

Wait-free 2-Thread Queue

```
int deq(queue t q, void **elem) {
  if (q->tail == q->head) return = 0;
  *elem = q->items[q->head % CAPACITY];
 q->head++;
 return 1;
                     How do we define "correct" when
int enq(queue t q, void *x) {
  if (tail-head == CAPACITY) return 0
                      modifications are not mutually
 q->items[q->tail % CAPACITY]
 q->tail++;
 return 1;
                       exclusive?
```

What *is* a Concurrent Queue?

- Need a way to specify a concurrent queue object
- Need a way to prove that an algorithm implements the object's specification
- Let's talk about object specifications ...

Correctness and Progress

- In a concurrent setting, we need to specify both the safety and the liveness properties of an object
- Need a way to define
 - when an implementation is correct
 - the conditions under which it guarantees progress

Correctness and Progress

- In a concurrent setting, we need to specify both the safety and the liveness properties of an object
- Need a way to define
 - when an implementation is correct
 - the conditions under which it guarantees progress

Let's begin with correctness

Sequential Objects

- Each object has a state
 - Usually given by a set of *fields*
 - Queue example: items, head, tail
- Each object has a set of methods
 - Only way to manipulate state
 - Queue example: enq and deq methods

Sequential Specifications

- If (precondition)
 - the object is in such-and-such a state
 - before you call the method,
- Then (postcondition)
 - the object will be in some other state
 - and the method will return a particular value

Pre and Postconditions for Dequeue

- Precondition:
 - Queue is non-empty
- Postcondition:
 - Returns 1
- Postcondition:
 - Removes first item in queue

Pre and Postconditions for Dequeue

- Precondition:
 - Queue is empty
- Postcondition:
 - Returns 0
- Postcondition:
 - Queue state unchanged

Why Sequential Specifications Totally Rock

- Interactions among methods captured by side-effects on object state
 - State meaningful between method calls
- Documentation size linear in number of methods
 - Each method described in isolation
- Can add new methods
 - Without changing descriptions of old methods

What About Concurrent Specifications?

- Methods?
- Documentation?
- Adding new methods?

time

- Sequential
 - Methods take time? Who knew?
- Concurrent
 - Method call is not an event
 - Method call is an interval.

time

time

Sequential:

Object needs meaningful state only between method calls

Concurrent

Because method calls overlap, object might never
 be between method calls

- Sequential:
 - Each method described in isolation
- Concurrent
 - Must characterize *all* possible interactions with concurrent calls
 - What if two enqs overlap?
 - Two deqs? enq and deq? ...

Sequential:

Can add new methods without affecting older methods

Concurrent:

Everything can potentially interact with everything else

Sequential:

Can add new methods without affecting older methods

Concurrent:

Everything can potentially interact with everything else

The Big Question

- What does it mean for a concurrent object to be correct?
 - What is a concurrent FIFO queue?
 - FIFO means strict temporal order
 - Concurrent means ambiguous temporal order

Intuitively...

```
int deq(queue_t q, void **elem) {
 int res;
  pthread_mutex_lock(&q->lock);
 if (q->tail == q->head) res = 0;
 else {
    *elem = q->items[q->head % CAPACITY];
   q->head++;
   res = 1;
  pthread mutex unlock(&q->lock);
 return res;
```

Intuitively...

```
int deq(queue_t q, void **elem) {
  int res:
 pthread_mutex_lock(&q->lock);
 if (q->tail == q->head) res = 0;
 else {
   *elem = q->items[q->head % CAPACITY];
   q->head++;
    res = 1;
 pthread_mutex_unlock(&q->lock);
 return res;
                            All queue modifications
                            are mutually exclusive
```


time

time

Lets capture the idea of describing the concurrent via the sequential

Linearizability

- Each method should
 - "take effect"
 - instantaneously
 - between invocation and response events
- Object is correct if this "sequential" behavior is correct
- Any such concurrent object is called
 - Linearizable

Is it really about the object?

- Each method should
 - "take effect"
 - instantaneously
 - between invocation and response events
- Sounds like a property of an execution...
- A linearizable object: one all of whose possible executions are linearizable

Comme ci Example

Comme ci Example Comme ça

Talking About Executions

- Why executions?
 - Can't we specify the linearization point of each operation without describing an execution?
- Not Always
 - In some cases, linearization point depends on the execution

Linearizable Objects are Composable

- Modularity
- Can prove linearizability of objects in isolation
- Can compose independently-implemented objects

Reasoning About Linearizability: Locking

```
head
                                                        tail
int deq(queue_t q, void **elem) {
                                          capacity-1
  int res;
  pthread_mutex_lock(&q->lock);
  if (q->tail == q->head) res = 0;
  else {
    *elem = q->items[q->head % CAPACITY];
    q->head++;
    res = 1;
  pthread mutex unlock(&q->lock);
  return res;
```

Reasoning About Linearizability: Locking

```
head
                                                       tail
int deq(queue_t q, void **elem) {
                                         capacity-1
  int res;
  pthread_mutex_lock(&q->lock);
  if (q->tail == q->head) res = 0;
  else {
    *elem = q->items[q->head % CAPACITY];
    q->head++;
    res = 1;
 pthread_mutex_unlock(&q->lock);
  return res;
                            Linearization points are
                            when locks are released
```

More Reasoning: Wait-free

```
int deq(queue_t q, void **elem) {
                                                      tail
  if (q->tail == q->head) return = 0;
                                        capacity-1
  *elem = q->items[q->head % CAPACITY];
 q->head++;
 return 1;
int enq(queue t q, void *x) {
  if (tail-head == CAPACITY) return 0;
 q->items[q->tail % CAPACITY] = x;
 q->tail++;
 return 1;
```

More Reasoning: Wait-free

```
int deq(queue t q, void **elem) {
                                                      tail
  if (q->tail == q->head
                           Linearization order is
  *elem - q->items[q->he
                         order head and tail fields
 q->head++;
                                  modified
 return 1;
int enq(queue_t q, void *x) {
  if (tail-head == CAPACITY) return 0;
 a->items[a->tail % CAPACITY] = x;
  q->tail++;
  return 1;
```

More Reasoning: Wait-free

```
int deq(queue t q, void **elem) {
                                                          tail
  if (q->tail == q->head
                             Linearization order is
  *elem - q->items[q->he
                           order head and tail fields
  q->head++;
                                    modified
  return 1;
                                    Remember one dequeuer and only one dequeuer
int enq(queue_t q, void *x) {
  if (tail-head == CAPACITY) return 0;
  a->items[a->tail % CAPACITY] = x;
  q->tail++;
  return 1;
```

Strategy

- Identify one atomic step where method "happens"
 - Critical section
 - Machine instruction
- Doesn't always work
 - Might need to define several different steps for a given method

Linearizability: Summary

- Powerful specification tool for shared objects
- Allows us to capture the notion of objects being "atomic"
- Don't leave home without it

Progress

- We saw an implementation whose methods were lock-based (deadlock-free)
- We saw an implementation whose methods did not use locks (lock-free)
- How do they relate?

Progress Conditions

- Deadlock-free: some thread trying to acquire the lock eventually succeeds.
- Starvation-free: every thread trying to acquire the lock eventually succeeds.
- Lock-free: some thread calling a method eventually returns.
- Wait-free: every thread calling a method eventually returns.

Progress Conditions

	Non-Blocking	Blocking
Everyone makes progress	Wait-free	Starvation-free
Someone makes progress	Lock-free	Deadlock-free