CSCI-UA.0201

Computer Systems Organization

C Programming — Preprocessor
Data Representation — Bits and Bytes

Macros

Macros can be a useful way to customize your interface to C and make your
code easier to read and less redundant. However, when possible, use a static
inline function instead.

Format is very simple:

#tdefine identifier replacement-text
Example:
#define NUM 10

Notes:

* Each occurrence of NUM in your code will be replaced by 10.
e This happens by the preprocessor before compilation.

* In the rest of the code you cannot change NUM.

We can take this idea further. Instead of defining a constant, we define operations.

Macros
* Sophisticated Example

#define CIRCLE_AREA(x) (PI * (x) * (x))
area = CIRCLE_AREA(4);
becomes

area = (3.14159 * (4) * (4));
— See how parentheses are used. Always enclose
parametersin ().

 More sophisticated example:
#define RECTANGLE AREA(x, y) ((x) * (y))
rectArea = RECTANGLE _AREA(a + 4, b + 7);

becomes
rectArea = ((a + 4) * (b + 7));

Macros: More examples

 #define forever for(;;)

o #define max(i,j) ((i) > (F) ? (i) : (3))

« #define SWAP(a, b) { \
a "= b; \
b = a; \
a = b; \

Other Preprocessor Directives

e #include <file>
#include "file"

— textually include file in current file

e #ifdef MACRO
.. // code
Hendif

— include code if MACRO is defined

e ##ifndef MACRO
.. // code
Hendif

— include code if MACRO is undefined

Data Representation

Bits and Bytes

* Representing information as bits
* How are bits manipulated?

* Types of data:
— Integers
— Floating points
— others

Eig

swap(int v[], int k)
[int tenp:
tenp = vikl:
vik] = v[k+l);
vik+l] = temp:

Swap:

mll $2, $5.4
ado $2, 84,52
Iw 815, 0($2)
Iw 816, 4(52)
sw 816, 0(s$2)
sw 815, 4(s2)
Jr 821

0000000010100001 000000000001 1000
000000000001 10000001 100000100001
1000110001 1000100000000000000000
10001100111100100000000000000100
10101100111100100000000000000000
1010110001 1000100000000000000100
00000011111000000000000000001000

Our First Steps...
How do we represent data in a computer?

* How do we represent data using electrical
signals?

* At the lowest level, a computer is an electronic
machine.

* Easy to recognize two conditions:

— presence of a voltage — we call this state “1”
— absence of a voltage — we call this state “0”

Binary Representations

3.3V
2.8V

0.5V
0.0V

A Computer is a Binary Digital Machine

e Basic unit of information is the binary digit, or bit.

* Values with more than two states require multiple bits.

— A collection of two bits has four possible states:
00, 01, 10, 11

— A collection of three bits has eight possible states:
000, 001, 010, 011, 100, 101, 110, 111

— A collection of n bits has 2" possible states.

George Boole

. (1815-1864)

* English mathematician and
philosopher

* Inventor of Boolean Algebra

* Now we can use things like:
AND, OR, NOT, XOR, XNOR,
NAND, NOR,

Source: http://history-computer.com/ModernComputer/thinkers/Boole.html

Claude Shannon

. (1916-2001)

e American mathematician and
electronic engineer

* His work is the foundation for
using switches (mainly
transistors now), and hence
binary numbers, to implement
Boolean function.

Source: http://history-computer.com/ModernComputer/thinkers/Shannon.html

So, we use transistors to implement
logic gates.

Logic gates manipulate
binary numbers to implement
Boolean functions.
Boolean functions solve problems.

It's almost that simple... ©

Encoding Byte Values

\
PN
. N D
* Byte = 8 bits " o &
_ 0 [0 [0000
— Binary 000000002 to 11111111 1 [1 [oo001
2 [2 [0010
— Decimal: 010 to 25510 3 [3 0011
_ 4 [4 [0100
— Hexadecimal 0016 to FFie 5 15 81%
* Base 16 number representation 7 [7 [o0111
: : .. 8 [8 [1000
* Every 4 bits = 1 hexadecimal digit 9 19 1001
o Y. ‘A’ (N7 (-’ A |10 1010
Use characters ‘0’ to ‘9" and ‘A’ to ‘F =11 1011
* Write FA1D37B16 in C language as C 112] 1100
D [13] 1101
— OxFA1D378B E |14 | 1110
— 0Oxfald37b F |15]1111

Data Representations

C Data Type Typical 32-bit m x86-64
1 1 1

char

short 2 2 2
int 4 4 4
long 4 4 8
long long 8 8 8
float 4 4 4
double 8 8 8
pointer 4 4 8

Byte Ordering

 How are bytes within a multi-byte word
ordered in memory?

e Conventions

— Big Endian: Sun, PPC, Internet
* Most significant byte has lowest address

— Little Endian: x86
* Most significant byte has highest address

Byte Ordering Example

* Big Endian
— Most significant byte has lowest address Most
e Little Endian Significant
Byte

— Most significant byte has highest address

 Example /

— Variable x has 4-byte representation 0)4913234567
— Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103
01 23 45 67

Little Endian 0x100 0x101 0x102 0x103
67 45 23 01

Examining Data Representations

* Code to print Byte Representation of data

void show_bytes(unsigned char * start, int len){
int 1i;
for (i = 0; 1 < len; i++)
printf(”%p\t%2x\n",start+i, start[i]);
printf("\n");
}

printf directives:
%p: Print pointer
%X: Print integer in hexadecimal

show bytes Execution Example

int a = 0x12345678;
printf("int a = 0x12345678;\n");
show_bytes((unsigned char *) &a, sizeof(int));

Result (Linux):

int a = 0x12345678;
Ox11ffffcb8 ©x78
Ox11ffffcb9 ©x56
Oox11ffffcba ©0x34
Ox11ffffcbb ©x12

Reading Byte-Reversed Listings

* Disassembly
— given the binary file, get the assembly

e Example Fragment

Address Instruction Code Assembly Rendition
8048365: 5b pop %ebx

8048366 81 c3 ab 12 00 00 add $0xl1l2ab, $ebx
804836¢c: 83 bb 28 OOVQO 00 00 cmpl $ﬁx0,0x28(%ebx)
* Deciphering Numbers !

— Value: 0x12ab

— Pad to 32 bits (int is 4 bytes): 0x000012ab

— Split into bytes: 0 00 12 ab

— Reverse (little endian): ab 12 00 00

