
Computer Systems Organization

Thomas Wies

wies@cs.nyu.edu

https://cs.nyu.edu/wies

CSCI-UA.0201

C Programming – Dynamic Memory Allocation

String Conversion Functions

• Conversion functions
– In <stdlib.h> (general utilities library)

– Convert strings of digits to integer and floating-point
values

Prototype Description

double atof(const char *nPtr) Converts the string nPtr to double.

int atoi(const char *nPtr) Converts the string nPtr to int.

long atol(const char *nPtr) Converts the string nPtr to long int.

double strtod(const char *nPtr, char

**endPtr)
Converts the string nPtr to double.

long strtol(const char *nPtr, char

**endPtr, int base)
Converts the string nPtr to long.

unsigned long strtoul(const char *nPtr,
char **endPtr, int base)

Converts the string nPtr to unsigned

long.

String Manipulation Functions

• In <string.h>

• String handling library has functions to

– Manipulate string data

– Search strings

– Determine string length

Func tion p rototype Func tion desc rip tion

char *strcpy(char *s1,

const char *s2)
Copies string s2 into array s1. The value of s1 is

returned.

char *strncpy(char *s1,

const char *s2, size_t n)
Copies at most n characters of string s2 into array

s1. The value of s1 is returned.

char *strcat(char *s1,

const char *s2)
Appends string s2 to array s1. The first character of

s2 overwrites the terminating null character of s1.

The value of s1 is returned.

char *strncat(char *s1,

const char *s2, size_t n)
Appends at most n characters of string s2 to array

s1. The first character of s2 overwrites the

terminating null character of s1. The value of s1 is

returned.

String Manipulation Functions

int strcmp (const char * str1,

 const char * str2)

return value indicates

<0
the first character that does
not match has a lower value in
ptr1 than in ptr2

0
the contents of both strings
are equal

>0
the first character that does
not match has a greater value
in ptr1 than in ptr2

How to Parse C Types

C type names are parsed by starting at the name and working outwards
according to the rules of precedence:

int (*x)[10]; x is
a pointer to
an array of
int

int *x[10];

x is
an array of
pointers to
int

Using typedef
At this point we have seen a few basic types, arrays, pointer types, and
structures. So far we’ve glossed over how types are named.

int x; /* int; */ typedef int T;
int *y; /* pointer to int; */ typedef int *U;
int z[10]; /* array of ints; */ typedef int V[10];
int *k[10]; /* array of pointers to int; */ typedef int *W[10];
int (*m)[10]; /* pointer to array of ints; */ typedef int (*N)[10];

typedef defines a
new type

Now:

T x; is the same as int x;
U y; is the same as int * y;
and so on …

What if you want to allocate an array
of N elements, and you don't know N

beforehand?

What if you want to allocate an array
that should persist after the current

function returns?

Dynamic Memory Allocation
So far all of our examples have allocated variables statically by defining them
in our program. This allocates them in the stack.

But, what if we want to allocate variables based on user input or other
dynamic inputs, at run-time? This requires dynamic allocation.

int * alloc_ints(size_t requested_count)
{
 int * big_array;
 big_array = (int *)calloc(requested_count, sizeof(int));
 if (big_array == NULL) {
 printf(“can’t allocate %d ints: %m\n”, requested_count);
 return NULL;
 }

 /* now big_array[0] .. big_array[requested_count-1] are
 * valid and zeroed. */
 return big_array;
}

calloc(N, K) allocates memory
for N elements of size k

Returns NULL if can’t alloc

sizeof() reports the size of a type in bytes

It’s OK to return this pointer. It
will remain valid until it is
freed with free()

Dynamic Memory Allocation

• void *malloc (size_t size);

• void* calloc (size_t num, size_t size);

• void free (void* ptr);

• Unary operator sizeof is used to determine the
size in bytes of any data type. Examples:

– sizeof(double)

– sizeof(int)

Caveats with Dynamic Memory
Dynamic memory is useful. But it has several caveats:

It is easy to accidentally keep a pointer to dynamic memory that has been
freed. Whenever you free memory you must be certain that you will not
try to use it again. It is safest to erase any pointers to freed dynamic
memory.

Whereas the stack is automatically reclaimed, dynamic allocations must
be tracked and freed when they are no longer needed. With every
allocation, be sure to plan how that memory will get freed. Losing track
of memory is called a “memory leak”.

Because dynamic memory always uses pointers, there is generally no way
for the compiler to statically verify usage of dynamic memory. This
means that errors that are detectable with static allocation are not with
dynamic allocation.

Back to struct
• Assume we have a structure called node:

struct node{

 int data;

 struct node * next;

};

• Inserting a node in a linked list of nodes (with head pointer
called pHead):

 struct node *pNew;
 pNew = (struct node *) malloc(sizeof(struct node));
 pNew -> data = item;
 if (pHead == NULL){
 //add before first node or to an empty list
 pNew -> next = pHead;
 pHead = pNew;
 }
 else {
 //add in the middle or at the end
 pNew -> next = pHead -> next; // pHead points to previous node
 pPre -> next = pHead;
 }

data next

int a[3] = {1, 2, 4};

Back to struct

64 pNew

pHead

55 124

64 pNew

pHead

55 124

Before

After

