
Computer Systems Organization

Thomas Wies

wies@cs.nyu.edu

https://cs.nyu.edu/wies

CSCI-UA.0201

Memory Management – Dynamic Allocation

Why dynamic allocator?

• We've discussed two types of data allocation so far:
– Global variables

– Stack-allocated local variables

• Not sufficient!
– How to allocate data whose size is only known at runtime?

• E.g. when reading variable-sized input from network, file etc.

– How to control lifetime of allocated data?
• E.g. a linked list that grows and shrinks as items are

inserted/deleted

Why dynamic memory allocation?

Allocation size is unknown until the program runs
(at runtime).

int main(void) {
 int *array, i, n;

 scanf("%d", &n);
 array = (int*) malloc(n*sizeof(int));

 for (i = 0; i < n; i++)
 scanf("%d", &array[i]);

 return 0;
}

Dynamic allocation on heap

Question: can one dynamically
allocate memory on stack?

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused

%rsp
(stack
pointer)

brk

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Answer: Yes, but space is freed upon
function return

Dynamic allocation on heap

Question: can one dynamically
allocate memory on stack?

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused

%rsp
(stack
pointer)

brk

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Dynamic allocation on heap

Question: can one dynamically
allocate memory on stack?

Answer: Yes, but space is freed
upon function return

#include <stdlib.h>
void *alloca(size_t size);

void func(int n) {
 int* array = alloca(n);
}

subq $n,%rsp

stack

…

ret

array

%rsp

Not good practice!

Dynamic allocation on heap

Question: how to allocate memory
on the heap?

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused

%rsp
(stack
pointer)

brk

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Ask OS for allocation on the heap
via system calls

void *sbrk(intptr_t size);

It increases the top of heap by size
and returns a pointer to the base of
new storage. The size can be a
negative number.

Memory-mapped region for
shared libraries

Memory-mapped region for
shared libraries

Dynamic allocation on heap

Question: how to allocate memory
on the heap?

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused

%rsp
(stack
pointer)

brk

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Ask OS for allocation on the heap
via system calls

void *sbrk(intptr_t size);

p = sbrk(1024) //allocate 1KB

1KB

Dynamic allocation on heap

Question: how to allocate memory
on the heap?

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused

%rsp
(stack
pointer)

brk

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Ask OS for allocation on the heap
via system calls

void *sbrk(intptr_t size);

p = sbrk(1024) //allocate 1KB

sbrk(-1024) // free p

Dynamic allocation on heap

Question: how to allocate memory
on the heap?

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused

%rsp
(stack
pointer)

brk

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Issue I – can only free the memory
on the top of heap

void *sbrk(intptr_t size);

p1 = sbrk(1024) //allocate 1KB
p2 = sbrk(2048) //allocate 2KB

// free p1?

1KB

2KB

Dynamic allocation on heap

Question: how to allocate memory
on the heap?

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused

%rsp
(stack
pointer)

brk

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Issue I – can only free the memory
on the top of heap

void *sbrk(intptr_t size);

p1 = sbrk(1024) //allocate 1KB
p2 = sbrk(2048) //allocate 2KB

// free p1?

1KB

2KB

Dynamic allocation on heap

Question: how to allocate memory
on the heap?

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused

%rsp
(stack
pointer)

brk

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Issue I – can only free the memory
on the top of heap

void *sbrk(intptr_t size);

p1 = sbrk(1024) //allocate 1KB
p2 = sbrk(2048) //allocate 2KB

// free p1?

1KB

2KB

Dynamic allocation on heap

Question: how to allocate memory
on the heap?

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused

%rsp
(stack
pointer)

brk

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Issue I – can only free the memory
on the top of heap

Issue II – system call has high
performance cost > 10X

Dynamic allocation on heap

Question: How to efficiently
allocate memory on heap?

Operating System

User
Program

User
Program

User
Program

C stdlib tcmalloc
(Google)

malloc/free

sbrk

Basic idea – request a
large memory region on
heap from OS once, then
manage this memory
region by itself.

) Allocator is implemented in a user-level library

Types of Dynamic Memory Allocator

• Explicit allocator (used by C/C++): application
allocates and frees space

• malloc and free in C

• new and delete in C++

• Implicit allocator (used by Java,…): application
allocates, but does not free space

• Garbage collection in Java, Python etc.

Will
concentrate
on this

Challenges facing a memory allocator

• Achieve good memory utilization
– Apps issue arbitrary sequence of malloc/free

requests of arbitrary sizes
– Utilization = sum of malloc'd data / size of heap

• Achieve good performance
– malloc/free calls should return quickly

– Throughput = # ops/sec

• Constraints:
– Cannot touch/modify malloc'd memory

– Can't move the allocated blocks once they are
malloc'd
• i.e., compaction is not allowed

Fragmentation

• Poor memory utilization caused by
fragmentation
– internal fragmentation

– external fragmentation

Internal Fragmentation
• Malloc allocates data from blocks of certain sizes.

• Internal fragmentation occurs if payload is smaller than block size

• May be caused by

– Limited choices of block sizes

– Padding for alignment purposes

– Other space overheads…

100 byte Payload

Internal
fragmentation

Block of 128-byte • Block size decided by
 allocator's designer.
• Payload is the number of bytes
 you want when you call

malloc(), …

External Fragmentation
• Occurs when there is enough aggregate heap

memory, but no single free block is large enough

100 byte Payload 100 byte Payload 100 byte Payload

p1 = malloc(100);
p2 = malloc(100);
p3 = malloc(100);

p1 p2 p3

free(p1);

free(p3);
malloc(200)?

Malloc design choices

• How do we know how much memory to free given just a
pointer?

• How do we keep track of the free blocks?

• What do we do with the extra space when allocating a
space that is smaller than the free block it is placed in?

• How do we pick a block to use for allocation -- many might
fit?

• How do we reinsert freed block?

Knowing How Much to Free
• Standard method

– Keep the length of a block in the header field
preceding the block.

– Requires header overhead for every allocated
block

p0 = malloc(4)

p0

free(p0)

block size data

5

Keeping Track of Free Blocks
• Method 1: Implicit list using length—links all

blocks

• Method 2: Explicit list among the free blocks using
pointers

• Method 3: Segregated free list

– Different free lists for different size classes

5 4 2 6

5 4 2 6

Method 1: Implicit List
• Malloc grows a contiguous region of heap by calling sbrk()
• Heap is divided into variable-sized blocks
• For each block, we need both size and allocation status

Size

4-byte

Format of
allocated and
free blocks

Payload

a = 1: Allocated block
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)

a

Optional
padding

header + payload + padding

Detailed Implicit Free List Example

Start
of

heap

8-byte
aligned

8/0 16/1 16/1 32/0

Unused

0/1

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with size in bytes/allocated bit

special end
block

Each square represents 4 bytes

Implicit List: Finding a Free Block

• First fit:

– Search from beginning, choose first free block that fits:

• Next fit:

– Like first fit, except search starts where previous search finished

• Best fit:

– Search the list, choose the best free block: fits, with fewest bytes left over (i.e.
pick the smallest block that is big enough for the payload)

– Keeps fragments small

– Will typically run slower than first fit

Implicit List: Allocating in Free Block

• Allocating in a free block: splitting

– Since allocated space might be smaller than free
space, we might want to split the block

4 4 2 6

4 2 4

Free block

2 4

After malloc(4)

Implicit List: Freeing a Block

• Simplest implementation:

– Need only clear the "allocated" flag

– But can lead to "false fragmentation"

4 2 4 2 4

free(p) p

4 4 2 4 2

malloc(5) Oops!

free(p)

4 4 2 4 2

Implicit List: Coalescing
• Join (coalesce) with next/previous blocks, if they are free

– Coalescing with next block

4 2 4 2

p

4

4 4 2 6

Check if next block is
free

How to coalesce with a previous block?

Implicit List: Bidirectional Coalescing

• Boundary tags [Knuth73]

– Replicate size/allocated header at "bottom" (end) of blocks

– Allows us to traverse the "list" backwards, but requires extra space

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block
a = 0: Free block

Size: Total block size

a

Size a Boundary tag
(footer)

4 4 4 4 6 4 6 4

Header

Coalescing

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being
freed

Case 1 Case 2 Case 3 Case 4

m1 1

Coalescing (Case 1)

m1 1

n 1

n 1

m2 1

m2 1

m1 1

m1 1

n 0

n 0

m2 1

m2 1

m1 1

Coalescing (Case 2)

m1 1

n+m2 0

n+m2 0

m1 1

m1 1

n 1

n 1

m2 0

m2 0

m1 0

Coalescing (Case 3)

m1 0

n 1

n 1

m2 1

m2 1

n+m1 0

n+m1 0

m2 1

m2 1

m1 0

Coalescing (Case 4)

m1 0

n 1

n 1

m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

When to coalesce?
• Immediate coalescing: coalesce each time free() is

called

• Deferred coalescing: try to improve performance of
free by deferring coalescing until needed. Examples:

– Coalesce as you scan the free list for malloc()

– Coalesce when the amount of external
fragmentation reaches some threshold

Implicit Lists: Summary
• Implementation: very simple
• Allocate cost:

– linear time worst case

• Free cost:
– constant time worst case, even with coalescing

• Memory usage:
– will depend on first-fit, next-fit or best-fit

• Not used in practice for malloc/free
because of linear-time allocation
 used in many special purpose applications

Explicit Free list
• Maintain list(s) of free blocks instead of all

blocks

• Need to store forward/back pointers in each free
block, not just sizes

– because free blocks may not be contiguous in heap.

Explicit Free Lists

Size

Payload and
padding

a

Size a

Size a

Size a

Next

Prev

Allocated block Free block

Store next/prev pointers in
"payload" of free block.

Does this increase space
overhead?

Freeing With Explicit Free Lists

• Where in the free list to put a newly freed block?

– Insert freed block at the beginning of the free list
(LIFO)

• Pro: simple and constant time

– Insert freed blocks to maintain address order:

 addr(prev) < addr(curr) < addr(next)

• Pro: may lead to less fragmentation than LIFO

Explicit List

 Allocation is linear time in # of free blocks
instead of all blocks

• Still expensive to find a free block that fits
– How about keeping multiple linked lists of different

size classes?

Segregated List (Seglist) Allocators

• Multiple free lists each linking free blocks of
similar sizes

1-2

3

4

{5-8}

{9-inf}

Seglist Allocator
• Given an array of free lists, each one for some size

class

• To allocate a block of size n:
– Search in appropriate free list containing size n
– Split found block and place fragment on appropriate

list
– try next larger class if no blocks found

• If no block is found:
– Request additional heap memory from OS
– Allocate block of n bytes from this new memory
– Place remainder as a single free block in largest size

class.

Seglist Allocator (cont.)

• To free a block:

– Coalesce and place on appropriate list

• Advantages of seglist allocators

– Fast allocation

– Better memory utilization

• First-fit search of segregated free list approximates a

best-fit search of entire heap

A Word About Garbage Collection

• In C, it is the programmer's responsibility to
free any memory allocated by malloc/calloc/…

• A garbage collection is a dynamic storage
allocator that automatically frees allocated
blocks that are no longer needed by the
program.

• Allocated blocks that are no longer needed are
called garbage.

A Word About Garbage Collection

• In systems that support garbage collection
(e.g. Java, Perl, Mathematica, …)

– Applications explicitly allocate heap blocks

– But never free them!

• The garbage collector periodically identifies
garbage and make appropriate calls to free.

How does the garbage collector recognizes blocks that are no longer needed?

A Word About Garbage Collection

Root nodes

Heap nodes

Not-reachable
(garbage)

Reachable

Reachability Graph
Blocks in the heap

Blocks not in the heap

Conclusions

• Dynamic memory allocator manages the heap.

• Dynamic memory allocator is part of the user-
space

• The allocator has two main goals:

– reaching higher throughput (operations per
second)

– better memory utilization (i.e. reduces
fragmentation).

Conclusions (cont'd)

• Explicit allocator

– Works in terms of blocks

– Keeping track of free blocks

• Implicit list

• Explicit list

• segregated list

• blocks sorted by size

• Implicit allocator

