
Computer Systems Organization

Thomas Wies

wies@cs.nyu.edu

https://cs.nyu.edu/wies

CSCI-UA.0201

C Programming – Basics (Part 1)

Brian Kernighan Dennis Ritchie

In 1972 Dennis Ritchie at Bell Labs writes C and in 1978 the
publication of The C Programming Language by Kernighan &
Ritchie caused a revolution in the computing world.

Why C?

• Mainly because it produces code that runs nearly
as fast as code written in assembly language.
Some examples of the use of C might be:
– Operating Systems
– Language Compilers
– Assemblers
– Text Editors
– Print Spoolers
– Network Drivers
– Language Interpreters
– Utilities

Interesting Opinion About C

You might never use it professionally, but it contains a lifetime of lessons. And the hardest problems,
the ones that the top engineers are asked to solve, will sooner or later hit some foundational C code.

Here are some things that are written in C:

• The Java virtual machine is written in ANSI C
• Linux is written in C (and some assembly, but mostly C)
• Python is written in C
• Mac OS X kernel is written in C
• Windows is written in C and C++
• The Oracle database is written in C and C++
• Cisco routers, those things which connect the Internet, also C

Name anything that is foundational, complex, and performance critical. It was written in C, with a
sprinkling of assembly thrown in.

C will make you a better Java programmer. You'll know when the JVM is using the stack and when it's
using the heap, and what that means. You'll have a more intuitive sense of what garbage collection
does. You'll have a better sense of the relative performance cost of objects versus primitives.

https://www.quora.com/Financially-speaking-which-computer-languages-can-earn-the-most-for-the-programmer/answer/Carter-Page-1

https://www.quora.com/Financially-speaking-which-computer-languages-can-earn-the-most-for-the-programmer/answer/Carter-Page-1
https://www.quora.com/Financially-speaking-which-computer-languages-can-earn-the-most-for-the-programmer/answer/Carter-Page-1
https://www.quora.com/Financially-speaking-which-computer-languages-can-earn-the-most-for-the-programmer/answer/Carter-Page-1
https://www.quora.com/Financially-speaking-which-computer-languages-can-earn-the-most-for-the-programmer/answer/Carter-Page-1
https://www.quora.com/Financially-speaking-which-computer-languages-can-earn-the-most-for-the-programmer/answer/Carter-Page-1
https://www.quora.com/Financially-speaking-which-computer-languages-can-earn-the-most-for-the-programmer/answer/Carter-Page-1
https://www.quora.com/Financially-speaking-which-computer-languages-can-earn-the-most-for-the-programmer/answer/Carter-Page-1
https://www.quora.com/Financially-speaking-which-computer-languages-can-earn-the-most-for-the-programmer/answer/Carter-Page-1
https://www.quora.com/Financially-speaking-which-computer-languages-can-earn-the-most-for-the-programmer/answer/Carter-Page-1
https://www.quora.com/Financially-speaking-which-computer-languages-can-earn-the-most-for-the-programmer/answer/Carter-Page-1
https://www.quora.com/Financially-speaking-which-computer-languages-can-earn-the-most-for-the-programmer/answer/Carter-Page-1
https://www.quora.com/Financially-speaking-which-computer-languages-can-earn-the-most-for-the-programmer/answer/Carter-Page-1
https://www.quora.com/Financially-speaking-which-computer-languages-can-earn-the-most-for-the-programmer/answer/Carter-Page-1
https://www.quora.com/Financially-speaking-which-computer-languages-can-earn-the-most-for-the-programmer/answer/Carter-Page-1
https://www.quora.com/Financially-speaking-which-computer-languages-can-earn-the-most-for-the-programmer/answer/Carter-Page-1
https://www.quora.com/Financially-speaking-which-computer-languages-can-earn-the-most-for-the-programmer/answer/Carter-Page-1
https://www.quora.com/Financially-speaking-which-computer-languages-can-earn-the-most-for-the-programmer/answer/Carter-Page-1
https://www.quora.com/Financially-speaking-which-computer-languages-can-earn-the-most-for-the-programmer/answer/Carter-Page-1
https://www.quora.com/Financially-speaking-which-computer-languages-can-earn-the-most-for-the-programmer/answer/Carter-Page-1
https://www.quora.com/Financially-speaking-which-computer-languages-can-earn-the-most-for-the-programmer/answer/Carter-Page-1
https://www.quora.com/Financially-speaking-which-computer-languages-can-earn-the-most-for-the-programmer/answer/Carter-Page-1
https://www.quora.com/Financially-speaking-which-computer-languages-can-earn-the-most-for-the-programmer/answer/Carter-Page-1
https://www.quora.com/Financially-speaking-which-computer-languages-can-earn-the-most-for-the-programmer/answer/Carter-Page-1
https://www.quora.com/Financially-speaking-which-computer-languages-can-earn-the-most-for-the-programmer/answer/Carter-Page-1
https://www.quora.com/Financially-speaking-which-computer-languages-can-earn-the-most-for-the-programmer/answer/Carter-Page-1
https://www.quora.com/Financially-speaking-which-computer-languages-can-earn-the-most-for-the-programmer/answer/Carter-Page-1
https://www.quora.com/Financially-speaking-which-computer-languages-can-earn-the-most-for-the-programmer/answer/Carter-Page-1

Your first goal: Learn C!

• Resources

– KR book: “The C Programming Language”

– These lectures

– Additional online resources (some links on the
course website)

• Learning a Programming Language

– The best way to learn is to write programs

Writing and Running Programs
#include <stdio.h>

/* The simplest C Program */

int main(int argc, char **argv)

{

 printf(“Hello World\n”);

 return 0;

}

1. Write text of program (source code) using a text editor,
save as text file e.g. my_program.c

2. Run the compiler to convert program from source to an
“executable” or “binary”:
 $ gcc –Wall –g –o my_program my_program.c

3-Compiler gives errors and warnings; edit source file, fix it,
and re-compile

Run it and see if it works 
 $./my_program
 Hello World
 $ ▌

 $ gcc –Wall –g –o my_program my_program.c

generate all
warnings

keep debugging
information

name the generated
executable

(default: a.out)

one or more
C files

About C

• Procedural language

– Functions calling each other, starting with main().

• Case-sensitive

C Syntax and Hello World

#include <stdio.h>

/* The simplest C Program */

int main(int argc, char **argv)

{

 printf(“Hello World\n”);

 return 0;

}

The main() function is always
where your program starts
running.

#include inserts another file. “.h” files are called “header”
files. They contain stuff needed to interface to libraries and
code in other “.c” files.

This is a comment. The compiler ignores this.

Blocks of code are marked by
{ … }

Print out a message. ‘\n’ means “new line”. Return ‘0’ from this function

Preprocessing
#include <stdio.h>

/* The simplest C Program */

int main(int argc, char **argv)

{

 printf(“Hello World\n”);

 return 0;

}

my_program

__extension__ typedef unsigned long long int __dev_t;

__extension__ typedef unsigned int __uid_t;

__extension__ typedef unsigned int __gid_t;

__extension__ typedef unsigned long int __ino_t;

__extension__ typedef unsigned long long int __ino64_t;

__extension__ typedef unsigned int __nlink_t;

__extension__ typedef long int __off_t;

__extension__ typedef long long int __off64_t;

extern void flockfile (FILE *__stream) ;

extern int ftrylockfile (FILE *__stream) ;

extern void funlockfile (FILE *__stream) ;

int main(int argc, char **argv)

{

 printf(“Hello World\n”);

 return 0;

}

Preprocess

Compile

Preprocessing
#include <stdio.h>

/* The simplest C Program */

int main(int argc, char **argv)

{

 printf(“Hello World\n”);

 return 0;

}

my_program

__extension__ typedef unsigned long long int __dev_t;

__extension__ typedef unsigned int __uid_t;

__extension__ typedef unsigned int __gid_t;

__extension__ typedef unsigned long int __ino_t;

__extension__ typedef unsigned long long int __ino64_t;

__extension__ typedef unsigned int __nlink_t;

__extension__ typedef long int __off_t;

__extension__ typedef long long int __off64_t;

extern void flockfile (FILE *__stream) ;

extern int ftrylockfile (FILE *__stream) ;

extern void funlockfile (FILE *__stream) ;

int main(int argc, char **argv)

{

 printf(“Hello World\n”);

 return 0;

}

In Preprocessing, source code is “expanded” into a
larger form that is simpler for the compiler to
understand. Any line that starts with ‘#’ is a line that is
interpreted by the Preprocessor.

• Include files are “pasted in” (#include)
• Macros are “expanded” (#define)
• Comments are stripped out (/* */ , //)
• Continued lines (i.e. very long lines) are joined (\)

Preprocess

Compile

Compiling
#include <stdio.h>

/* The simplest C Program */

int main(int argc, char **argv)

{

 printf(“Hello World\n”);

 return 0;

}

my_program

__extension__ typedef unsigned long long int __dev_t;

__extension__ typedef unsigned int __uid_t;

__extension__ typedef unsigned int __gid_t;

__extension__ typedef unsigned long int __ino_t;

__extension__ typedef unsigned long long int __ino64_t;

__extension__ typedef unsigned int __nlink_t;

__extension__ typedef long int __off_t;

__extension__ typedef long long int __off64_t;

extern void flockfile (FILE *__stream) ;

extern int ftrylockfile (FILE *__stream) ;

extern void funlockfile (FILE *__stream) ;

int main(int argc, char **argv)

{

 printf(“Hello World\n”);

 return 0;

}

Preprocess

Compile

• The compiler then converts the resulting text into
binary code the CPU can run directly.

• The compilation process involves really several
steps:

• Compiler: high level language  assembly
• Assembler: assembly  machine code
• Linker: links all machine code files and

needed libraries into one executable file.
• When you type gcc you really invoke the compiler,

assembler, and linker.

What is “Memory”?
• Is like a big table of numbered slots.
• Each slot stores a byte.

Addr Value

0

1

2

3

4 ‘H’ (72)

5 ‘e’ (101)

6 ‘l’ (108)

7 ‘l’ (108)

8 ‘o’ (111)

9 ‘\n’ (10)

10 ‘\0’ (0)

11

12

• The number of a slot is its Address.
• One byte Value can be stored in each slot.

Some “logical” data values span more than one
slot, like the character string “Hello\n”

A Type names a logical meaning to a span of
memory. Some simple types are:

char
char [10]
int
float

a single character (1 slot)
an array of 10 characters
signed 4 byte integer
4 byte floating point

What is a Variable?

char x;
char y=‘e’;

A Variable names a place in memory where you
store a Value of a certain Type.

Symbol Addr Value

0

1

2

3

x 4 ?

y 5 ‘e’ (101)

6

7

8

9

10

11

12

You first Define a variable by giving it a name
and specifying the type, and optionally an
initial value

Type is single character (char)

Name

Initial value

Initial value of x is undefined

The compiler puts them
somewhere in memory.

Multi-byte Variables

char x;
char y=‘e’;
int z = 0x01020304;

Different types consume different amounts of
memory. Most architectures store data on
“word boundaries”, or even multiples of the
size of a primitive data type (int, char)

Symbol Addr Value

0

1

2

3

x 4 ?

y 5 ‘e’ (101)

6

7

z 8 4

9 3

10 2

11 1

12

0x means the constant is
written in hex

An int consumes 4 bytes

padding

 Scope
Every Variable is Declared within some scope. A
Variable cannot be referenced from outside of that
scope.

The scope of Function Arguments is the
complete body of the function.

void p(char x)

{

 char y;

 char z;

}

char z;

void q(char a)

{
 char b;

 {
 char c;

 }

 char d;

}

The scope of Variables defined inside a
function starts at the definition and ends at the
closing brace of the containing block

Scopes are defined with curly braces { }.

The scope of Variables defined outside a
function starts at the definition and ends at the
end of the file. Called Global Vars.

Now that we know about variables,
let’s combine them to form

expressions!

X = 2 * Y + Z;

Statement

Expression

How Expressions Are Evaluated?
Expressions combine Values using Operators, according to precedence.

1 + 2 * 2  1 + 4  5
(1 + 2) * 2  3 * 2  6

Comparison operators are used to compare values.
In C: 0 means “false”, and any other value means “true”.

int x=4;
(x < 5)  (4 < 5)  <true>
(x < 4)  (4 < 4)  0
((x < 5) || (x < 4))  (<true> || (x < 4))  <true>

Not evaluated because
first clause was true

Precedence

• Highest to lowest
• ()

• *, /, %

• +, -

 When in doubt, use parenthesis.

