
Computer Systems Organization

Thomas Wies

wies@cs.nyu.edu

https://cs.nyu.edu/wies

CSCI-UA.0201

C Programming – Preprocessor
Data Representation – Bits and Bytes

Macros
Macros can be a useful way to customize your interface to C and make your
code easier to read and less redundant. However, when possible, use a static
inline function instead.

Format is very simple:

#define identifier replacement-text

Example:

#define NUM 10

Notes:
• Each occurrence of NUM in your code will be replaced by 10.
• This happens by the preprocessor before compilation.
• In the rest of the code you cannot change NUM.

We can take this idea further. Instead of defining a constant, we define operations.

Macros
• Sophisticated Example

#define CIRCLE_AREA(x) (PI * (x) * (x))

area = CIRCLE_AREA(4);

 becomes

area = (3.14159 * (4) * (4));

– See how parentheses are used. Always enclose
parameters in ().

• More sophisticated example:
#define RECTANGLE_AREA(x, y) ((x) * (y))

rectArea = RECTANGLE_AREA(a + 4, b + 7);

 becomes

rectArea = ((a + 4) * (b + 7));

Macros: More examples

• #define forever for(;;)

• #define max(i,j) ((i) > (j) ? (i) : (j))

• #define SWAP(a, b) { \

 a ^= b; \

 b ^= a; \

 a ^= b; \

 }

Other Preprocessor Directives

• #include <file>
#include "file"
– textually include file in current file

• #ifdef MACRO
 … // code
#endif
– include code if MACRO is defined

• #ifndef MACRO
 … // code
#endif
– include code if MACRO is undefined

Data Representation

Bits and Bytes

• Representing information as bits

• How are bits manipulated?

• Types of data:

– Integers

– Floating points

– others

Our First Steps…
How do we represent data in a computer?

• How do we represent data using electrical
signals?

• At the lowest level, a computer is an electronic
machine.

• Easy to recognize two conditions:

– presence of a voltage – we call this state “1”

– absence of a voltage – we call this state “0”

Binary Representations

0.0V

0.5V

2.8V

3.3V

0 1 0

A Computer is a Binary Digital Machine

• Basic unit of information is the binary digit, or bit.

• Values with more than two states require multiple bits.
– A collection of two bits has four possible states:

00, 01, 10, 11

– A collection of three bits has eight possible states:

000, 001, 010, 011, 100, 101, 110, 111

– A collection of n bits has 2n possible states.

George Boole

• (1815-1864)

• English mathematician and
philosopher

• Inventor of Boolean Algebra

• Now we can use things like:
AND, OR, NOT, XOR, XNOR,
NAND, NOR, ….

Source: http://history-computer.com/ModernComputer/thinkers/Boole.html

Claude Shannon

• (1916–2001)

• American mathematician and
electronic engineer

• His work is the foundation for
using switches (mainly
transistors now), and hence
binary numbers, to implement
Boolean function.

Source: http://history-computer.com/ModernComputer/thinkers/Shannon.html

So, we use transistors to implement
logic gates.

Logic gates manipulate
binary numbers to implement

Boolean functions.
Boolean functions solve problems.

It's almost that simple… 

Encoding Byte Values

• Byte = 8 bits
– Binary 000000002 to 111111112

– Decimal: 010 to 25510

– Hexadecimal 0016 to FF16
• Base 16 number representation

• Every 4 bits  1 hexadecimal digit

• Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’

• Write FA1D37B16 in C language as
– 0xFA1D37B

– 0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Data Representations

C Data Type Typical 32-bit Intel IA32 x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 4 8

long long 8 8 8

float 4 4 4

double 8 8 8

pointer 4 4 8

Byte Ordering

• How are bytes within a multi-byte word
ordered in memory?

• Conventions

– Big Endian: Sun, PPC, Internet

• Most significant byte has lowest address

– Little Endian: x86

• Most significant byte has highest address

Byte Ordering Example

• Big Endian
– Most significant byte has lowest address

• Little Endian
– Most significant byte has highest address

• Example

– Variable x has 4-byte representation 0x01234567
– Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

Most
Significant

Byte

Examining Data Representations

• Code to print Byte Representation of data

printf directives:

%p: Print pointer

%x: Print integer in hexadecimal

void show_bytes(unsigned char * start, int len){
 int i;
 for (i = 0; i < len; i++)
 printf(”%p\t%2x\n",start+i, start[i]);
 printf("\n");
}

show_bytes Execution Example
int a = 0x12345678;

printf("int a = 0x12345678;\n");

show_bytes((unsigned char *) &a, sizeof(int));

Result (Linux):

int a = 0x12345678;

0x11ffffcb8 0x78

0x11ffffcb9 0x56

0x11ffffcba 0x34

0x11ffffcbb 0x12

 Address Instruction Code Assembly Rendition

 8048365: 5b pop %ebx

 8048366: 81 c3 ab 12 00 00 add $0x12ab,%ebx

 804836c: 83 bb 28 00 00 00 00 cmpl $0x0,0x28(%ebx)

Reading Byte-Reversed Listings

• Disassembly
– given the binary file, get the assembly

• Example Fragment

• Deciphering Numbers
– Value: 0x12ab

– Pad to 32 bits (int is 4 bytes): 0x000012ab

– Split into bytes: 00 00 12 ab

– Reverse (little endian): ab 12 00 00

