CSCI-UA.0201

Computer Systems Organization

Concurrency —
Correctness of Concurrent Objects

Concurrent Computation

o)

Objectivism

* What is a concurrent object?
— How do we describe one?
— How do we implement one?
— How do we tell if it is correct?

Objectivism

* What is a concurrent object?

— How do we describe one?

— How do we tell if it is correct?

FIFO Queue: Enqueue Method

| enq(q,0)

FIFO Queue: Enqueue Method

| enq(q,0)

©1®|O

FIFO Queue: Dequeue Method

Ldeq(q)/c}

/[ele]e
_ ud

FIFO Queue: Dequeue Method

Ldeq(q)/c}

oe
*» -

Lock-Based Queue

0 1 tail
head

CAPACITY = 8

Lock-Based Queue

0 1 tail

head

>

~

6

Fields protected by5
single shared lock CAPACITY = 8

A Lock-Based Queue

tyvpedef struct {

head

CAPACITY-1 y’ Z/

int head, tail;
void* items[CAPACITY],
phread mutex t lock;

} queue t;

®@C}

Fields protected by
single shared lock

tan

Lock-Based Queue

Initially head = tall tail

0 1

head

10

Lock-Based deq()

head

Implementation: deq()

int degq(queue_t g, void **elem) {
int res;
pthread mutex_ lock(&qg->lock);
if (g->tail == g->head) res = 0;
else {

*elem = g->items[q->head % CAPACITY];

g->head++;

res = 1;
}
pthread mutex _unlock(&g->lock);
return res;

head

capacity-1 \y, Z/

DX

12

taH

Acquire Lock

‘(/////:;amngto

enqueue...

Implementation: deq()

int degq(queue_t g, void **elem) {

(gq->tall == g-»>head) res = 0;
else {

Acquire lock at

lpthread_mutex_lock(&q—>lock);i: method start
1

*elem = g->items[qg->head % CAPACITY];

g->head++;

res = 1;
}
pthread mutex unlock(&qg->lock);
return res;

head

capacity-1 \y, z/

DX

14

tan

Check if Non-Empty

tail

Waiting to
enqueue...
e

Implementation: deq()

int degq(queue_t g, void **elem) {
int res;

if (qg- >tail =

q >head) res = 0;

else {

res = 1;

¥

*elem = q—>item59¥—>hea
g->head++;

pthread_mutex_unlock{§q->lock);

return res;

If queue empty
return "failure”

% CAPACITY];

head

capacity-1 \y, z/

DX

16

tan

Modify the Queue

0 1 tail

‘(/////:;amngto

2

head

enqueue...

Modify the Queue

head
0 1 tail
v ‘ﬁ;////:;amngto
enqueue...

Modify the Queue

head
0 1 tail
v ‘ﬁ;////:;amngto
enqueue...

Implementation: deq()

int degq(queue_t g, void **elem) {
int res;
pthread mutex lock(&g->lock);
if (g->tail == g->head) res = 0;

else {
=)
*elem = g->items[qg->head % CAPACITY];
q->head++; Head
res = 1; —

tail

} capacity-1 \y, z/ /
pthread mutex_unlock(ck);
return res;

} Queue not empty?
Remove item and update head

\

18

Release the Lock
head

Implementation: deq()

int degq(queue_t g, void **elem) {
int res;
pthread mutex lock(&g->lock);
if (g->tail == g->head) res = 0;

else {
*elem = g->items[qg->head % CAPACITY];
q->head++;
head tall
res = 1;
} capacity-1 \y, z/

[pthread mutex_unlock(&q- >lock
return res;
«_______
Release lock no
matter what!

¥

20

Implementation: deq()

int degq(queue_t g, void **elem) {

int res;

pthread mutex_ lock(&g->1lock);

if (g->tail == g->head) res = 0;

else {
*elem = g->items[qg->head % CAPACITY];
g->head++;
res = 1;

}

pthread mutex _unlock(&g->lock);

return res;

21

Implementation: deq()

int degq(queue_t g, void **elem) {

int res;

pthread mutex_ lock(&qg->lock);

if (g->tail == g->head) res = 0;

else {
*elem = g->items[qg->head % CAPACITY];
gq->head++;
res = 1;

¥

21

Now consider the following
implementation

* The same thing without mutual exclusion
* For simplicity, only two threads

— One thread enqg only
— The other deq only

22

Wait-free 2-Thread Queue

0 1 tail

ol

2

head

CAPACITY = 8

23

Wait-free 2-Thread Queue

head

tail

Wait-free 2-Thread Queue

head

tail

Wait-free 2-Thread Queue

head
tail

0 1
elem* = /
items [head] 2
O

Z

25

Wait-free 2-Thread Queue

head

tail

S

0

elem* =
items [head]

O

25

Wait-free 2-Thread Queue

head

tail

Wait-free 2-Thread Queue

head

0

1
Z

s 7
o

b

alo
/ o
3

u

26

Wait-free 2-Thread Queue

int deg(queue_t g, void **elem) {
if (g->tail == g->head) return = 0;
*elem = g->items[qg->head % CAPACITY];
gq->head++;

return 1,; head tail

} capacity—?{; , zl/ /

int eng(queue_t g, void *x) { @

g->items[g->tail % CAPACITY] = x;
g->tail++;
return 1;

¥

No lock needed !

27

Wait-free 2-Thread Queue

int deq(queue t g, void **elem) {
if (g->tail == g->head) return = 0;
*elem = g->items[qg->head % CAPACITY];
g->head++;
return 1;

¥

int eng(queue t g, void *x) {
if (tail-head == CAPACITY) return 0;
g->items[qg->tail % CAPACITY] = x;
g->tail++;
return 1;

¥

28

Wait-free 2-Thread Queue

int deq(queue t g, void **elem) {
if (g->tail == g->head) return = 0;
*elem = g->items[g->head % CAPACITY];
gq->head++;
return 1;

¥

int eng(queue t g, void *x) {
if (tail-head == CAPACITY) return

gq->tail++;
return 1;

¥

28

What is a Concurrent Queue?

* Need a way to specify a concurrent queue
object

* Need a way to prove that an algorithm
implements the object's specification

e Let's talk about object specifications ...

29

Correctness and Progress

* |[n a concurrent setting, we need to specify
both the safety and the liveness properties of

an object

* Need a way to define
— when an implementation is correct

— the conditions under which it guarantees progress

30

Correctness and Progress

* |n a concurrent setting, we need to specify
both the safety and the liveness properties of

an object

* Need a way to define
— when an implementation is correct

— the conditions under which it guarantees progress

Let's begin with correctness

30

Sequential Objects

* Each object has a state

— Usually given by a set of fields

— Queue example: 1tems, head, tail
* Each object has a set of methods

— Only way to manipulate state
— Queue example: enq and deq methods

31

Sequential Specifications

* If (precondition)
— the object is in such-and-such a state
— before you call the method,
 Then (postcondition)
— the object will be in some other state
— and the method will return a particular value

32

Pre and Postconditions for Dequeue

* Precondition:
— Queue is hon-empty
 Postcondition:

— Returns 1

 Postcondition:

— Removes first item in queue

33

Pre and Postconditions for Dequeue

* Precondition:
— Queue is empty
e Postcondition:

— Returns O

* Postcondition:
— Queue state unchanged

34

Why Sequential Specifications Totally Rock

* Interactions among methods captured by side-effects
on object state
— State meaningful between method calls
 Documentation size linear in number of methods
— Each method described in isolation

* Can add new methods
— Without changing descriptions of old methods

35

What About Concurrent Specifications ?

e Methods?
e Documentation?
* Adding new methods?

36

Methods Take Time

Methods Take Time

[invocaﬂon
12:00
lele| |

A

e

38

Methods Take Time

[invocaﬁon
12:00
ele| |

|
o,
Method call

Methods Take Time

[invocaﬁon
12:00
ele|o]

|
o,
Method call

Methods Take Time

[invocaﬁon response
12:00 12:01
o]e|e]

e

Sequential vs Concurrent

e Sequential
— Methods take time? Who knew?

e Concurrent
— Method call is not an event
— Method call is an interval.

42

Concurrent Methods Take Overlapping
Time

e

43

Concurrent Methods Take Overlapping
Time

Method call

44

Concurrent Methods Take Overlapping
Time

Method call
75>

45

Concurrent Methods Take Overlapping
Time

Z v

Method call Method call
7> ¥,

Method call
<

time

46

Sequential vs Concurrent

e Sequential:

— Object needs meaningful state only between
method calls

e Concurrent

— Because method calls overlap, object might never
be between method calls

47

Sequential vs Concurrent

e Sequential:

— Each method described in isolation

e Concurrent

— Must characterize all possible interactions with
concurrent calls

* What if two enqgs overlap?
 Two degs? eng and deq? ...

48

Sequential vs Concurrent

e Sequential:

— Can add new methods without affecting older
methods

e Concurrent:

— Everything can potentially interact with everything
else

49

Sequential vs Concurrent

* Sequential:

— Can add new methods without affecting older
methods

e Concurrent:

— Everything can potentially inte erything
else

50

The Big Question

 What does it mean for a concurrent object to
be correct?

— What is a concurrent FIFO queue?
— FIFO means strict temporal order
— Concurrent means ambiguous temporal order

51

Intuitively...

int degq(queue_t g, void **elem) {

int res;

pthread mutex_ lock(&g->1lock);

if (g->tail == g->head) res = 0;

else {
*elem = g->items[qg->head % CAPACITY];
g->head++;
res = 1;

}

pthread mutex _unlock(&g->lock);

return res;

52

Intuitively...

int degq(queue_t g, void **elem) {
int res;

9;
else {
*elem = g->items[qg->head %N\CAPACITY];
gq->head++;

res = 1;

y
[pthread_mutex_unlock(&q—>lock);
return res; .

} All queue modifications

are mutually exclusive

53

Intuitively

deq(q)

< enq(q) >

e

54

Intuitively

lock() 9€d(q) “alock()
P ——
enqd (q)
= & &
lock () unlock ()

e

54

Intuitively

lock () 9€q(Q) unlock ()
eng (q)
= & &

lock () ©1N9 unlock ()

e

54

Intuitively

lock () 9€a(q) unlock ()

e (&)

eng(q) deq

e A

lock () ©1N9 unlock ()

e

54

Intuitively

lock () 9€a(q) unlock ()

enq (q) deq

lock () ©N9d: unlock()

enq deq .

54

Intuitively

lock () 9€a(q) unlock ()

eng(q) ded

lock () [©N9: unlock() ()
: | | . | Behavior iIs

“Sequential”

Lets capture the idea of describing
the concurrent via the sequential

lock () 9€a(q) unlock ()

e) ¢=)

enq(q) deq

&) & =)

lock () [©N9: unlock() ()
: | | . | Behavior iIs

“Sequential”

Linearizability

e Each method should
— “take effect”

— instantaneously
— between invocation and response events

* Object is correct if this “sequential” behavior
IS correct

* Any such concurrent object is called
— Linearizable

95

s it really about the object?

e Each method should
— “take effect”

— instantaneously
— between invocation and response events

* Sounds like a property of an execution...

* Alinearizable object: one all of whose
possible executions are linearizable

56

Example

e

57

Example

)

e

Example

59

Example

60

Example

61

Example

enq(,y)

Example

63

Example

e

64

Example

)

e

Example

)

e

66

Example

67

Example

68

Example

69

Example

Example

e

70

Example

TR .

e

Example

TR .

72

Example

4EErTTE— .

73

Example

Example

)

e

Example

)

<)
e

Example

)

m“

7

Example

78

Comme ci Example

Comme oI Example
Comme ca

<€)

€
e

79

Comme oI Example

Talking About Executions

 Why executions?

— Can't we specify the linearization point of each
operation without describing an execution?

* Not Always

— In some cases, linearization point depends on the
execution

80

Linearizable Objects are Composable

 Modularity
e Can prove linearizability of objects in isolation

* Can compose independently-implemented
objects

81

Reasoning About Linearizability:

Locking

int degq(queue_t g, void **elem) {

1nt Pes, capac1ty 1\y, Z/

N @

pthread_mutex_lock(&q—>lock),

if (g->tail == g->head) res =

else {
*elem = g->items[g->head % CAPACITY];
g->head++;
res = 1;

}

pthread mutex _unlock(&g->lock);

return res;

head

82

1

tan

Reasoning About Linearizability:

Locking

int degq(queue_t g, void **elem) {

int res;
pthread_mutex_lock(&q—>lock),
if (g->tail == g->head) res =
else {

*elem = g->items[g->head % CAPACITY];

gq->head++;

res = 1;

y
[p’chr*ead_mutex_unlock(&q—>lock);}===.~

return res,;

} Linearization points are
when locks are released

head

1

capac1ty 1\y’ Z/

N @

tan

More Reasoning: Wait-free

int deq(queue t g, void **elem) { head tail
if (g->tail == g->head) return = 0; “mdt;\° L
*elem = qg->items[q->head % CAPACITY]; \Y'z//

g->head++; C}:::::I:
return 1;

} 71\

int eng(queue t g, void *x) {
if (tail-head == CAPACITY) return 0;
g->items[qg->tail % CAPACITY] = x;
g->tail++;
return 1;

¥

84

More Reasoning: Wait-free

int deq(queue_t g, void **elem) { [head | tail

if (g->tail == g->heac |jnearization orderis /

=—g=>items[qg->he o i
(oo 2tets [0 o1 der head and tail ields

return 1; modified

}

int enq(queue_ﬁf;affsza/;x) {
if (tail == CAPACITY) return 0;

" tail % CAPACITY] = x;

85

More Reasoning: Wait-free

int deq(queue_t g, void **elem) { [head | tail

if (q->tail == gq->heac |inearization orderis /

=—g=>items[qg->he 3 i
(oo 2tets [0 o1 der head and tail ields

return 1; modified
} ‘\'@

. R,
int enq(queue_ﬁ’;affgig/;x) { ‘63 epp Qgﬁ
if (tail-hesfP2= CAPACITY) return 0; ™ o %

. / . "o e
mslq->tail % CAPACITY] = x; @ e b
<° °° ®

} (\6

85

Strategy

* |dentify one atomic step where method
“happens”

— Critical section
— Machine instruction

* Doesn't always work

— Might need to define several different steps for a
given method

86

Linearizability: Summary

* Powerful specification tool for shared objects

* Allows us to capture the notion of objects
being “atomic”

e Don't leave home without it

87

Progress

 We saw an implementation whose methods
were lock-based (deadlock-free)

 We saw an implementation whose methods
did not use locks (lock-free)

* How do they relate?

88

Progress Conditions

Deadlock-free: some thread trying to acquire the lock
eventually succeeds.

Starvation-free: every thread trying to acquire the
lock eventually succeeds.

Lock-free: some thread calling a method eventually
returns.

Wait-free: every thread calling a method eventually
returns.

89

Everyone
makes
progress

Someone
makes
progress

Progress Conditions

Non-Blocking Blocking
Wait-free Starvation-free
Lock-free Deadlock-free

90

