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Abstract

The goal of program verification is to ensure software reliability by establishing a mathe-
matical proof which guarantees that the software behaves correctly. Program analysis tools
assist the developer in the verification process. Ideally a program analysis should be appli-
cable to a wide range of verification problems without imposing a high burden on its users,
i.e., without requiring deep mathematical knowledge and experience in program verification.

A big step forward towards this ideal has been achieved by combining abstract interpre-
tation with techniques for automated reasoning. In abstract interpretation one transforms
the concrete program into an abstract program. The abstract program enables the anal-
ysis to statically collect information over all possible executions of the concrete program.
This information is used to automatically verify the correctness of the concrete program.
Abstract interpretation increases the degree of automation in verification by shifting the
burden of formally reasoning about programs from the developer to the designer of the
program analysis. Automated reasoning pushes the degree of automation even further. It
enables the automatic construction of the abstraction for a specific program and a specific
correctness property and (if necessary) the automatic refinement of this abstraction. We
refer to program analyses that combine abstract interpretation with automated reasoning
as symbolic program analysis.

A problem that has recently seen much attention in program verification is the question
of how to effectively deal with linked heap-allocated data structures. Program analyses that
target properties of these data structures are commonly referred to as shape analyses. A
symbolic shape analysis promises to handle a spectrum of different linked heap-allocated
data structures, and a spectrum of properties to verify, without requiring the user to man-
ually adjust the analysis to the specific problem instance. It was open what a symbolic
shape analysis would look like. In this thesis we are concerned with this question.

We present domain predicate abstraction, which generalizes predicate abstraction to the
point where it becomes effectively applicable for shape analysis. Domain predicate abstrac-
tion incorporates the key idea of three-valued shape analysis into predicate abstraction by
replacing predicates on program states by predicates on objects in the heap of program
states. We show how to automate the transformation of a heap-manipulating program into
an abstract program using automated reasoning procedures. We further develop an ab-
straction refinement technique that complements domain predicate abstraction to a fully
automated symbolic shape analysis. Finally, we present field constraint analysis, a new
technique for reasoning about heap programs. Field constraint analysis enables the appli-
cation of decision procedures for reasoning about specific data structures (such as trees) to
arbitrary data structures. This technique makes our symbolic shape analysis applicable to
the diverse data structures that occur in practice.

All the techniques presented in this thesis have been implemented and evaluated in the
Bohne Verifier. We used Bohne to verify complex user-specified properties of data structure
implementations. For instance, we were able to verify preservation of data structure invari-
ants for operations on threaded binary trees (including sortedness and the in-order traversal
invariant) without manually adjusting the analysis to this specific problem or providing user
assistance beyond stating the properties to verify. We are not aware of any other shape
analysis that can verify such properties with a comparable degree of automation.
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Chapter 1

Introduction

Software is the most unreliable part of today’s technology. Hence, finding effective methods
that increase software reliability remains an important objective in programming language
research.

Formal program verification takes the most rigorous approach to ensure software reliabil-
ity. The goal of program verification is to formally prove that a program behaves according
to its specification. Traditionally these correctness proofs have been established manually
by the programmer in a formal calculus such as Hoare logic [46,57] or temporal logic [98].
The main obstacles to a wide-spread use of this technique in practical software development
are two-fold. First, only few programmers possess the knowledge and experience to formally
reason about programs and second, the increasing complexity of software makes it hard to
manually prove even simple correctness properties for entire software systems.

For many years, research in program verification has therefore been driven by the de-
sire to develop program analysis tools that assist the programmer in the task of proving
program correctness, i.e., to develop software that automatically verifies software. Since
most problems related to program verification are undecidable, such tools can in general
only provide approximative solutions. A formal framework for the design of approximative
program analyses is formulated in abstract interpretation [37,38]. In one view, an abstract
interpretation transforms the concrete program into an abstract program for which the ver-
ification problem is decidable. The abstract program enables the analysis to statically
collect information over all possible executions of the concrete program which is used to
automatically verify its correctness. The abstraction guarantees that the concrete program
is correct if the abstract program is correct. The analysis is approximative because the
concrete program might be correct even though the abstract program is incorrect, i.e., the
analysis can produce counterexamples that do not exist in the concrete program. We call
such counterexamples spurious counterexamples. Abstract interpretation shifts the burden
to formally reason about programs from the programmer to the designer of the program
analysis tool, i.e., the designer has to find the right abstraction for a specific verification
problem and construct the abstract program. While there will always be programs and
properties that are too difficult to verify automatically and require manual proofs, abstract
interpretation has been a great success. Today, abstract interpretation is the foundation
of many tools that are used to automatically verify properties such as absence of runtime
errors for industrial-scale programs [20,117].
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Recently, researchers started to investigate whether it is possible to push the degree
of automation even further. Over the last years, we have seen significant advances in
theorem proving technology [12,41,113,114] and powerful decision procedures have become
available [63|. The progress in automated reasoning makes it possible to automate the
process of reasoning about programs. The goal of this research direction is to reduce program
verification entirely to automated reasoning in expressive logics, i.e., one uses software to
automatically construct software that automatically verifies software.

We refer to program analyses that combine abstract interpretation and automated rea-
soning technology as symbolic program analyses. Symbolic program analyses are interesting
for several reasons. First, the use of automated reasoning procedures allows one not only
to automate the transformation of the concrete program into an abstract program and the
subsequent analysis of the abstract program, but also to automate the construction of the
abstraction itself. Abstraction refinement techniques [35,53| apply automated reasoning
procedures to decide whether a counterexample that is produced by the analysis is spu-
rious. The detected spurious counterexamples are then used to automatically refine the
abstraction. Second, the deployment of logics separates the problem of reasoning about the
semantics of the concrete program from the actual analysis of the abstract program, i.e., one
separates the problem of generating facts that imply program correctness from the problem
of proving these facts. This separation of concerns allows one to formulate the analysis of
the abstract program as an algorithmic problem that is independent of the concrete pro-
gram and property to verify. The analysis is then specialized for a specific verification task
by choosing a logic and reasoning procedure that fits the given task. A further consequence
of this separation of concerns is that establishing the correctness of a symbolic program
analysis is easier than for a non-symbolic analysis; the most tedious parts in the correct-
ness proof follow from the correctness of the underlying reasoning procedures. Finally,
logics provide a natural language for specifying the behavior of code fragments. Therefore,
symbolic program analysis can be easily incorporated into techniques that enable modular
verification [11,44,66].

While there will always remain verification tasks that require the ingenuity of a pro-
gram analysis designer who tailors an abstraction specifically for a given problem, symbolic
program analysis can help reduce his burden. The idea of symbolic program analysis has
brought forth a new generation of program verification tools |9, 30, 55| that offer an un-
matched degree of automation. These tools are already used by industry, e.g., as part of
Microsoft’s Windows device driver development kid [91].

A problem that has recently seen much attention in program analysis and verification
is the question of how to effectively deal with linked heap-allocated data structures. The
ability of linked data structures to dynamically grow and change their shape during pro-
gram execution makes them a powerful programming concept in imperative programming
languages. It is therefore not surprising that linked data structures are at the heart of many
efficient algorithms and software design patterns. However, the flexibility and diversity of
linked data structures also make it difficult to reason about programs that manipulate them.
The importance and difficulty of data structure verification explains the increased interest
in finding solutions that overcome this difficulty.

Program analyses that target properties of linked data structures are commonly referred
to as shape analyses [62]. A symbolic shape analysis promises to handle a spectrum of dif-
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ferent linked heap-allocated data structures, and a spectrum of properties to verify, without
requiring the user to manually adjust the analysis to the specific problem instance. It was
open what a symbolic shape analysis would look like, and whether it could fulfill its promise.
In the present dissertation, we are concerned with these questions.

1.1 Symbolic Shape Analysis

The goal of a shape analysis is to verify complex consistency properties of linked data
structures. By consistency properties we mean invariants on the shape of a data structure
that are required to hold at specific points during program execution, e.g., at entry and
exit points of library functions that implement the data structure. As an example, consider
the Java program fragment shown in Figure 1.1. This program fragment shows parts of
a data structure implementing containers that store an unbounded set of elements. The
data structure supports various operations such as adding and removing elements from the
set as well as more complex operations such as filtering the stored elements according to
a given predicate. The actual set is implemented using a doubly-linked list. One of the
consistency properties of this data structure therefore states that the list pointed to by field
root forms a doubly-linked list. One can use a shape analysis to verify that these invariants
are preserved by all data structure operations.

The verification of consistency properties is important in itself because the correct ex-
ecution of the program often requires data structure consistency, e.g., if the doubly-linked
list property is violated at entry to method filter then the method will behave unexpectedly
or even crash. In addition, such consistency properties are important for verifying other
program properties. For instance, a termination proof for the while loop in method filter
relies on the assumption that the list pointed to by field root is acyclic. One can use a shape
analysis to verify such assumptions.

In this thesis we investigate a new symbolic shape analysis. This shape analysis uses
automated reasoning procedures to abstract a heap-manipulating program by a program
that manipulates logical formulae. Our approach generalizes predicate abstraction [49], an
existing symbolic program analysis technique, by incorporating the key idea of three-valued
shape analysis [108], an existing non-symbolic shape analysis. The fruitful combination of
these techniques results in a shape analysis that exhibits a unique combination of qualities.
First, our analysis is not a priori restricted to specific data structures and properties to
verify, yet, it offers a high degree of automation. In particular, we used our analysis to
verify complex user-specified consistency properties of data structure implementations. For
instance, we were able to verify preservation of data structure invariants for operations
on threaded binary trees [112] (including sortedness and the in-order traversal invariant)
without manually adjusting the analysis to this specific problem and without providing user
assistance beyond stating the properties to verify. We are not aware of any other shape
analysis that can verify such properties with a comparable degree of automation.

Second, our shape analysis naturally fits into the Jahob approach of modular data
structure verification [66,125]. This approach exploits user-provided procedure contracts to
separate the verification of libraries (that implement data structures) from the verification of
clients (that use these data structures). The procedure contracts characterize the behavior
of a data structure but hide the complexity of the underlying data structure implementation.



public interface Predicate {
//: public specvar pred :: objset;

public boolean contains(Object o);
//: ensures "result = (o € pred)"

public class DLLSet {
class Node {
Node next;
Node prev;
Object data;

}

private Node root;

/*: public specvar content :: objset;

CHAPTER 1. INTRODUCTION

private vardefs "content == {x. <root reaches a node y via next such that y.data=z>}";
invariant " <the list starting from root is acyclic >";
invariant " <the list starting from root is doubly—linked>"; x/

public void add(Object o)
/*: requires "o ¢ content"
modifies content

ensures "content = old content U {o}" %/

{

Node n = new Node();
n.next = root;

n.data = o;

root.prev = n;

root = n;

}

public void filter (Predicate p)
/*: requires "p # null"
modifies content

ensures "content = old content N (pred p)" */

Node e = root;
while (e = null) {
Node ¢ = e;
e = e.next;
if (!p.contains(c.data)) {
if (c.prev == null) {
e.prev = null;
root = e;
} else {
c.prev.next = e;
e.prev = c;
}
}
}
}
}

Figure 1.1: A set container implemented by a doubly-linked list
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In Jahob these contracts are expressed in terms of abstract sets and relations. For instance,
the interface of class DLLSet in Figure 1.1 declares an abstract set content that denotes the
set of objects stored in a given instance of the class. The set content is used in the pre
and postconditions of public methods of class DLLSet to describe the effects of the method
that are observable by the client. Such properties over abstract sets naturally fall into
the class of properties that are expressible in the abstract domain of our shape analysis.
In the context of Jahob, we used our analysis to verify procedure contracts describing the
functional behavior of data structure operations for various data structure implementations.

1.2 Technical Contributions

Our new symbolic shape analysis builds upon a series of technical contributions. These
contributions are summarized as follows:

o We propose Domain Predicate Abstraction as a foundation for symbolic shape analysis.
Domain predicate abstraction provides a new parameterized abstract domain that can
express detailed properties of different regions in the program’s unbounded memory.
We show how to automate the transformation of a heap-manipulating program into
an abstract program using automated reasoning procedures.

o We propose Nested Lazy Abstraction Refinement, an abstraction refinement technique
for domain predicate abstraction. This technique eliminates the need for the user to
manually adjust the abstraction for the analysis of a specific program or property.

o We present Field Constraint Analysis, a new technique for reasoning about data struc-
tures that enables the application of decidable logics to data structures which were
originally beyond the scope of these logics. Field constraint analysis makes our sym-
bolic shape analysis applicable to the diverse data structures that occur in practice.

We now discuss these contributions in detail.

Domain Predicate Abstraction. We show that the key idea of three-valued shape
analysis [108], the partitioning of the heap according to predicates on heap objects, can be
transfered to the predicate abstraction method [49]. This approach results in a new abstrac-
tion technique which we call domain predicate abstraction. Domain predicate abstraction
enables the inference of invariants in the form of disjunctions of universally quantified facts
over the program’s unbounded memory. The building blocks of these quantified facts are
predicates on heap objects in program states as opposed to predicates on program states.
Our construction of the abstract post operator is analogous to the corresponding construc-
tion for classical predicate abstraction, except that predicates over objects take the place
of state predicates, and Boolean heaps (sets of bit-vectors) take the place of Boolean states
(bit-vectors). A program is abstracted to a program over Boolean heaps. For each com-
mand of the program, the corresponding abstract command is effectively constructed by
the use of automated reasoning. Domain predicate abstraction thus provides a parametric
framework for symbolic shape analysis.
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Lazy Nested Abstraction Refinement. We develop a lazy nested abstraction refine-
ment technique for symbolic shape analysis. Our technique consists of two abstraction re-
finement phases that use spurious counterexamples to refine either the abstract domain or
the abstract post operator of our symbolic shape analysis. The two phases are nested within
a lazy abstraction refinement loop. The second refinement phase is crucial for the practi-
cal success of the shape analysis. In many benchmarks, the verification does not succeed
without it. The practical results are in line with the theoretical findings about the so-called
progress property. Progress means that every spurious counterexample encountered during
the analysis is eventually eliminated by a refinement step. We show that with the second
refinement phase our lazy nested abstraction refinement loop has the progress property and
that it does not have this property without the second phase. We provide experimental
evidence that our abstraction refinement technique is feasible and that the increased degree
of automation obtained by abstraction refinement also results in targeted precision. This
targeted precision is reflected by lower space consumption; the nested refinement loop seems
to achieve the local fine-tuning of the abstraction at the required precision.

Field Constraint Analysis. One of the compelling characteristics of our symbolic shape
analysis is that at its core one can plug in existing decision procedures and theorem provers
as black boxes. However, in practice the capabilities of existing decision procedures often
do not match the requirements of the analysis. Therefore, it can be necessary to introduce
an additional layer between the analysis and the actual decision procedure to increase the
range of analyzable programs.

We introduce field constraint analysis, one such layer for reasoning about data struc-
tures. A field constraint for a reference field in a data structure is a formula specifying a set
of objects to which the field can point. Field constraints enable the application of decidable
logics to data structures which were originally beyond the scope of these logics, by dividing
the fields of a data structure into two kinds of fields: backbone fields which span the back-
bone of the data structure (e.g., a tree) and derived fields which cross-cut the backbone in
arbitrary ways. The derived fields are specified in terms of field constraints over the back-
bone fields. Reasoning about properties of the data structure is reduced to reasoning about
properties of its backbone (e.g., expressed in MSOL over trees) by eliminating derived fields
with the help of the provided field constraints. Previously, such derived fields could only be
handled when they were uniquely determined by their field constraints. This significantly
limited the range of supported data structures.

Our field constraint analysis permits nondeterministic field constraints on derived fields,
which allows reasoning about data structures such as skip lists. Nondeterministic field
constraints also enable the verification of invariants of composite data structures, yielding
an expressive generalization of static type declarations.

The generality of our field constraints requires new techniques, which are orthogonal
to the traditional use of structure simulation [58,60]. We present one such technique and
prove its soundness and completeness in important cases. Using our technique we were able
to verify data structures that were previously beyond the reach of similar techniques.
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1.3 Proof of Concept

All the techniques presented in this thesis have been implemented and evaluated in a tool
called Bohne. Bohne is implemented on top of the Jahob system for verifying data structure
consistency |67]. Bohne analyzes Java programs annotated with special comments that spec-
ify procedure contracts and representation invariants of data structures such as the program
shown in Figure 1.1. Our tool verifies that all methods comply to their procedure contracts
and that all representation invariants are preserved by data structure operations. We used
Bohne to verify complex user-specified consistency properties for a range of data structure
implementations and data structure clients without manually specified loop invariants or
manually provided abstractions. This proves that symbolic shape analysis is able to verify
a diverse set of data structures and properties with a high degree of automation.

1.4 Outline

In Chapter 2 we give the preliminaries of this thesis. We briefly introduce higher-order logic,
our notion of programs, and review the foundations of abstract interpretation. Chapter 3
presents domain predicate abstraction. A special case of domain predicate abstraction
has previously been presented at SAS’05 [102| and in my diploma thesis [115]. In the
fourth chapter we introduce our technique of abstraction refinement for domain predicate
abstraction. Chapter 5 describes our field constraint analysis for automated reasoning about
data structures. This material has been presented at VMCAI’06 [116]. Finally, Chapter 6
captures the design and implementation of the Bohne verifier and provides an overview of
our case studies.






Chapter 2

Preliminaries

2.1 Higher-Order Logic

We follow the approach taken in [66] and formalize programs, their semantics, and properties
in terms of higher-order logic (HOL). The advantage of such an approach is that we can
express both programs and their abstractions in a unique formalism. Furthermore, HOL
does not impose any artificial restrictions on the properties that we are able to express.

The core of HOL is the simply typed lambda-calculus. We briefly sketch the foundations
of this calculus for later reference. A more comprehensive discussion of typed lambda-calculi
can be found, e.g., in [10,56].

Types. Let B be a finite set of type constants. The set of X-types Typesg over B is
defined as follows:
t € Typesg := b where b € B (type constant)
| =t (total functions)

Following common convention, we consider function types to be right associative, i.e.

t1 =l = 13 = t1:>(t2:>t3) .

Terms. We assume a countable infinite set V' of variables with typical elements v,w € V.
A signature ¥ is a tuple (B,C,ty) where B is a finite set of type constants, C' a set of
constant symbols disjoint from B, and ty a function C' - Typesp mapping each constant
symbol to a X-type over B. The set of X-terms Termsy, over a signature 3 = (B, C, ty) is
defined as follows:

F € Termsy, == v (variable)

| ¢ where c € C (constant)

| Av:t.F where t € Typesg  (lambda abstraction)

)

| F By (function application

For nested lambda abstractions of the form (Avy :: ¢1. ... Av,, 2 §,. F') we use the abbrevia-
tion M(vy i t1) ... (vp it ). F. Given a lambda abstraction of this form, we call F' the scope
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ty(c) =t I'(v) =t
I'kFeut kot
F[Ul—>t1]f—F:Zt2 I'EF ot =t I'HEFEyoty
'k Av: h.F ot =1 Pl—FlFQ o

Figure 2.1: Typing relation.

of AMvy 2 t)... (v, = t,). An occurrence of a variable v is bound if it is inside the scope
of some A(vy 1 t)... (v 2 t,) and v € {v1,...,v,}. Other occurrences are called free. We
denote by FV(F) the set of all free variables of F. A term F' is closed if FV(F) = (). We
write F'(vy,...,vy,) to indicate that FV(F) C {vq,...,v,}.

A substitution o is a partial mapping from variables to terms. We write F'o to denote
the term that results from simultaneously substituting every free occurrence of variables
v € dom(o) in Fy by o(v).

Typing relation. A typing context I' is an assignment from variables to Y-types. Let F'
be a -term and t a Y-type. The typing relation I' = F' :: t is defined in Figure 2.1. We
say term F' has type t under typing context I' if I' = F' :: . We call F' well-typed under T’
if there exists a type ¢ such that I' = F':: t. We will often omit type annotations in lambda
abstractions if these types can be inferred from the typing context.

Structures. A structure A for signature ¥ = (B, C, ty) is a function with dom(A) = BUC
and the following properties: A maps each type constant b € B to some nonempty set. We
call A(b) the domain of type constant b. We extend A to a function on X-types as follows:

[b]la = \A(D)
[hi=t]a = [t]a— [t]a

Finally, A maps each constant symbol ¢ € C to a value in [ty(c)].a.

Let I" be a typing context and let 3 be an assignment from variables v € V to values in
[T'(v)]a. Further, let F be a ¥-term that is well-typed under I'. The interpretation of F'
in a structure A under variable assignment 3, written [F] 4 g, is defined recursively on the
structure of terms as follows:

ldlas = Ale)
[v]as = Bv)
[t Flag = {01 — 02| 01 € [t]4 and 03 = [[F]]A,ﬁ[v'—ml] }

[F1 Bo]as = ([Filap)([F2lap) -

Formulae. In the rest of this thesis we will only consider signatures that contain at least
the type constant bool for Booleans. We expect that structures interpret bool as the set
B = {0,1}. A well-typed term of type bool is called a formula. We further assume that all
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¢ [ A

true | bool 1

- bool = bool Mo.1—o0

A bool = bool = bool | Aoj 02. min{o;, 02}

Yy (t = bool) = bool | Ap. min{p(o) | 0 € [t]a}

= t = t = bool Ao1 09.if 01 = 09 then 1 else 0
ite; | bool=>t=t=1¢ Ao1 09 03.1f 01 = 1 then o9 else 03

Table 2.1: Standard constant symbols in a signature ¥ = (B, C, ty) and their interpretation
in X-structures A.

Notation Term Typing constraints
false —true

Fi N Fy N Fy Fy

Fi Vv Fy —|(—|F1 /\—|F2)

F;, — Fy -F1V Fy

Yo t. F V(v ¢ F)

Jv:it F (Yo i t.=F)

=5 = Fy

if I then Fy else F3 | ite F| Fy F3

{vut. F} Av st F

{F} AMtov=F

0 v :: t. false

F1€Sl SlFl Fl‘Sl it t = bool

S1 NSy M t.v€eE ST AvE S,y ' Si2::t = bool
So U Sy At ve SV eSSy I'=S12::t = bool
S1— S5 Av it if v € Sy then falseelsev € S | I' =512 :: ¢ = bool

Table 2.2: Syntactic sugar for terms constructed from standard constant symbols.

signatures provide at least the set of standard constant symbols listed in Table 2.1 and that
structures respect the provided interpretations. For instance, the symbol = denotes Boolean
negation and =; denotes the equality predicate for type t. We will omit type subscripts
from constant symbols whenever the type is uniquely determined by the subterms and the
typing context.

For notational convenience we will use syntactic sugar for some formulae constructed
from constant symbols in Figure 2.1. A list of short-hand definitions is shown in Table 2.2.

Given a formula F' and a structure 4, we say that F' is satisfiable in .4 under variable
assignment 3, written A, 3 = F, if [F]4s = 1. Let D be a mapping from type constants
in B to nonempty sets. We write [F]p s to denote the set of all X-structures that are
compatible with D and in which F' is satisfiable under variable assignment (3, i.e.:

[Flps = {A|Ap=D A ABEF} .

We say that F' is valid in A, written A | F, if F is satisfiable in A under all variable
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assignments. If formula F is valid in structure A then we call A a model of F'. We denote
by [F] the set of all models of F'. Formula F is called valid, written |= F, if it is valid in
all YX-structures. Finally, we say that formula F' entails formula G, written F' = G, if the
formula F' — G is valid.
2.2 Programs
We now formalize programs. A program P = (X, D, X, L, ¢y,{g,T) consists of:

e X a signature ¥ = (B, C, ty).

e [: a domain mapping that maps each type constant b € B to a nonempty set.

e X: a finite set of program variables such that X C C.!

e [: a finite set of control locations of the program.

e /p: an initial control location.

e (p: an error control location with £ # ¢p.

e 7: a finite set of program transitions. Each transition 7 = (¢,¢,¢’) consists of an

entry and exit location ¢ and ¢, and a command ¢. Commands are defined by the

following grammar, where x is a program variable of type ¢, E a closed Y-term of
type t and F' a closed X-formula:

ce Com:= x:=F (assignment to x
| havoc(z)  (nondeterministic assignment to z

| assume(F) (assume statement

| ¢c (sequential composition

States. A program state s is a tuple (¢,.A) where ¢ is a program location and A a X-
structure such that A(b) = D(b) for all type constants b € B. We use s(pc) to denote
program location ¢ of state s and s(z) to denote A(z) for a program variable z. We call a
state s with s(pc) = g an error state. For a program variable z € X we denote by s[z +— 0]
the state that is obtained by updating the interpretation of z in s to o. The set of all states
is given by States. We will often identify a state with the contained structure, e.g., we
extend the satisfaction relation = from Y-structures to states as expected: let (¢,.A) be a
state, B a variable assignment and F' a formula then we define

(L,A),BEF < ABEF .

We proceed similarly for validity and entailment.

!Program variables are logical constants and not to be confused with logical variables.
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Transition Relations. Each command c represents a relation [c] that contains pairs of
logical structures (A,.A’) such that A and A’ satisfy conditions given below for each kind
of commands.

If ¢ updates a program variable z:= F, we have A" = A[[E];],

if ¢ is a havoc command havoc(x), we have A" = Az — o] where o is some value in

[[ty($)]]87

e if ¢ is an assume command assume(F'), we require that A = F and A" = A

and if ¢ is a sequential composition ci;ce, there exists a structure Ag such that

(A, Ao) € [e1] and (Ao, A) € [ea].

Finally, the transition relation [7] of a transition 7 = (¢,¢,¢') is the relation on states
defined as follows:

[71= { (6. A), (¢, A)) | (A, A) €[] }

Computations. A program computation is a (possibly infinite) sequence § = sg S

. of states and commands such that so(pc) = £y and for each pair of consecutive states
s; and s;4+1 we have (s;, 8;41) € [(¢,¢;, ¢')] where (¢,¢;,¢') is a transition in 7. If ¢ is finite
then for its final state, say s, and for each transitions 7 € 7 there is no state s’ such that
(s,8") € [r]. We call any prefix of a computation a trace and we call command 7 that
corresponds to the sequential composition of the commands in a trace a path. An error
trace is a trace that reaches an error state and an error path is a path associated with an
error trace. A program is called safe if it does not exhibit any error traces.

Predicate Transformers. Given a binary relation R on states and a set of states S, we
define strongest postcondition post and weakest liberal precondition wlp as usual:

post, wlp € 2(States><States) _ 2States _ 2States

post(R)(S) < {s'|3s.(s,s) e RAs € S}
wip(R)(S) & {s|Vs'.(s,s') e R= 5" € S}

A closed formula F'is a symbolic representation of a set of states, namely, the set of its
models [F]. It is therefore convenient to overload the predicate transformers post and wlp
to symbolic predicate transformers that manipulate formulae according to the semantics of
commands. Figure 2.2 provides the corresponding definitions. Note that the definitions
in Figure 2.2 are not restricted to closed formulae. The correctness of these definitions is
stated by the following proposition.

Proposition 1 Let ¢ be a command, F' a formula, and B an assignment to the free variables
of F' then:

post([c])(IF]p.5) = [post(c)(F)]p,5 and
wip(I) ([F1p,5) = Wlp(e)(F)]b,s -
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post(z:= E)(F) £ Ju. Flz:=v] Az = E[z:=v] with v & FV(F)
post(havoc(z))(F) £ Jv. F[x =v] with v & FV(F)
post(assume(G))(F) £ G
post(c1; c2)(F) < p St(C2)(POSt(01)(F))
wlp(a:= E)(F) < Flz:= E]
wip(havoc(z))(F) = Vo Flzi=v] with v & FV(F)
wip(assume(G))(F) € G — F
wlp(c1; e2) (F) = wip(er)(wip(e) (F))

Figure 2.2: Symbolic predicate transformers.

Proof. The prove goes by induction on the structure of commands. We only show the case
for weakest liberal preconditions and assignment commands. The other cases are similar.
Let ¢ be the command (z:= E) then we have:

wlp([z:=E])([Flps) = {s | Vs (s,8) € [r:=FE] = § € [[F]]D,ﬁ}
= {s | Vs'. (s = s[z — [E]s]) = &' € [[F]]Dﬁ}
= {s|slz— [El] € [Flps}
= {s|slz— [EL].BEF}
= {s|s,BF Flz:=E]}
= [Flz:==F]]pgs -

2.2.1 Heap-Manipulating Programs

Programs defined in Section 2.2 provide an assembly language that allow us to model a
broad range of systems. Heap-manipulating programs are the classical application domain
of shape analysis. We will often use them as running examples throughout this thesis.
In the following, we sketch how heap-manipulating programs can be modelled in terms of
programs defined in Section 2.2.

Developing a memory model for a specific programming language which is both accurate
and suitable for program analysis is a difficult research task in itself. For exposition purposes
we consider a rather primitive imperative programming language with garbage collected
heaps. A more sophisticated memory model for Java-like programs is described, e.g., in
[66,80]. A memory model for C programs that is suitable for verification can be found, e.g.,
in [33]. A heap manipulating program is a program (35, Dy, X, L, ¢y, g, T) with signature
¥n = (Bp, Ch, ty;,) and the following properties. There is a type constant obj € By that
models the set of available heap objects. The domain Dj(obj) of type obj is a nonempty
set of unspecified size. The set of program variables X consists of reference variables Var
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and reference fields Fld. A reference variable denotes a heap object, i.e., for all z € Var we
have ty;,(x) = obj. Reference fields model fields in data structures and denote functions on
heap objects, i.e., for all f € Fld we have ty, (f) = (obj = obj).

Commands. The basic commands one would expect a heap-manipulating program to be
composed of are:

e writing the content of a reference variable to a reference variable: z:=1y,

e writing the content of a reference field at some index to a reference variable: x:=y.f,
e writing to a field at some particular index: z.f:=y,

e and allocation of a new heap object: new(z).

Read and write commands directly translate into assignments of program variables where
a field access of the form x.f simply correspond to a function application fx. The only
interesting case is a field write of the form (z.f:=vy). We model field writes by assignments
to function-valued program variables:

fi=(A\v :: obj.if v =z then y else fv) .

We will use the short notation f:= flz:=y| for such updates.

For modelling allocation of fresh heap objects we need to track the set of allocated
objects. For this purpose we assume a special program variable alloc of type obj = bool.
The idea is that in a given state s the predicate s(alloc) describes the subset of all heap
objects in Dy (obj) that are currently allocated. Allocation of a fresh heap object new(x) is
then modelled by the following sequence of commands:

havoc(x);
assume(z ¢ alloc);

alloc:=allocU {z} .

Null Dereferences. A field in a heap-manipulating program is not always defined, e.g.,
because a specific object is not allocated. Thus reference fields more closely resemble partial
functions on heap objects. Dereferencing a field on an object for which the field is undefined
may cause the program to crash. In order to detect such runtime errors we add a special
constant symbol null of type obj that models the undefined value. Thus, we can think of null
as a special program variable that can never change its value. In order to ensure absence of
runtime errors, every transition (¢, ¢, ') where ¢ contains a field access f.x is guarded by a
transition to the error location of the form (¢, assume(f(z)=null),?g). Thus, any potential
dereference of null will be reflected by an error trace.

Background Formula. Any additional specifics of the memory model that restrict the
set of possible program states can be encoded into a background formula BG. We re-
quire that all outgoing transitions from the initial location £y to a location ¢ are of the
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form (£, assume(BG), ). A reasonable choice for a background formula that encodes the
memory model of a garbage-collected language is, e.g., as follows:

BG % null € alloc

A /\ fnull = null
feFld
AYv :: obj,w :: obj.v ¢ alloc — /\ fw#uv .

ferld

The first conjunct of the background formula guarantees that null is an allocated object.
This ensures that after allocating a fresh object with command new(z) program variable
x will always point to an object different from null. The second conjunct guarantees that
null always points back to itself. The last conjunct ensures that non-allocated objects are
isolated in the heap.

Reachability Properties. Reachability properties play an important role in the analysis
of heap programs. By reachability properties we mean properties such as:

“Reference variable x is reachable from reference variable y by
following field f in the heap.”

Such properties can be used for describing the shape of data structures. For instance, the
fact that a list pointed to by a reference variable = is acyclic can be expressed by saying
that x reaches null. Reachability properties are also important for expressing invariants
such as disjointness of heap regions and for defining useful abstractions of recursive data
structures. In order to formalize reachability properties, we assume that our signature for
heap programs provides a reflexive transitive closure operator rtrancl pt of type:

rtrancl _pt :: (obj = obj = bool) = obj = obj = bool .

The formula rtrancl _ptpet holds whenever the pair denotated by (e, t) is in the reflexive
transitive closure of the binary relation denoted by predicate p. Formally, we define the
semantics of the reflexive transitive closure operator in terms of second-order quantification:

rtrancl_ptpet = (VS.e€e SA Vow.v e SApvw —weS) —tel) .

For instance, acyclicity of a list over field next that is pointed to by reference variable x is
expressed by the following formula:

rtrancl_pt (Avw. nextv = w)x null .
For our convenience we will use syntactic sugar for the reflexive transitive closure of reference
fields and write “next™ x null” as a shorthand for the above formula.
2.3 Abstract Interpretation

Most problems related to program verification are undecidable for programs written in
Turing-complete programming languages. A possible solution is to analyze approximations
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of programs for which the verification problem becomes decidable. Instead of proving that
the concrete program behaves according to its specification one proves that an abstract
program behaves according to an abstract specification. These approximations should be
sound, i.e., correctness of the abstract program implies correctness of the concrete program.

The framework of abstract interpretation developed by Patrick and Radhia Cousot [37,
38| formalizes sound approximations of programs. In abstract interpretation the semantics
of programs and their approximation is defined in terms of lattice-theoretic domains. The
concrete semantics is given by the least fixed point of a functional on a complete lattice.
For instance, for proving that a program is safe, we need to prove that the set of program
states reachable by any trace of the program is disjoint from the error states. The set of
reachable states of a program is given by the least fixed point of the operator post on the
power-set lattice of program states. The abstract semantics is the least fixed point of an
abstraction of the concrete functional on an abstract lattice. The abstract fixed point is an
approximation of the concrete fixed point. For program safety this means that the abstract
fixed point represents a superset of the reachable program states.

We will formulate our symbolic shape analysis in terms of abstract interpretation. For
later reference, we now give an overview of the key notions used in the abstract interpretation
framework.

2.3.1 Partially Ordered Sets and Lattices

Definition 2 (Partially Ordered Set) A set S with a binary relation < is called a par-
tially ordered set if and only if the following three conditions hold:

1. < is reflexive: Ve € S.x <z,

2. < is transitive: Vx,y,z € S.x <y and y < z implies x < z,

3. < is antisymmetric: Yo,y € S.x < y and y < x implies z = y.

A partially ordered set is denoted by S(<).

An element x € S is a lower bound of X C S if and only if Vo' € X.x < 2. A lower
bound x of X C S is called greatest lower bound if and only if for all lower bounds ' € S
of X we have 2’ < x. Conversely, x € S is an upper bound of X C S if and only if
Vo' € X.2' < x. An upper bound x of X C S is called least upper bound if and only if for
all upper bounds ' € S of X we have v < ',

Definition 3 (Complete Partially Ordered Set) Let set S(<) be a partially ordered
set. A chain (z;)ien s @ monotone sequence of elements in S: xg < x1 < x3.... A chain
(xi)ien is S is called stable if there exists k € N such that for all j with k < j, xj = x;41.

A partially ordered set S(<) is called complete partially ordered set (CPO) if and only
if S has a least element L and all chains C C S have a least upper bound \/ C. A CPO is
called stable if all its chains are stable.

Let S(<) be a CPO. A function f € S — S is called continuous if and only if f
distributes over least upper bounds of chains, i.e., for all chains (x;)ien in S, f(\V(i)ien) =

V(f(xi))ien-
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Note that every continous function on a CPO is monotone and every monotone function
on a stable CPO is continous.

Theorem 4 (Kleene’s Fixed Point Theorem) Let S(<) be a CPO and f € S — S a
continuous function. Then f has a (unique) least fized point:

Ifp(f) = \/(f*(L))ien -

Definition 5 (Lattice) A partially ordered set L(<) is called o lattice if and only if for
all x,y € L there exists a least upper bound xVy and a greatest lower bound x ANy of x and
y in L. A lattice is denoted by L(C,V,A). We call V the join and A the meet operation of
the lattice.

Definition 6 (Complete Lattice) A lattice L(<,V,A) is called complete if for all X C
L there exists a least upper bound \/ X and a greatest lower bound N X of X in L. In
particular, L has a greatest element T = \/ L and a least element L = N L. A complete
lattice is denoted by L(<,V, A, L, T).

Definition 7 (Complete Join and Meet-Morphism) Let Li(<,V,A, L1, T1) and let
Lo(C,U,M, Ly, To) be two complete lattices. A function f € Ly — Lo is called a com-
plete join-morphism if and only if f(L1) = Lo and for all X C Ly:

FNX) = {f@)zex)

Dualy, f is called a complete meet-morphism if and only if f(T1) = To and for all X C Ly:

FANX) =] {f@) zeXx} .

Note that every complete lattice is also a CPO, thus every continous function on a
complete lattice has a unique least fixed point. According to Tarski [111] it is sufficient to
consider monotone functions rather than continuous functions to guarantee the existence
of a least fixed point. However, in this thesis we will only consider continuous fixed point
functionals.

Definition 8 (Completely Distributive Lattice) A complete lattice L(<,V, A, L, T) is
called completely distributive lattice if and only iof arbitrary joins in L distribute over arbi-
trary meets. Formally, for any doubly-index family {x;; € L |i € I,j € J; } we have:

AV @i =\ Nziso
i€l jEJ; feFiel
where F' is the set of all functions choosing for an index i € I an index f(i) € J;.

Proposition 9 Let S be a set. Then 2°(C,U,N,0,S) is a completely distributive lattice.

Proposition 10 Let S be a set and L(<,V,A, L, T) be a completely distributive lattice.
Then functions S — L form again a completely distributive lattice, where the ordering <
on S — L is defined point-wise as follows:

fEf = Ve e S fx) < fl(x) .
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Example 11 The set of reachable states Reach of a program P = (X, D, X, L, 0y, lp,T)
is the least fixed point of operator post under initial states. Formally, we define the set
of initial states Init, and the transition relation [P] € States x States associated with a
program P as follows:

def

Init = {s € States | s(pc) = 4o }

[P1= U

TeT
We then define a fixed point functional f:
NS, Init U post([P])(S) .

The operator post(R) is continuous for any relation R, hence, so is f. Thus, the least fixed
point of f exists according to Theorem 4:

Reach = Ifp(f) .

2.3.2 (Galois Connections

The connection between concrete and abstract lattice is formalized in terms of Galois con-
nections.

Definition 12 (Galois Connection) Let L1(<) and Lo(C) be partially ordered sets. The
pair (o, ) is called a Galois connection, or a pair of adjoint functions if and only if o €
Ly — Lo, y€ Ly — Ly and:

Ve € L1,y € Lo.a(x) Cy < = <~(y) .
We call o the lower adjoint and v the upper adjoint of the Galois connection.

The following Proposition summarizes some alternative characterizations of Galois con-
nections.

Proposition 13 Let Li(<,V, A, L1, T1) and Lo(C, 1,1, Ly, Tg) be two complete lattices.
For functions o € L1 — Lo and v € Lo — L1 the following statements are equivalent:

1. (a,7) is a Galois connection,
2. the following three conditions hold:

e « and vy are monotone,
o a oy is reductive: Yy € Ly. a(y(y)) C vy,

e yoa is extensive: Vr € L.z < y(a(x)).

3. the following two conditions hold:
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o v is a complete meet-morphism
ca=xzeli.[{yeLly|z<~(y)}

4. the following two conditions hold:

e « is a complete join-morphism

e v=XycLly. \/{zeli|ax) Ty},

The equivalence of statements 1. and 2. is stated in [38, Theorem 5.3.0.4]. The fact that
Statement 2. implies statements 3. and 4. is stated in |38, Corollary 5.3.0.5].

Proposition 14 Let L1(<1), Lo(<2), and L3(<3) be partially ordered sets. Furthermore,
let (a,7y) be a Galois connection between L1(<1) and La(<s3), and let (o/,7") be a Galois

connection between Lo(<3) and L3(<3). Then (¢’ o, y07') is a Galois connection between
Li(<1) and L3(<3).

The following proposition gives an example of a Galois connection which we will use
later in this thesis.

Proposition 15 Let P be a program and R a binary relation on states of P. Then
(post(R),wlp(R)) is a Galois connection on sets of states of program P:

VS, 8" € 25tates post(R)(S) € S' <= S C wlp(R)(S) .

For proof see, e.g., [109].

Let (o) be a Galois connection between a concrete and an abstract lattice and let
the concrete semantics of a program be defined by the least fixed point of a functional f
on the concrete lattice. Then the abstract semantics is defined by the least fixed point of
the abstraction of f which is given by the functional a o f oy on the abstract lattice. The
abstract semantics is guaranteed to be an approximation of the concrete semantics.

Proposition 16 Let L1(<,V,A, L1, T1) and Lo(C,U, M, Lo, To) be two complete lattices.
Let f € L1 — Ly be a continuous function, and let (c,y) be a Galois connection between
L1 and Lo then:

Ifp(f) < y(ifp(ao fon)) .



Chapter 3

Domain Predicate Abstraction

The transition graph of a program is formed by its states and the transitions between them.
The idea of predicate abstraction [49] (e.g., used in tools such as SLAM [7], BLAST [55],
and MAGIC [30]) is to abstract a state by its evaluation under a number of given state
predicates; each edge between two concrete states in the transition graph gives rise to an
edge between the two corresponding abstract states. One thus abstracts the transition
graph to a graph over abstract states.

For a program manipulating the heap, each state is represented by a heap graph. A heap
graph is formed by the allocated objects in the heap and pointer links between them. The
idea of three-valued shape analysis [108] is to apply to the heap graph the same abstraction
that we have applied to the transition graph. One abstracts an object in the heap by its
evaluation under a number of predicates on heap objects; edges between concrete objects
in the heap graph give rise to edges between the corresponding abstract objects. One thus
abstracts a heap graph to a graph over abstract objects.

The analogy between predicate abstraction and the abstraction proposed in three-valued
shape analysis is remarkable. It does not seem helpful, however, when it comes to the major
challenge: how can one compute the abstraction of the transition graph when states are
graphs and the abstraction is defined on nodes of the graph? This chapter answers a
refinement of this question, namely whether the abstraction can be defined and computed
in the formal setup and with the basic machinery of predicate abstraction.

Following Chapter 2, program states are represented as logical structures rather than
graphs. Thus, nodes in a graph correspond to objects in a domain of a logical structure.
As in predicate abstraction, the analysis is an abstract interpretation [38] defined in terms
of an abstract domain of formulae. These formulae are constructed from a finite set of
predicates. However, in contrast to predicate abstraction, the building blocks of formulae
are not state predicates, but domain predicates, meaning that they range not just over
states of a program, but also over objects in the domains of these states. The formulae
defining the abstract domain are given by universally quantified facts over objects in the
domains of states. The building blocks of these facts are domain predicates. Thus, we do
not just propose a generalization of predicate abstraction suitable for shape analysis, but
more generally an analysis that enables the inference of universally quantified invariants.

21
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Contributions. The key technical contributions that are described in this chapter are
summarized as follows:

e We introduce a new abstract domain for an analysis that infers universally quantified
facts about objects in the domains of program states.

e We generalize predicate transformers to domain predicate transformers that capture
the effect of concrete transitions on relations between objects in the domains of pro-
gram states.

e We develop a practically feasible abstract post operator for our abstract domain. This
abstract post operator is given by an abstraction of the most precise abstract post op-
erator on our abstract domain. The abstraction is defined in terms of abstract domain
predicate transformers that compute updates locally on different regions in the do-
mains of program states instead of global updates on the whole domains. For adjusting
the precision /efficiency trade-off, the abstraction is parameterized by a so-called con-
text operator that determines how much context information (i.e., information about
surrounding regions) is preserved by the abstraction.

e We show that one can implement the abstraction by a simple source-to-source trans-
formation of a program to an abstract finite-state program which we call a Boolean
heap program. This transformation is analogous to the corresponding transforma-
tion in predicate abstraction, except that domain predicates take the place of state
predicates and Boolean heaps (sets of bitvectors) take the place of Boolean states
(bitvectors).

e We show that Boolean heap programs can be constructed effectively using automated
reasoning procedures. For each command of the program, the corresponding abstract
command in the Boolean heap program is constructed by the application of a weakest
liberal precondition operator on domain predicates and an entailment test (imple-
mented by a syntactic manipulation of formulae, respectively, by a call to a decision
procedure or theorem prover).

3.1 Boolean Heap Programs

Before we formally introduce domain predicate abstraction, it is instructive to highlight the
main differences and similarities to predicate abstraction [49].

Predicate Abstraction. Following the framework of abstract interpretation [38], a static
analysis is defined by lattice-theoretic domains and by fixed point iteration over these do-
mains. For predicate abstraction the analysis computes an invariant (i.e., a superset of
the reachable program states); the fixed point operator is an abstraction of the operator
post; the concrete domain consists of sets of states. The abstract domain consists of sets
of abstract states. The abstract domain is a finite sub-lattice of the concrete domain: each
abstract state denotes an equivalence class of states, an element of the abstract domain
denotes a union of such equivalence classes. The equivalence classes are induced by evalu-
ating states under a finite set of abstraction predicates (closed formulae). Each equivalence
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General scheme Example
Concrete command: Concrete command:
c var z ::int
r=x+1
State predicates: State predicates:
P=A{p1,...,pn} pp=x=0, pp=x>0
Abstract Boolean program: Abstract Boolean program:
var pi,...,pn :: bool var p1,ps :: bool
for each p;, € P do if false then pq:=true
if wip™(c)(p;) then p;:=true else if p; V py then pi:=false
else if wip” (¢)(—p;) then p;:=false else py:=x*
else p;i= x if p1 V po then py:=true
else if —p; A —py then py:=false
else po:==x

Figure 3.1: Construction of a Boolean program from a concrete command via predicate
abstraction. All predicates are updated simultaneously. The value '* stands for nondeter-
ministic choice.

class is represented by a bitvector over abstraction predicates, each element of the abstract
domain by a set of such bitvectors.

The abstraction of the post operator corresponds to a finite-state Boolean program,
one Boolean program variable per abstraction predicate. Thus, a state of the Boolean
program corresponds to an abstract state. Each transition of the concrete program gives
rise to transition in the abstract program that corresponds to a simultaneous update of the
Boolean variables.

Figure 3.1 shows the transformation of a concrete command to the corresponding pred-
icate updates in the abstract Boolean program. The actual abstraction step lies in the
computation of wlp”(c)(p) — the most precise Boolean under-approximation (in terms of
abstraction predicates) of the weakest liberal precondition of predicate p and command ec.
For example false is the most precise under-approximation of wlp(x:=z + 1)(z = 0) with
respect to predicates p; and po. The abstract weakest liberal preconditions are computed
automatically by checking validity of entailments using a decision procedure or automated
theorem prover.

The resulting Boolean program is analyzed using finite-state model checking. If the error
location is not reachable in the abstract program, then the concrete program is guaranteed
to be safe.

Domain Predicate Abstraction. Our analysis proceeds analogously to predicate ab-
straction: (1) we choose a set of abstraction predicates for the abstraction (defining the
abstract domain); (2) we construct an abstract finite-state program (the abstract post op-
erator); and (3) we apply finite-state model checking to the abstract program (the fixed
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point computation). In the following, we explain in detail how the abstract domain and the
construction of the abstract program look like.

In domain predicate abstraction, we define equivalence classes of objects in the domains
of program states by evaluating them under a finite set of domain predicates. A domain
predicate ranges over both program states and objects in the domains of these states.
Domain predicates are represented symbolically by domain formulae. A domain formula is
obtained from a formula by first-order lambda abstraction. As an example of such a domain
formula, consider the term

Av i obj.nextv =z .

This term evaluates to true for a given object in a given state, if the next field of this object
points to program variable z. We call the equivalence classes induced by domain predicates
abstract objects. Abstract objects are represented by bitvectors over domain predicates. An
abstract state is given by a set of abstract objects, i.e., a set of bitvectors. A concrete state
s belongs to the equivalence class represented by an abstract state, if every concrete object
in the domain of s belongs to the equivalence class represented by one abstract object in
the abstract state. The abstract domain of the analysis is given by sets of abstract states,
i.e., sets of sets of bitvectors.

Intuitively, one can think of domain predicate abstraction as predicate abstraction being
exponentiated. This also means that domain predicate abstraction is exponentially more
succinct than standard predicate abstraction assuming the same number of abstraction
predicates in both approaches. This additional precision enables domain predicate abstrac-
tion to express detailed properties about different regions in the domains of program states
by using only a small number of predicates and makes domain predicate abstraction appli-
cable for shape analysis. However, being exponentially more expressive also implies high
costs for computing the abstract post operator. For an abstract domain given by abstract
states over abstract objects it is exponentially more expensive to compute the most precise
abstract post operator than it is for standard predicate abstraction. In order to avoid this
exponential blowup, one would like to approximate the most precise abstract post operator
by decomposing it into local updates. Here “local” means that one updates each abstract
object in isolation. The problem is: how can one account for the update of the global state
by local updates on abstract objects?

We abstract a concrete program by a Boolean heap program. The abstraction is illus-
trated in Figure 3.2. The construction of a Boolean heap program naturally extends the
one used in predicate abstraction. The difference is that a state of the abstract program
is not given by a single bitvector, but by a set of bitvectors. Transitions in Boolean heap
programs change the abstract state via local updates on abstract objects (p.p;:= true) rather
than global updates on the whole abstract state (p;:=true). Consequently, we replace the
abstraction of the weakest liberal precondition operator on state predicates wlp™ by the
abstraction of a weakest liberal precondition operator on domain predicates W.|p#. This
construction avoids the exponential blowup that occurs in the construction of the most
precise abstract post operator on abstract states. However, the analysis still provides an
exponentially more succinct abstract domain than standard predicate abstraction.

In the rest of the chapter we give a formal account of Boolean heap programs. In

particular, we make precise what it means to compute the operator W.Ip . Furthermore, we
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General scheme Example
Concrete command: Concrete command:
c var x,y, z :: list
T.next:=1y
Domain predicates: Domain predicates:
P={p1,---,Pn} P =T =v, p=y=z,

p3s = Av.next(v) = z

Boolean heap program: Boolean heap program:
var V :: set of bitvectors over P var V: set of bitvectors over {pi,p2,p3}
for each p € V do for each pe V do
for each p; € P do if p.p1 then p.pi:=true
if e wllp#(c)(pi) else if —p.p; then p.p;:=false

then p.p;:=true if p.po then p.py:=true

else if —p.ps then p.py:=false

if =pip1 Apips V pp1 A p.pe then
P.p3:=true

else if —(—p.p1 A p.ps V .p1 A P.p2)

then p.p3:=false

else if p e W'|p#(C)(_‘pi)
then p.p;:=false

else pip;:=x

Figure 3.2: Construction of a Boolean heap program from a concrete command.

identify the post operator of a Boolean heap program as an abstraction of the most precise
abstract post operator on our abstract domain. Thus, we precisely identify the points in
the analysis where we can lose precision.

3.2 Domain Predicates

In predicate abstraction a state is abstracted by its evaluation under a finite number of
predicates. These predicates are state predicates, i.e., sets of program states. As an example,
consider the formula

F=xz>0.

Formula F' denotes the predicate [F]. A state s is in the denotation of F' if s(z) is greater
than 0. We generalize predicate abstraction by considering predicates that do not just range
over states, but also over objects in the domains of these states. As an example, consider
the term

G=Mz:obj.fo=2z.

Given a state s, the term G evaluates to true for an object o € s(obj) if its field f points to
program variable z. Intuitively, the denotation [G] is a function of a dependent type

IIs € States. s(obj) — {0,1} .
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For technical reasons, we use an equivalent representation of the denotation of such terms.
We are not interested in arbitrary logical structures, but in logical structures that correspond
to program states. All remaining definitions in this chapter are subject to a particular
program P. For convenience we fix a particular program P = (X, D, X, L, ¢y, {g,T) for the
rest of this chapter and keep all dependencies on P implicit. Recall that the domains of all
program states of program P are fixed by the domain mapping D. Thus, we can define the
denotation of term G as follows:

[G] € D(obj) — 25t
[G] = Mo € D(obj). { s € States | s,[v+ o] = fo=z}
= Mo € D(ob)). [f v=z]p o] -

These considerations suggest the following formal definition of domain predicates.

Definition 17 (Domain Predicates) A domain predicate p over basic types by, ..., by, is

a function
pE (D(bl) X oo X D(bn)) N ZStates )

We call n the arity of p and we denote by DomPreds(D(by) X -+ x D(b,)) the set of all
domain predicates over basic types by, ..., b,. A term F of the form

AV by by G

where G s a closed formula, is called a domain formula. The denotation of a domain
formula is a domain predicate:

[F1 = X\g € (D(b1) % ... x D(by)). [Glp gy -

A domain formula is obtained by lambda abstraction from a formula. Thus, we can
think of sets of states as O-ary domain predicates. This observation suggest that we can
lift operations on sets of states to operations on domain predicates. In particular, we can
obtain a partial order C on domain predicates by point-wise lifting set inclusion on sets of
states as follows: let p and ¢ be domain predicates over the same domain Dom then we
define:

pCq <L Vee Dom.p(d) C q(d) .
Likewise, we lift set union U and intersection N to operations U and N on domain predicates.
Let p and ¢ be domain predicates over the same domain Dom then we define:

pUq € N5 e Dom.p(3) U q(3)

— —\

pNq € N5 e Dom.p(3)Nqd) .
The order C together with the operations U and (M induce a lattice structure.

Proposition 18 The domain predicates over common domain Dom form a completely dis-
tributive lattice with partial order C, join U, meet N, least element \6 € Dom. D), and greatest
element Ao € Dom. States.
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Proof. Follows from Proposition 9 and Proposition 10. =

Not only can we lift the lattice structure of sets of states to domain predicates, we
can further lift predicate transformers (which are operations on sets of states) to domain
predicate transformers.

Definition 19 (Domain Predicate Transformers) The domain predicate transformers
post and wlp for domain predicates over common domain Dom are defined as follows:

post,wip € 2(States x States) — DomPreds(Dom) — DomPreds(Dom)

post(R)(p) & A\d € Dom. post(R)(p(5))

wip(R)(p) & A& € Dom.wlp(R)(p(3)) .
For a given domain predicate p, we call post(R)(p) the strongest domain postcondition and
wip(R)(p) the weakest domain precondition of p with respect to relation R.

Domain predicate transformers are one of the key ingredients that allow us to charac-
terize Boolean heap programs. Since the domain predicate transformers are obtained from
the standard predicate transformers via a simple lifting, their characteristic properties are
preserved. In particular, post and wlp form a Galois connection on the complete lattice of
domain predicates.

The intuition behind domain predicate transformers becomes more clear when one rep-
resents domain predicates in terms of domain formulae. As in the case of predicate trans-
formers post and wlp, we can characterize domain predicate transformers in terms of syn-
tactic transformations of domain formulae. For instance, consider the domain formula
G = (A\v :: obj. fv = z) then the weakest domain precondition of domain predicate [G] and
command ¢ = (z.f:=y) is given by:

W.Ip([[c]])([[G]]) = Ao € D(obj). { s|Vs'.(s,8) €[] = s € ([G](0)) }
= [G[f:=Av :: obj.if x = v then y else fv]]
= [Av :: obj. (Av :: obj.if z = v then y else fv)v = 2]
=[w:uobjx=vAy=zVae#ovAfv=z].

The resulting formula denotes the domain predicate that given an object o contains all
states s where the f-successor of o is pointed to by z in the successor state of s under c.

The correctness of the transformation performed in the above example is justified by
the following proposition.

Proposition 20 Let F' be a domain formula over domain Dom. The weakest domain
precondition of the domain predicate [F] is characterized as follows:

wip([z:= FI)([F]) = [Fl:= 5]
wip([havoc(z)])([F]) = [A0. Vw. (F 7)[z:=w]] with w & FV(F ¥)
wip([assune(B)))([F]) = V6. B — F ]
wip([ex; es])(IF]) = [ wlp(e) (wip(es) (F )]
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Proof. Let t(c, F') be the syntactic transformation on domain formulae F' that is defined
by the right-hand sides of the equations given for each kind of command c. Then for all
commands ¢ and domain formulae F' of form Av. G:

wip([e]))([F]) = A& € Dom.wlp([c])([F](3)) (Def. of wip)
= Ad € Dom.wlp([c])([G]p,j5—a1)
= Ao € Dom. [t(c,G)]p,[5—q (Prop. 1)

= Ao € Dom. [t(c, F)](0)
= [t(e, F)] .

Given the characterization of wlp in Proposition 20, it is convenient to overload wip
to an operator on domain formulae in the same way we extended wlp to an operator on
formulae. Thus, for a domain formula F and command ¢ we denote by wip(c)(F) the
corresponding domain formula that is given on the right-hand side of the corresponding
equation in Proposition 20.

3.3 Domain Predicate Abstraction

We now formally introduce domain predicate abstraction. Following the framework of
abstract interpretation [37], we formalize the abstraction in terms of a Galois connection
between a concrete and an abstract lattice. In domain predicate abstraction, we have
two concrete and two abstract lattices that are defined in terms of each other and two
Galois connections, each connecting one pair of abstract and concrete lattice. The concrete
lattices are sets of states, respectively, domain predicates and the abstract lattices are sets
of abstract states, respectively, sets of abstract objects.

3.3.1 Abstract Domains

The abstract domains of our analysis is parameterized by a finite set of domain predicates.
For the rest of this chapter we fix a particular finite set of domain predicates P. We assume
that all predicate in P range over the same domain which we denote by dom(P).

Definition 21 (Abstract Objects) We call a function o™ mapping abstraction predicates
in P to values in {{0},{1},{0,1}} an abstract object. We denote by AbsObjs the power
set over abstract objects, i.e.:

AbsObjs & 9P~ {0L{11{0.1}}
We define a relation T on sets of abstract objects as follows: let 0#70# € AbsObjs then
Of LOJ <% Vol € 0f.30f € 0F . ¥p e P.of (h) Cof (p) -

The relation C forms a preorder on sets of abstract objects. For convenience we identify
AbsObjs with the quotient (AbsObjs/(C N E_l)) and consider elements of AbsObjs as
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representatives of their equivalence class in the quotient. Then T forms a partial order on
sets of abstract objects.
We can define a function expand mapping sets of abstract objects to sets of total functions

P — {{0},{1}} as follows:

expand € AbsObjs — 2P~ H0L{1}}

expand(0%) = () {f 1w eP.fm) o) |
o# cO#

The function expand is bijective. In fact, expand is an order isomorphism between sets of
abstract objects ordered by C and the power set over functions P — {{0},{1}} ordered by
set inclusion. We can define join and meet operations on sets of abstract objects, as follows:
let Of’E and Of be sets of abstract objects then:

0¥ 1107 ¥ expand(O7) U expand(0%)

0¥ M07 = expand(0F) Nexpand(0F) .

Thus, by construction expand forms a lattice isomorphism between sets of abstract objects
and the free lattice over functions P — {{0},{1}}.

Proposition 22 Sets of abstract objects AbsObjs form a complete lattice with partial order
C, join U, meet I, least element O, and greatest element {\p.{0,1}}.

The motivation for defining sets of abstract objects as a lattice over functions of type
P — {{0},{1},{0,1}} rather than the free lattice over functions P — {{0},{1}} (or even
P — {0,1}) will become clear in Section 3.4.2.

Definition 23 (Abstract States) We call a set of abstract objects abstract state and
denote by AbsStates the power set over abstract states, i.e.:

AbsStates = 9AbsObs

We eatend the partial order T on sets of abstract objects to a preorder T on sets of abstract
states as follows: let Sfﬁ, S;E be sets of abstract states then

def

SFC ST &4 vstt e 57 35 e ST 57 C 5T .

Again, we identify elements in AbsStates with their equivalence classes in the quotient
(AbsStates/(C N £~1)) which gives us a partial order T on sets of abstract states. The
partial order C again induces join LI and meet ' operations on sets of abstract states:

51‘7E U Sf 4 expand(S#) U expand(Sf)

S¥ ST Y expand(ST) Nexpand(SY) .

Proposition 24 Sets of abstract states AbsStates form a complete lattice with partial order
C, join U, meet M, least element (), and greatest element {{\p.{0,1}}}.
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3.3.2 Concretization

We now define functions that assign meaning to elements in the abstract domains by map-
ping them to elements in the concrete domains.

A set of abstract objects denotes a Boolean combination of domain predicates in P.
Formally, we define a function 4 that maps sets of abstract objects to domain predicates as
follows:

4 € AbsObjs — DomPreds(dom(P))
y(0%) = U ﬂ p' @
o# €O# pEP
p if i = {1}
where p' =< Agedom(P).p(6) ifi= {0}
A0 € dom(P). States otherwise

Hereby p(0) denotes the set complement of p(d). For the concretization of a single abstract
object o7 we will write 4(o%) instead of 4({o%}).

A concrete state s is represented by an abstract state s7 if every tuple of domain objects
in s is represented by some abstract object in s#. Formally, the meaning function ~ that
maps sets of abstract states to sets of states is defined in terms of 4 as follows:

v € AbsStates — 2514t

Wt E U ) )

s#eS# gedom(P)

Again, for the concretization of a single abstract state s” we will write v(s%) instead of

1({s# ).
Proposition 25 The following properties hold:

1. % is a complete meet-morphism between sets of abstract objects and domain predicates
2. 4 is a complete join-morphism between sets of abstract objects and domain predicates
3. v is a complete meet-morphism between sets of abstract states and sets of states
4. v is a complete join-morphism between sets of abstract states and sets of states.

Proof. Properties 2 and 4 immediately follow from the definition of 7, respectively, . For
proving property 1, let OF C AbsObjs. Let further I be an index set for the elements in
O# ie., OF = {Ol# | i € I'}. In addition, let for each ¢ € I, J; be an index set for the
elements in OZ# € O% e, forallicl, OZ# = {ofj | 7 € J; }. Finally, let F be the set of
all functions mapping an index ¢ € I to some index j € J;. Now, define for f € F":

# def #
of =Ap€eP. ﬂoi’f(i)(p)
iel
O {0?} if for all p € P, o?(p) #0
f 0 otherwise.
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Then we can characterize the greatest lower bound of O as follows:

[o#=|]ot .

feF

We then have:

s[ot) =4 ] ot = | +©0f (by Property 2)
fer feFr
_ U {ﬁpep pT i of #0

fer Ao € dom(P). 0 otherwise

_ U ﬂ mp"fm)(p) — U ﬂ ﬂ p"fﬁi)(”)

feF pePiel feFiel peP
o,
= ﬂ U ﬂ pi® (by Proposition 18)

il jeJ; peP

=(#0f) = N{s0#%) 0% e 0%}

iel

Furthermore, we have:

Y{Ap e P. {0,1}}) = ﬂ plOt = ﬂ (MG € dom(P). States)

peEP peP
= Ao € dom(P). States .

Thus,  is a complete meet-morphism.
The proof of Property 3 is similar. It uses Property 1, Property 4, and the fact that
sets of states form a completely distributive lattice. m

3.3.3 Abstraction

By Proposition 25 functions 4 and v are complete meet-morphisms on there respective
domains. This implies that they are the upper adjoints of Galois connections between
domain predicates and sets of abstract objects, respectively, between sets of states and sets
of abstract states. The lower adjoints of these Galois connections define the most precise
over-approximation of a given set of states (domain predicate) in terms of abstract states
(abstract objects). Formally, we define abstraction functions &+ and o™ by these lower
adjoints as follows:

& € DomPreds(dom(P)) — AbsObjs

i (p) = [{ 0% € AbsObjs | p £ 4(0%) }
ot e 2519tes . ApsStates

a*(5) € [ { S* € AbsStates | S T ~(S#) } .
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Since ¥ and v are also complete join-morphisms, they also form the lower adjoints of
Galois connections. The corresponding upper adjoints define the most precise under-
approximations of sets of states, respectively, domain predicates. These under-approximat-
ing abstraction functions &~ and o~ are defined as follows:

&~ € DomPreds(dom(P)) — AbsObjs

i (p) 2 | {0F € absonjs | 5(0%) Ep )
o~ € 251t . ApsStates

a (9)E |_| { S# e AbsStates | v(S™) C S}

Proposition 26 The following properties hold:

1. (&T,%) and (%,&”) form Galois connections between domain predicates and sets of
abstract objects.

2. (a™,7) and (v,a™) form Galois connections between sets of states and sets of abstract
states.

Proof. The statement follows from Proposition 13, Proposition 25, and the definitions of
the abstraction functions. m

It is instructive to give a more intuitive characterization of the abstraction functions. If
we consider a concrete state s then the abstraction function a™ maps the singleton {s} to
the smallest abstract state that contains state s. This abstract state describes the Boolean
covering of domain objects ¢ € dom(P) with respect to the domain predicates in P. In
order to describe these smallest Boolean coverings, we assign an abstract object & (s, d) to
every tuple ¢ € dom(P) and state s. This abstract object represents the equivalence class
of all tuples of objects that satisfy the same domain predicates as d'in s:

at(s,0) & at(AGy € dom(P).if &= Gy then {s} else ()
= {\p € P.if s € p(0) then {1} else {0}} .

The smallest abstract state that contains s consists of all equivalence classes & (s, d) for
0 € dom(P). Figure 3.3 visualizes this fact. Formally, the abstraction of a set of states S is
characterized by the following proposition.

Proposition 27 Let S be a set of states. Then «(S) is characterized as follows:

o =1]{ L &9

s€S | dedom(P)



3.3. DOMAIN PREDICATE ABSTRACTION 33

\\ dom(P)\ dom(P) \
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Nl —

-0 a+(81,0) // /
N Oé+(82,0)‘ \i//

Figure 3.3: The abstract states for two states s; and sa. The same object o € dom(P) falls
into different equivalence classes &"(s1,0) and &' (sg,0) for each of the states s; and sa.
This leads to a different Boolean covering of the set dom(P) in the two states and hence to
different abstract states.

3.3.4 Symbolic Representation of Abstract States

We can symbolically represent the concretization of abstract states in terms of closed formu-
lae. Assume that abstraction predicates in P have arity n and assume that each abstraction
predicate p € P is given by the denotation of a domain formula F},. For a variable vector
U= (v1,...,v,) we write F(¥) for the formula that is obtained by applying domain formulae
F' to the variables vq,...,v,:

(..(Fo)...)u, .

The concretization of a set of abstract states is the denotation of a disjunction of universally
quantified Boolean combinations of domain formulae:

st =1V v | A\E Q@]
sHeSH# o# cs# peEP
F if i = {1}
where F' = { \i.—F(7) if i = {0}
A\U. true ifi=1{0,1} .

Consequently, an abstract interpretation based on domain predicate abstraction can be used
to infer invariants that express universally quantified properties over domain objects.

Example 28 We now give a concrete example of an abstract state and its concretization.
Assume a heap program that manipulates objects with a single reference field nezt. Given
a program variable z in such a heap program, we define two kinds of domain predicates in
terms of the following domain formulae:

def

p(z) = M.z =wv

r(z) € M. next* zv .

Domain formula p(z) denotes the singleton object pointed to by program variable x, while
domain formula r(x) denotes the set of all objects that are reachable from x by following
next fields in the heap. We will use these domain formulae throughout the next examples.
Thereby, we will take the notational liberty and identify domain formulae with the domain
predicates that they denote.
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@if&Q neat O next Q neat @

Figure 3.4: Two concrete program states represented by Boolean heap {0?,0#,03#, Of} in
Example 28.

Assume that the set of abstraction predicates is given by P = {p(z), p(null), 7(z)}. Now
consider the following 4 abstract objects over P:

of = [p(x)— {1}, p(null)— {0}, r(a)— {1}]
of = [p(x)— {0}, p(null)— {0}, r(z)— {1}]
of = [p(x)— {0}, p(null)— {1}, r(a)— {1}]
of = [p(z)— {0}, p(null)— {0}, r(z)— {0}]

The abstract state s# = {ofé, of, ogﬁ, Of} represents all states that contain at least one non-
empty, null-terminated list that is pointed to by program variable z. Figure 3.4 shows two
concrete states that are in the concretization «({s#}) of abstract state s*. The framed boxes
indicate the equivalence classes of heap objects that are described by the abstract objects in
s#_ Note that the concretization function v does not enforce that these equivalence classes
are non-empty, i.e., the first state is also represented by the Boolean heap {ofﬁ, of, 0?} and
the second state by the Boolean heap {071#, 0#, of}.

¢

3.4 Abstract Post Operator

We now formally characterize the abstract post operator on sets of abstract states that
corresponds to the post operator of a Boolean heap program. We characterize the abstract
post operator associated with individual commands rather than the whole program. The
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extension from commands to programs is straightforward. In the following, we fix a com-
mand c and consider all applications of predicate transformers with respect to this particular
command.

According to [38] for a Galois connection with upper and lower adjoints (at,~) that
connects the concrete and abstract domain, the most precise abstract post operator post?
that is an abstraction of the concrete post operator post is given by the composition of a™,
post and . Thus, for domain predicate abstraction the image of a set of abstract states S7
under post™ is given by:

post (%) & ot o post o y(57)

= |_| a(s) .

s’ Epost(yS#)

Since the concretization of a set of abstract states is in general a set of infinite cardinality,
we can only compute post#(S#) indirectly. If we represent the concretization of abstract
states symbolically in terms of formulae then we can check for each abstract state over
abstraction predicates P whether it is contained in post# (S#). This check can be encoded
into a decision procedure query. Assuming that n is the number of domain predicates in
P, considering all 22" abstracts states explicitly results in a doubly-exponential number of
decision procedure calls for the computation of post(S#). In the following, we develop
an approximation of the most precise abstract post operator post? that in theory requires
worst-case exponentially many decision procedure calls and in practice can be implemented
using only polynomially many calls to a decision procedure. We formally characterize this
abstract post operator in terms of an abstraction of post by composition of post” with
upper closure operators.

3.4.1 Context-sensitive Abstraction

Note that the most precise abstract post operator distributes over joins in the abstract
domain, i.e., we can compute post”(S#) by computing the join of post”({s#}) for all
abstract states s#* € S#. We therefore characterize the abstraction of post# on abstract
states rather than sets of abstract states. As illustrated in Fig. 3.5, the problem is that
even if we apply post” to a single abstract state s7, its image under post” will in general
be a set of abstract states. Our first approximation is to abstract the resulting set of
abstract states by a single abstract state. We can think of this abstraction as merging all
Boolean coverings of domain objects represented by abstract states in post™({s#}) into
a single one, or in other words, by pushing the universal quantifiers in the concretization
of post” ({s7}) over the outer disjunction. The resulting single abstract state represents a
covering of all domain objects for all states that are represented by post? ({s%}). Technically
this abstraction is accomplished by restricting the most precise abstract post operator to
singleton sets of abstract states. We denote by AbsState the set of all singletons of abstract
states. If we restrict the order C to AbsState then we obtain again a complete lattice. We
use the same symbols for join and meet operations on AbsState that we use for the lattice
AbsStates. It will always be clear from the context which lattice we are referring to. We
write a™| 1) s1ate TOT the abstraction function a™ restricted to singletons of abstract states.
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Figure 3.5: Application of post” to a single abstract state s and the abstraction of the
resulting set of abstract states by restricting post# to singleton sets of abstract states.

Our first abstraction of post™ is then described by the following abstract post operator:

POSt™| 1y crare € AbsState — AbsState

# def -+
POSt™ | ypsstate — O | ApsState © POSEOY

We can think of the operator post#| AbsState @S the abstraction of post under a new Galois
connection. This new Galois connection is obtained by composing the Galois connection
(a,7) with a Galois connection (a®, %) that connects AbsStates and AbsState:

ot € AbsStates — AbsState
ot EASH#, |—| { {s7} € AbsState | ST C {s#}}
~¢ € AbsState — AbsStates

7C id .

Then we get the following characterization of operator post™| AbsState:
pOSt#|AbsState = aC o pOSt# 0 ’7(: .
It follows that post™|,, . .. is an abstraction of post?.

Proposition 29 The abstract post operator post#\Abssth 15 an abstraction of the most
precise abstract post operator post? | formally for all abstract states s*:

post” ({s%}) C post™ | yp,spare ({57 }) -

The operator post™ | AbsState COMputes the new Boolean covering for all domain objects in
the post states of states represented by an abstract state s*. We can therefore characterize
this operator in terms of an abstract domain predicate transformer. For this purpose, we
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may define the most precise abstractions of the strongest domain postcondition post with
respect to the given abstraction predicates as follows:

post” € AbsObjs — AbsObjs

#

post” & & opostory

Given a set of abstract objects O# the operator pdst# computes the smallest covering of

objects represented by O in arbitrary post states under the given command. Can we
compute post”|,, o . ({s*}) by applying operator post” to the set of abstract objects

given by s#? Unfortunately, operator pdst# is not quite sufficient in order to characterize
post™ | 1, st ({7 }) precisely: we are not interested in Boolean coverings of domain objects
in arbitrary post states, but in Boolean coverings of domain objects in post states of states
that are represented by {s#}. We need to take into account the context and restrict the
operator post to states that are represented by {s7}. For this purpose we introduce a family
of context-sensitive domain predicate transformers.

Definition 30 (Context-sensitive Domain Predicate Transformers) Let S be a set
of states. The context-sensitive domain predicate transformers with respect to S are defined
as follows:

postg € DomPreds(dom( )) — DomPreds(dom(P))
postg(p) = AG € dom(P). post(S N p(3))

wipg € DomPreds(dom(P)) — DomPreds(dom(P))
wipg(p) & A € dom(P). S Uwlp(p(d)) -

Proposition 31 Let S be a set of states. The context-sensitive domain predicate transform-
ers postg and W‘|pS form a Galois connection on domain predicates, i.e., for any domain
predicates p and q:

posts(p) € ¢ <<= p C wips(q) .

Proof. We have for all sets of states S and domain predicates p and ¢:

posts(p) € ¢

(A0 € dom(P). post(S Np(d))) C

Vd € dom(P). post(S Np(d)) C (5)
Vo € dom(P). S Np(a) C wlp(q(0))
Vo € dom(P).p(6) € S Uwlp(q(d))
p € Ao € dom(P). S Uwlp(q(d))

p € wipg(q) -

[

The context-sensitive domain predicate transformers allow us to compute the abstract
post on abstract states by computing an abstract post on abstract objects. The abstract
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post on abstract objects takes into account the context of the given abstract state. We
would like to control how much context information is taken into account. For this purpose
we introduce an additional parameter to our analysis. This parameter allows us to adjust
the trade-off between precision and efficiency of the analysis.

Definition 32 (Context Operator) A context operator k is a function mapping sets of

abstract states to sets of states such that k is monotone and extensive with respect to -y, i.e.,
for all sets of states S7, v(S#) C  k(S7).

The most precise context operator is the concretization function . The least precise
context operator is the trivial one that maps any set of abstract states S7 to the full set of
states.

Given a context operator k, we define the contert-sensitive abstract domain predicate
transformers as follows:

post” € AbsStates — AbsObjs — AbsObjs
post’” (%) & a4t o pOSt,(g#) 0

W]pf € AbsStates — AbsObjs — AbsObjs
wilpf(S#) =4 owlp,(s#) 07 -

Note that the context-sensitive abstract domain predicate transformers are obtained by
composition of Galois connections. Therefore they form themselves a Galois connection.

Proposition 33 Let S* be a set of abstract states, then the pair (pdstf(S#),w'Ipf(S#))
1s a Galois connection on sets of abstract objects.

Proof. By Proposition 26 the pairs (&*,5) and (¥,&) are Galois connections between
domain predicates and sets of abstract objects. Furthermore, by Proposition 31 the pair
(postn(s#),wlpn(s#)) is a Galois connection on domain predicates. Thus, by Proposition 14
the pair (d+opostﬁ(5#),wlpﬁ(8#) o %) is a Galois connection between domain predicates
and sets of abstract objects. Hence, again by Proposition 14 the pair (d+opostn(5#) o
N owlpﬁ(s#) o %) is a Galois connection on sets of abstract objects. m

Now we can approximate the image of an abstract state s* under abstract post operator
post# | absstate DY applying the context-sensitive domain post operator to the abstract objects
represented by s7%.

Proposition 34 Let s# be an abstract state and let k be a context operator. Applying
post” to s¥ results in an abstraction of post™| 4, siuie ({57 }):

post™ | ypsare ({57 }) T {post] ({s*})(s7)} .
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Proof.

post™ | AbsState ({s"1})

= [{ {sT'} € AbsState | post(y({s*}) < 1({sTD) |
= H { [s7} € Absstate | v({s*}) € wip(v({s7})) } (1)

{OF < ansonis | 1((*) € wp(r((0F 1) } |

{ { Of € AbsObjs | v({s*}) C wip ( N 7(01*)(6)) }}
dedom(P)

of € absobjs |4({s*H C () wlpw(o#)(a))}} e)
(P)

ocdom

OF € AbsObjs | V5 € dom(P). v({s7}) N4(s7)(3) C wip((OF )(9)) }} (3)

OF € AbsObjs | V5 € dom(P). 4(s7)(5) C ({s#}) Uwlp(3(0F)(3)) }}

{
{O € AbsObjs | V& € dom(P). k({s7}) N4(s7)(6) C WIp("y(OfE)(é’)) }} (4)
{
{Of & Avs0tis |4(5%) S wipygsiy (G101 }

{

OF € AbsObjs | post,gs#y)(1(5%)) € 4(OF) }} (5)

2l
|
-
-
|
.

[
N
[
i
[

o post,. ({s#}) o%(s )}
= {post] ({s})(s*)}

(1) follows from Proposition 15.
(2) follows from Proposition 15 and Proposition 13, Statement 3.
(3) follows from the tautology:

(V7. B(7)) — V3. A(§) = V. (V8. B(7)) A B(@) — A(d)

(4) follows from the fact that ~ is extensive.

(5) follows from Proposition 31
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The proof of Proposition 34 indicates that there is only one reason for potential loss of
precision when one uses the context-sensitive abstract post to compute the abstract post
on singletons of abstract states, namely, the choice of the context operator. If the context
operator takes into account the full context in form of the abstract state for which the post
is computed then the two sides of the set inclusion in Proposition 34 become equal.

Corollary 35 The most precise abstract post operator pOSt#’AbsState on singleton sets of
abstract states is characterized as follows:

post™ | 4isiare = Ms# ) {post” ({s7})(s7)} .

Since the operator péstf is the upper adjoint of a Galois connection on sets of abstract
objects, it distributes over joins. Thus, we have:

post™ | 4yusiare {57 1) € {post] ({s#})(s7)}

- L] post? ({s* ) ({o?])

o# €expand(s#)

Consequently, we can construct post” |, o . ({s%}) by mapping locally each abstract object
o™ in s7 to the new Boolean covering pdstf({s#})({o#}) that represents all domain objects
in o” in the post states of s7. However, pdstf({s#})({o#}) will in general be a set of
abstract objects. Essentially, we face the same problem as in the case of computing post™:
we would have to consider all 2" abstract objects over abstraction predicates, in order to
compute the precise image of a single abstract object under operator pdstf. Therefore, we
apply yet another abstraction.

3.4.2 Cartesian Abstraction

Analogously to the abstraction of post# that is obtained by restricting post# to singletons
of abstract states, we abstract operator pdstf by restricting it to singletons of abstract
objects. We denote by AbsObj the subset of AbsObjs that consists of singleton sets of
abstract objects. As in the case of singletons of abstract states, AbsObj forms a complete
lattice if we restrict the partial order C appropriately. Again we overload the symbols
for joins and meets on AbsObjs to joins and meets on AbsObj. Now we define a Galois
connection (&%, 4%) that connects AbsObjs and AbsObj as follows:

dc c AbsOb]S — AbsOb]S
& L a0* [ ] { {o*} € AbsObj | OF C {O#}}
'.VC € AbsObj — AbsObjs

$¢ =id .

C

A more constructive characterization of abstraction function &* is given as follows:

a0t = {)\p eP. o#(p)}

where O (p) & {o#(p) | o € OF }
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Figure 3.6: Application of post” to a single abstract object o and its approximation under

Cartesian abstraction.

Thus, a set of abstract objects O# is mapped to a single abstract objects by projecting all
abstract objects in O# to the individual abstraction predicates. This abstraction principle
is also known as Independant Attribute Abstraction or Cartesian Abstraction |8]. When
applied to the abstract post operator the effect of Cartesian abstraction is that one can
update each predicate in isolation.

Figure 3.6 sketches the effect of Cartesian abstraction in our context. It abstracts

all abstract objects in the image under the operator pést}#{ by a single abstract object.
Composing the operator pést?{ with Cartesian abstraction gives us our final abstraction of

the most precise abstract post operator.

Definition 36 (Context-sensitive Cartesian Post) Let k be a context operator. The
context-sensitive Cartesian post for k is defined as follows:

postS € AbsStates — AbsStates

postS(5%) = | | || aCopost({s*}) o4 ({o*})

s#eS# | o# Eexpand(s#)

There is a small technical inconvenience that is caused by Cartesian abstraction. Note
that pdstf({s#})(s#) will always be a nonempty set of abstract objects, as long as s7
represents some concrete state that has a successor under the given command. This is due
to the fact that all domains of logical structures are guaranteed to be nonempty. However,
if the given command is, e.g., an assume command and none of the states represented by s#
satisty the guard then no concrete post state exists. In this case péstf({s#})(s#) may be-
come empty. Unfortunately, there is no abstract object that represents the domain predicate
(MG € dom(P). D) which corresponds to the denotation of the empty set of abstract objects,
unless there are contradictory predicates in P. Therefore, whenever pdstf({s#})(s#) be-
comes empty then Cartesian abstraction may lose precision. As we will show in Chapter 4,
one can explicitly account for this situation in order to avoid this loss of precision.

The following theorem states soundness of the context-sensitive Cartesian post operator.

Theorem 37 (Soundness of Cartesian Post) The context-sensitive Cartesian post is
an abstraction of post”. Formally, let  be a context operator. Then For all sets of abstract
states S7 we have

post™ (S#) C postS(S7) .
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Proof. The statement follows immediately from Proposition 29, Proposition 34, and the
definition of &¢. m

We can now use abstract weakest domain preconditions to characterize the context-
sensitive Cartesian post in terms of independent updates of individual predicates in abstract
objects. This shows that the context-sensitive Cartesian post operator for a given command
corresponds to a Boolean heap program; cf. Fig. 3.2.

Theorem 38 (Characterization of Cartesian Post) Let k be a context operator. Then
for all sets of abstract states S#:

postS(5%) = | | L {wePwdep {s*1.(0* D}

s#eS# | o# €expand(s#)
{1} if OF Cwipl (5%)({o},})
where upd(p, $*,0%) = ¢ (0} if O C wip? (5%)({o¥,})
{0,1} otherwise
of- Ny € P.if p=p' then {i} else {0,1} .

N

Proof. We need to show that the following equality holds for any abstract state s and
abstract object o™ € expand(s¥):

0o postf ({s#}) 0 1°({0*}) = { € P.upd(p, {s*}. {oF 1)} .
We have by definition of ¢¢ and 4¢:
aCopost! ({s*}) o 4<({o*})
= [1{ {0} € AbsOby [ post? ({s#1)({0*}) C {of ) }
= {weP postf (FHUF N} -
Now it is easy to see that the following equality holds:

{1} if post] ({s#})({o*}) T {o]},}
post! ({s*D({o* Np) = { {0} if post? ({s#})({o#}) C {offy}
{0,1} otherwise .

Then the theorem follows from the fact that for any set of abstract states S# we have that
pdstf(S#) and W'Ipf(S#) from a Galois connection on sets of abstract objects. m

3.4.3 Symbolic Computation of Abstract Post

The characterization of the context-sensitive Cartesian post given in Theorem 38 focusses
the abstraction of a concrete command to the computation of abstract weakest domain pre-
conditions of abstraction predicates. We can automate the computation of these abstract
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weakest domain preconditions using theorem provers. For instance, in order to compute
W'IpH(S#)({oﬁl}), the most precise under-approximation of W'Ipﬁ(s#)(p) with respect to ab-
straction predicates P and context S7, one needs to compute the largest set of abstract
objects OF that satisfies:

¥5 € dom(P). 4(0%)(3) C k(S7) Uwip(§({o},}))(@) (3.1)

We can compute the set O by computing the union of all abstract objects that satisfy
condition 3.1 and are minimal with respect to partial order C. Assume again that every
abstraction predicate p is represented by a domain formula F),. Further, assume that context
operator x maps abstract states to closed formulae and concretization function 4 maps sets
of abstract objects to domain formulae. In order to check whether some minimal abstract
object o7 satisfies condition 3.1, we check validity of the entailment:

R(ST) A 4({07})() = wip(F)(7) (3:2)

Hereby /({07 })(¥) is a complete conjunction of literals over the domain formulae F), that
represent abstraction predicates.

Complexity of Analysis. The theoretical worst-case complexity of the analysis is dom-
inated by the maximal number of iterations for computing the least fixed point of the
abstract post operator. This number is bounded by the height of the abstract domain,
which is doubly-exponential in the number of abstraction predicates. However, in practice
the running time is dominated by the number of decision procedure calls that are needed
for computing abstract weakest domain preconditions. The number of decision procedure
calls is worst-case exponential in the number of abstraction predicates. In practice, one can
restrict the entailment checks of the form 3.2 to abstract objects that denote conjunctions
of a fixed length rather than complete conjunctions. This gives a polynomial bound on
the number of decision procedure calls. In Chapter 6, we describe an implementation of
the context-sensitive Cartesian post and additional optimizations that further reduce the
number of decision procedure calls.

Example 39 We want to conclude this section with a concrete example that illustrates the
computation of the context-sensitive Cartesian post. Consider the following set of domain
predicates:

P={px),p(y),p(2),r(x),r(y),r(z)}

and the following abstract objects over P:

of = [p(x)— {0}, p(y)— {0}, p(2)
0f = [p(x)— {0}, p(y)— {0}, p(2)
of = [p(x)— {1}, p(y)— {0}, p(2)
of = [p(x)— {0}, p(y)— {1}, p(2)
of = [p(x) (y)— {0}, p(2)
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Figure 3.7 shows a concrete program state that is represented by abstract state
S _{0170§é7037047 }

We compute the abstract post for the singleton {S#} and command x.next:=y that updates
the next field of object x to object y. The operator postg maps abstract state s# to a new
abstract state . ) . ) . .

# = {0#17 0#27 0#37 0#47 0#5
Each abstract object of € s# is updated to a new abstract object 0#; e st by computing
new values for each domain predicate in isolation. For instance, in order to determine
whether ofﬁ(r(z)) should be set to {1}, the following entailment is checked for validity:

Y(s#) Ay(of ) = neatlz — yl*zv

This entailment holds because ofé(r(z)) = {/1} and ofé(r(x)) = {0}. Thus, of/(r(z)) is set
to {1}. The resulting abstract objects in s# are as follows:

of" = p(x)— {0}, ()~ {0}, p(2)— {1}, (@) {0}, r(w)— {0}, r(2)— {1}]
of = [p(x)— {0}, p(y)— {0}, p(2) {0}, r(w)— {0}, r(y)> {0}, r(2)— {1}]
of" = [p(x)— {1}, ()~ {0}, p(2)— {0}, (@) {1}, ()= {0}, r(2)— {1}]
off ' = [p(@)— {0}, p(y)— {1}, p(2)=> {0}, r(@)— {1}, r(y)r {1}, r(z)— {1}]
of" = [p(x)— {0}, p(y)— {0}, p(2)— {0}, (@) {1}, ()= {1}, r(2)— {1}]

Figure 3.7 shows a concrete state that is represented by abstract state s

This example also nicely demonstrates the importance of the context for the precision of
predicate updates. For instance, consider the entailments that are checked for determining
the value of Of(r(z)). The entailment

Y(s%) N4 (o) | meat[e—y]*z v
is valid because (s?) entails nezt* z x and o} #(r(z))={1}. However, the entailment
§(0f) | neat[r—y]*z v
is not valid. If the abstract post would not take into account the context of abstract object

/
Of then Of (r(2)) would be set to {0, 1}, i.e., the analysis would lose precision.

3.5 Further Related Work

We have shown that domain predicate abstraction generalizes predicate abstraction by using
the key idea of three-valued shape analysis a la Sagiv, Reps, and Wilhelm [108]. In the
following, we provide a more detailed comparison with these approaches and other shape
analyses.
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Figure 3.7: Application of the context-sensitive Cartesian post to the abstract state
{071#,072#, 0#, of,og,#} in Example 39.

Three-valued Shape Analysis. In [108] Sagiv, Reps and Wilhelm describe a parametric
framework to shape analysis based on three-valued logic. They abstract sets of states by
three-valued logical structures. This canonical abstraction is defined in terms of equivalence
classes of objects in the heap that are induced by a finite set of predicates on heap objects.
Adapting three-valued shape analysis to the analysis of specific data structures requires the
user to provide predicates and precomputed transfer functions for these predicates. Recent
approaches enable the automatic computation of transfer functions [83,104] some of which
are using decision procedures [122,124]. Domain predicate abstraction is inspired by three-
valued shape analysis. In fact, there is a close connection between the abstract domain
in [108] and ours: a translation from three-valued logical structures, as they arise under
canonical abstraction, into formulae in first-order logic is given in [123|. Shape analysis
constraints [70] characterizes this class in terms of a Boolean algebra of formulae that is iso-
morphic to the class of three-valued logical structures obtained under canonical abstraction;
our abstract domain subsumes the universal fragment of shape analysis constraints.

Predicate Abstraction. Domain predicate abstraction is a proper generalization of pred-
icate abstraction [49] that enables the inference of universally quantified invariants. Quan-
tified invariants are required for the verification of quantified properties which naturally
occur in programs with dynamic memory allocation. Our analysis incorporated ideas such
as Cartesian abstraction [8] that have been previously applied in the context of predicate
abstraction.

In [102,115] we presented the special case of Boolean heap programs where the arity
of domain predicates is restricted to one and their domain to heap objects. The gener-
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alization presented in this thesis is interesting for two reasons. First, it allows abstract
states in Boolean heap programs to quantify over relations between different objects in the
heap. Such relations naturally occur in many applications, e.g., implementations of maps,
instantiatable data structures, and concurrent data structures where an additional variable
can be used to quantify over thread objects; see e.g. [16,118]|. Second, this generalization
allows abstract states to quantify not just over heap objects, but over objects of arbitrary
domains, e.g., integers. Therefore, domain predicate abstraction can be used for the verifi-
cation of programs that are beyond the classical application domain of shape analysis such
as programs manipulating arrays.

Among the main approaches for dealing with quantified invariants in predicate abstrac-
tion is the use of Skolem constants [45], indexed predicates [72], range predicates [61], and
the use of abstraction predicates that contain quantifiers.

The key difficulty in using Skolem constants for shape analysis is that the properties of
individual objects depend on the “context”; given by the properties of surrounding objects.
A typical example of such non-local properties are reachability properties. In order to auto-
matically verify such properties it is not enough to use a fixed Skolem constant throughout
the analysis; it is instead necessary to instantiate universal quantifiers from previous loop
iterations, in some cases multiple times. Our analysis attempts to find a balance between
these extremes: it computes the abstract post locally on abstract objects, but it still takes
into account the context of surrounding objects.

Compared to indexed predicates |72] our abstract domain is more general because it
contains disjunctions of universally quantified statements. The presence of disjunctions is
not only more expressive in principle, but allows the analysis to keep formulae under the
universal quantifiers more specific. This enables the use of less precise, but more efficient
algorithms such as Cartesian abstraction for computing changes to properties of objects,
without losing too much precision in the overall analysis. Disjunctions also play an impor-
tant role in the context of counterexample-guided abstraction refinement; cf. Chapter 4.

Range predicates [61] are able to express quantified properties over arrays. In principle,
range predicates could also be used for shape analysis. However, the technique only applies
to linear data structures such as lists.

Predicate abstraction has also been used directly for shape analysis; see e.g. [3,19,39].
The advantage of using abstraction tailored to shape analysis compared to using global
predicates is that the parameters to shape-analysis-oriented abstraction are properties of
objects in a state, as opposed to global properties of a state, and the number of global
predicates that is needed to emulate shape analysis domains is exponential in the number
of properties [88].

In template-based techniques [17,50] the user specifies templates for quantified invari-
ants. The analysis finds an invariant by automatically instantiating the template parame-
ters. While |17] is specific to the analysis of programs with arrays, |[50] enables the lifting
of a given abstract interpretation to an abstract interpretation over a quantified abstract
domain. In particular, this technique has been used to infer quantified invariants for heap-
manipulating programs.

Other Shape Analyses. Our symbolic shape analysis computes the abstract post locally
on abstract objects rather than globally on the whole abstract state. The idea of local
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reasoning has also been exploited by other shape analyses [15, 28,31, 34,42, 52, 85] some
of which are based on separation logic [96,97, 105]. These analyses take a less general
approach than domain predicate abstraction; their abstract domains are tailored towards
specific programs and properties such as memory safety of list-manipulating programs.
However, these analysis can deliver impressive results for the programs they are designed
for [29,52,119].

Some shape analysis are based on automata [22,23,25]. The most general automata-
based approach so far is described in [25]. This method encodes heap programs into tree
transducers. This encoding reduces shape analysis to abstract regular tree model checking
[24]. The encoding into tree transducers loses precision if the structures observed in the
heap program do not exhibit some regularity. It seems that the translation is precise for
structures that are described by graph types [65] or some extension similar to what is
captured by our field constraint analysis. We believe that our abstraction is conceptually
simpler. It is defined in terms of a composition of the concrete post operator with upper
closure operators. Thus, it is sound by construction and we know precisely where it loses
precision. Also, since our abstract domain is parameterized, there is no intrinsic restriction
to specific data structures.

3.6 Conclusion

In this chapter we proposed Domain Predicate Abstraction. Domain predicate abstraction
generalizes predicate abstraction to the point where it becomes suitable for shape analysis.
We showed how the abstraction originally proposed in three-valued shape analysis can be
cast in the framework of predicate abstraction. The consequences of our results are:

e 3 different view on the underlying concepts of three-valued shape analysis.

e a framework of symbolic shape analysis. Symbolic means that the abstract post op-
erator is an operation over formulae and is itself constructed solely by automated
reasoning.

e a clear phase separation between the computation of the abstraction and the compu-
tation of the fixed point. Among other potential advantages this allows the off-line
computation of the abstract post operator.

e the possibility to use efficient symbolic methods such as BDDs or SAT solvers. In
particular, the abstract post operator itself can be represented as a BDD.

We formally characterized the abstract post operator of our analysis in terms of an abstrac-
tion of the most precise abstract post operator on sets of abstract states. In the course of
this characterization we identified three sources for potential loss of precision:

e the restriction of the most precise abstract post on sets of abstract states to singleton
sets of abstract states,

e Cartesian abstraction on sets of abstract objects,

e and the choice of the context operator.



48 CHAPTER 3. DOMAIN PREDICATE ABSTRACTION

In Chapter 4 we address the problem how to regain the precision that is lost due to the first
and second item.

The context operator determines the trade-off between efficiency and precision of the
analysis. A less precise context operator will lose precision if the analysis attempts to keep
track of non-local properties such as reachability. The most precise context operator is
given by the concretization function on sets of abstract states. However, choosing a more
precise context operator might require recomputation of the abstraction for each individual
application of the abstract post. This defeats the purpose of separating the computation
of the abstraction from the fixed point computation and increases the number of decision
procedure calls. In Chapter 6 we describe a context operator that provides a good balance
between precision and efficiency.

Domain predicate abstraction does not a prior: impose any restrictions on the data
structures and properties to verify. The capabilities of our analysis are determined by
the underlying decision procedure that is used for checking the entailments generated for
computing the abstraction. There is ongoing research on how to adapt or extend existing
theorem provers and decision procedures to the theories that are needed in the context of
shape analysis. We present one such technique in Chapter 5.



Chapter 4

Lazy Nested Abstraction Refinement

In the previous chapter we have developed domain predicate abstraction, a new abstraction
technique that generalizes predicate abstraction to the point where it becomes effectively
applicable for shape analysis. Domain predicate abstraction provides a parameterized ab-
stract domain and techniques to automatically compute the abstraction for a given instance
of the abstract domain. However, the user of the analysis still needs to manually provide
the right abstraction predicates in order to instantiate the analysis for the verification of
a particular program and property. Can we push the degree of automation even further?
In a wide range of existing program analyses |9, 30, 54|, counterexample-guided abstraction
refinement [35| provides an unmatched degree of automation by, essentially, instantiating a
parameterized abstract domain automatically for a specific program and a specific correct-
ness property. In this chapter we investigate the question whether it is possible to obtain
the same automation in a shape analysis.

We develop a lazy nested abstraction refinement technique for symbolic shape analysis.
Our abstraction refinement technique uses the notion of a spurious error trace which is also
used in [9,30,35,53,54]. A spurious error trace is an error trace in the abstract system that
has no correspondence in the concrete system. We extract new domain predicates from the
proof of its spuriousness (in the spirit of [53] which, however, extracts state predicates). We
thus use a spurious error trace in order to automatically refine the abstract domain.

However, our new nested abstraction refinement loop uses spurious error traces to refine
not only the abstract domain but also the abstract post operator on the abstract domain. In
this approach, two refinement phases are nested within a lazy abstraction refinement loop.
The first phase refines the abstract domain as described above. If a spurious error trace is
not eliminated by merely refining the abstract domain, a second phase called Cartesian re-
finement starts. Cartesian refinement uses the spurious error trace to increase the precision
of the abstract post operator (its name refers to Cartesian abstraction; see Chapter 3.4).

As we will show in our experimental evaluation, the second refinement phase is crucial for
the practical success of our symbolic shape analysis. In many benchmarks, the verification
does not succeed without it. The practical results are in line with the theoretical findings
about the so-called progress property |54]. Progress means that every spurious error trace
encountered during the analysis is eventually eliminated by a refinement step. The shape
analysis with Cartesian refinement has the progress property and does not have this property
without it. In fact, it was this theoretical finding that lead us to the nested refinement and
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the experimental success on the above-mentioned benchmarks.

Technically, there is an intriguing similarity between our Cartesian refinement and the
so-called focus operation in shape analysis. Cartesian refinement can be viewed as a solution
to the problem of materialization [107|. Materialization describes the process of splitting
summary nodes (i.e., equivalence classes of concrete objects) in shape graphs under abstract
transitions. If the analysis is not able to perform materialization then it loses precision and
most certainly fails to verify many interesting programs and properties [32]. Three-valued
shape analysis [108] uses the focus operation to perform materialization. One can view
Cartesian refinement as a property-driven focus operation. We give experimental evidence
that the targeted precision obtained by Cartesian refinement can significantly reduce the
space consumption of the analysis compared to non-targeted focus operations used in other
shape analyses.

Contributions. The technical contributions of this chapter are summarized as follows:

e We develop a new abstraction refinement technique that uses spurious counterexam-
ples to refine both the abstract domain of the analysis and the abstract post operator
on that abstract domain.

e We show how this abstraction refinement technique can be integrated into a lazy
abstraction refinement loop.

o We prove that the resulting analysis is sound and has the progress property.

e We demonstrate that Cartesian refinement can be viewed as a property-driven focus
operation.

4.1 Example

In the following, we discuss our nested abstraction refinement technique on an example
program. While this example does not require the full power that the abstract domain
of our symbolic shape analysis provides, it illustrates all important aspects relevant to
abstraction refinement.

Counsider program LISTFILTER given in Figure 4.1. The left hand side shows the pseudo
code of the program. The program iterates over a list pointed to by program variable first
and removes all nodes from the list whose data field is set to true. Our goal is to verify
absence of null dereferences. All but one dereference are guarded by conditionals that
imply that the dereferenced variable is not null. The critical statement is the dereference of
variable tmp in the loop body. It is guarded by an assert statement. If we propagate this
assertion back to location f1, we get the following formula:

NullCheck = e#null A data e A prev#null — (next prev)#null

Thus, our goal is to verify that NullCheck is an invariant at location ¢;. The formula
NullCheck is implied by the following non-trivial inductive invariant Inv at location £;:

Inv = prev#null — (next prev)=e .
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LisTFILTER= (X}, Dy, X, L, Lo, g, T)
X = {next, data, first, prev, tmp, e}
L= {lo,l1,0l2,E}

lo: e:= first; T={70,T1,7T2,73, T4, T5 }
prev:=null;
¢y : while e#null do 70+ (bo, 1= first;
if e.data then ' prev:=null, éh)
if prev=null then 712 (é1,assume(eFnull);
assume(data(e));
prev:=e;
- ) assume(prev=null);
e:= e.next; previ=e;
first:=e; e:=next e;
prev.next:= null; first:=e;
prev:=null; next:= next[prev:=null[;
else prev:=null, ¢1)
e:= e.next; To: (£1,assume(eznull);
tmp:= prev.nect; assume(data e);
assert(tmp#null); assume(prev#null);
tmp.next:= null; e:=next e;
prev.next:=e; tmp:= next prev
else next:= next[tmp:= null];
previ=e; next:= next[prev:=e], £1)
e:= e.next; T3: (¢1,assume(e#null);
l5: done assume(—(data €));
pPrev:= €;

e:=nexte, {1)
Ta: (€1,assume(e=null), ¢3)
75 (¢1,assume(—NullCheck), (g)

Figure 4.1: Program LISTFILTER

We can express invariant Inv in the abstract domain of our symbolic shape analysis as a
set of abstract states over unary domain predicates that denote sets of heap objects in a
given program state. The denotation of such an abstract domain element is given by the
following formula:

(Vv.pov < prv) VvV (Yu.pav < p3v)
where the unary domain predicates pg to ps are given by:

po = (Av. prev=v), p1 = (Av. null=v),
p2 = (Av. (next prev)=v), ps = (Av.e=v) .

Our algorithm infers these predicates and synthesizes an invariant that implies the correct-
ness of program ListFilter. We will now give a detailed presentation of our nested abstraction
refinement algorithm. In Section 4.3 we will come back to the above example and explain
in more details how program LISTFILTER is proved correct.
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4.2 Lazy Nested Abstraction Refinement

We now present our lazy nested abstraction refinement algorithm' in detail. We present
the algorithm in a more abstract setting and then identify necessary conditions on the
underlying analysis that guarantee soundness and progress of abstraction refinement. In
the following sections we will prove that these conditions are satisfied by domain predicate
abstraction. Note, however, that the algorithm is also applicable for abstraction refinement
of an analysis that uses Cartesian abstraction on top of classical predicate abstraction.

We assume a parametric abstract domain AbsDom[P] over a set of abstraction predicates
P. The abstraction predicates P can either be state predicates or domain predicates. We
assume that the abstract domain is equipped with a partial order C, join U and meet U
operations, least element 1, and greatest element T such that AbsDom[P](C,U, M, L, T) is
a complete lattice. Furthermore, we assume functions

a[P] c QStates — AbSDOm[’P] and
~v[P] € AbsDom|[P] — oStates

such that (a[P],7[P]) is a Galois connection between the lattices AbsDom[P] and 25tates.
We assume that the concrete domain is given by sets of states. However, for notational con-
venience, we will often identify sets of states with formulae. In particular, we assume that for
every concretization v[P](S7) of some abstract domain element S#* € AbsDom[P] there ex-
ists a formula whose models are given by the set [P](S#). For sets of abstraction predicates
P1 and P, such that Py C Py we require that AbsDom[P;] is a sublattice of AbsDom[Ps]
and for all sets of states S we have a[P](S) C a[P;](S). We further require that [P] is a
complete join-morphism. Finally, we assume an abstract post operator post” [Py, Po] that
maps elements of the abstract domain AbsDom[P;] to elements of AbsDom[Ps] under a
given command. We require that post® is monotone and an approximation of the concrete
post operator, i.e., we assume that for all commands c and s# € AbsDom[Py] the following
condition holds:

post([c]) (+[P1](5™)) € [Pa](post™[Pr, Pa](c) (57)) -

Our lazy nested abstraction refinement algorithm is shown in Figure 4.2. The procedure
LazyNestedRefine takes a program P = (L, /¢y, lr,7T) as input and constructs an abstract
reachability tree (ART) in the spirit of lazy abstraction [54]. An ART is a tree where
each node r is labeled by a location r.loc in L, a set of abstraction predicates r.preds, and
abstract states r.states in AbsDom/|r.preds]. The root node r¢ of the ART is labeled by the
initial location rg.loc = fy. Edges in the ART are labeled by commands of transitions in
program P. We write 7 — ' to denote that there is an edge in the ART from node 7 to
node 7/ which is labeled by command ¢ and we write 7 —* / to indicate that there is a
(possibly empty) path from r to r’ in the ART that is labeled by the sequence of commands
7. Each path ro =* r that starts in the root node of the ART induces an abstract trace.
The abstract trace consists of the consecutive sequence of abstract states labeling the nodes
on the path and the commands in 7. We call an abstract trace o# = ry =% ... 5!, with

'In general there is no guarantee that our method terminates. However, we stick to the term “algorithm”
instead of “semi-algorithm?”.
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proc LazyNestedRefine
input (X,D, X, L, {y,¢g,T): program
begin
let ro = (loc: lo, preds: (), states: T, covered: false)
let succ(r) =
let Succ =)
for all (r.loc,c, ') € T do
let ' = (loc: ', preds: 0, states: L, covered: false)

add an edge r 5 ¢/

Succ:= Succ U {(r,c, ")}
done

return Succ
let Unprocessed = succ(ro)

while Unprocessed # () do
choose and remove (r1,¢,r2) € Unprocessed
ry.states:= post?[ry.preds, ro.preds](c)(ry .states)
if ro.states C | |, {r.states | r # ro Ar.loc = ra.loc } then r.covered:=true
else if ry.loc # g then Unprocessed:= Unprocessed U succ(r")
else
let r,, 7 such that 7 is maximal path with 7 I*rg A
v|rs.preds](rs.states) = wlp(r)(false)
if r5.loc = ¢y then return counterexample(r)

else

let r,, c such that r, Sorg
let P, = extrPreds(wlp(w)(false))
if P, & rs.preds then rg.preds:=rg.preds U Py
else
let P.., = extrPreds(wlp(c; 7)(false))
Tp.preds:=ry.preds U Pe.x
rp.states:= afryp.preds](wlp(c; 7)(false)) M ry,.states
remove subtrees starting from r,
rg.states:= L
rs.covered:= false
Unprocessed:= Unprocessed U {(rp, c,s)}
for all r5 such that ry.covered A ro.states L 1 A rg.states older than ro.states do

let 1, c such that r; A T
ro.covered:= false
ro.states:= 1L

Unprocessed:= Unprocessed U {(r1,¢,r2)}
done
done

return “program is safe”
end

Figure 4.2: Lazy nested abstraction refinement algorithm
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rn.loc = ¢p an abstract error trace and we call the path 7 = (cp;...;c,—1) the abstract
error path associated with o. We say that o7 is feasible if there is some concrete trace
o=3503... 5 s, of P that is represented by o i.e., if for all ¢ with 0 < i < n we have
si € y[ri.preds](r;.states). An infeasible abstract trace is called spurious.

The lazy nested abstraction refinement algorithm iteratively constructs an ART until
either a fixed point is reached and every trace of the program is contained in some abstract
trace in the ART, or until the ART contains a feasible abstract error trace. If a spurious
abstract error trace is encountered during the fixed point computation then this trace is
removed from the ART and the corresponding abstract error path is used to refine the
abstraction. We now describe the algorithm in detail.

The algorithm maintains a set of unprocessed ART edges. In each iteration, the algo-
rithm selects one unprocessed ART edge (r1,¢,72). Then it computes the abstract post for
the corresponding command ¢ and stores the resulting abstract states in ry.states. If the
computed abstract states are already subsumed by other ART nodes then the node 7o is
marked as covered. Otherwise if ro.loc is the error location then there is an abstract error
trace going from rg to ro. In this case, the analysis determines whether the error trace
is spurious. For this purpose it performs a symbolic backward analysis of the error trace.
This backward analysis tries to find the oldest ancestor node 75 of ry with 5* ry such
that rs.states represents some concrete state that can reach an error state by executing the
sequence of commands 7, i.e., formally r, is the oldest node in the abstract error trace such
that:

~[rs.preds](rs.states) = wip(m)(false) .

If r, is the root node of the ART then there exists a concrete error trace, i.e., the abstract
error trace is feasible and the procedure returns the corresponding error path. If, however,
rs is not the root node then the abstract error trace is spurious. In this case we call rg the
spurious node of the abstract error trace. The algorithm then determines the immediate
predecessor node 7, of the spurious node. We call r, the pivot node of the abstract error
trace. The pivot node is the youngest node that does not represent any concrete states that
can reach an error state by following the commands in the abstract error trace. Depending
on the refinement phase either r; or r, is refined and the spurious subtree below 7, is removed
from the ART. The ART edge between 7, and r; which was spurious is then scheduled for
reprocessing. Finally, in order to ensure soundness, ART nodes that have potentially been
marked as covered due to subsumption by nodes in the removed subtree are uncovered and
also scheduled for reprocessing.

If the set of unprocessed ART edges becomes empty then all outgoing edges of inner
ART nodes have been processed and all leaf nodes are covered, i.e., the least fixed point
has been computed. For each program location £ in the input program an invariant can be
computed from the ART by taking the join of the abstract states of all ART nodes labeled
with location ¢. The algorithm guarantees that the computed invariant implies that the
program is safe (Theorem 41).

We now explain the two nested abstraction refinement phases. The spurious part of the
error trace starts from the spurious node r,. Assume that the ART edge from rg to 7, is
labeled by ¢ and the path from rg to ro by w. Our abstraction refinement procedure first
attempts to refine the abstract domain of node r; by adding new abstraction predicates P,
that are extracted from the spurious part 7 of the abstract error path associated with the
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abstract error trace. The predicate extraction function extrPreds should guarantee that the
weakest precondition wlp(r)(false) of the path is expressible in the abstract domain of the
refined node rg, i.e., formally the following entailment should hold:

Y[Px](a[Pr](wlp()(false))) = wlp(m)(false) .

If the underlying analysis was to compute the most precise abstract post operator then we
would have:

Y[Pr](post[r,.preds, Pr(c)(rp.states)) = wip(r)(false) .

Thus, we were guaranteed that after refining the predicate set of node rs and reprocessing
the ART edge (rp,c,75), the node g would no longer be spurious for this abstract error
trace. This would give us progress of abstraction refinement. However, if the abstract
post is not most precise then the same spurious error trace might be reproduced after the
refinement. Thus, the refinement procedure might fail to derive new predicates for node r;.
In this case, the nested refinement phase refines the abstract post for command ¢ and node
rp. The refinement of the abstract post is performed indirectly by computing the meet of
the abstract states that label node r, with an abstraction of the weakest liberal precondition
wlp(c; m)(false). Note that in practice computing a[Pe.-](wlp(c; 7)(false)) is cheap, because
P, consists of the predicates extracted from the formula wlp(c; 7)(false).

The second refinement phase counteracts any Cartesian abstraction that is performed
during the computation of the abstract post. We therefore refer to this refinement step as
Cartestan refinement. Note that Cartesian refinement does not ensure that the most precise
abstract post is computed for the spurious ART edge. However, Cartesian refinement still
ensures progress of the abstraction refinement loop (Theorem 42).

4.2.1 Soundness

The soundness of our lazy nested abstraction refinement algorithm is formally stated in
Theorem 41. The soundness proof depends on various invariants of the refinement loop in
procedure LazyNestedRefine. These invariants are stated in the following lemma. The proof
of this lemma goes by induction on the runs of LazyNestedRefine.

Lemma 40 Let P = (X,D, X, L, 4y, g, T) be a program. In any run of LazyNestedRefine
on P the following properties hold at each entry to the outer while loop of LazyNestedRefine:

1. rg.covered = false
2. ~y[ro.preds](ro.states) = true
3. L, {r.states | r.loc =g} =L

4. for all ART nodes r with r.covered = false and r.states # L, and for all (r.loc,c,l') €
T there exists an ART node r' with r'.loc = ¢' and either:

(a) (r,c,7") € Unprocessed or

(b) post([c])(vy[r.preds](r.states)) C ~v[r'.preds](r'.states)
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5. for all ART nodes r with r.covered = true

r.states C U { r'.states | r'.covered = false A 1’.loc = r.loc } .

7,,/

Theorem 41 (Soundness) Procedure LazyNestedRefine is sound, i.e., for any program P
if LazyNestedRefine(P) terminates with “program is safe” then program P is safe.

Proof. Let P = (X,D,X,L,0y,lg,T) and let 0 = s Qs sp be a trace of
program P. We first prove the following property by induction on 4: for all 0 < i < n there
exists an uncovered ART node r; such that r;.loc = s;(pc) and s; € v[r;.preds](r;.states).
Let i = 0 then rg.loc = so(pc). Furthermore, from Properties 1 and 2 of Lemma 40
follows that ro is not covered and sy € v[ro.preds|(ro.states). Now, let ¢ > 0 then by
induction hypothesis there exists an uncovered ART node r;_1 with s;_1(pc) = r;_1.loc and
Si—1 € y[ri—1.preds|(ri_1.states), i.e., r;_y.states # L. Let 1,1 = (s;—1(pc), ci—1, si(pc)).
Then 7;_1 € T since o is a trace of P. Since Unprocessed = (), it follows from Property 4
of Lemma 40 that there exists some ART node 7’ such that r’.loc = s;(pc) and

post([comm])(y[ri—1.preds|(ri—1.states)) C [r'.preds](r’.states) .

Since (8;-1,8;) € [ri—1], we have r'.loc = s;(pc) and s; € y[r'.preds](r'.states). If 1’ is
uncovered choose r; = /. Otherwise, from Property 5 of Lemma 40 follows:

r’.states C U { " .states | v".covered = false A r".loc = 1’.loc } .

T”

Thus, from monotonicity of v and the fact that ~ is a complete join-morphism follows:

y[r'.preds](r’ .states) |= \/ { " preds] (" states) | " .covered = false A 1" .loc = 1'.loc } .

,r.//

Hence there is at least one uncovered ART node r” with r”.loc = r'.loc = s;(pc) and
si € y[r".preds]|(r".states). Then choose r; = r” for one such r”, which concludes the
induction proof.

From Property 3 of Lemma 40 follows that | |, { r.states | r.loc = g} = L holds when-
ever LazyNestedRefine(P) terminates with “program is safe”. Thus, if for any 0 < i < n
we had s;(pc) = f¢g then for all ART nodes r with r.loc = ¢ we would have s; ¢
v[r.preds](r.states). This would contradict the property proved above. It follows that o
is not an error trace. Since o was chosen arbitrarily, we conclude that P is safe. m

4.2.2 Progress

We now identify sufficient conditions on the predicate extraction function extrPreds and
abstract post operator postA that guarantee progress of abstraction refinement.

Note that we cannot prove that a given spurious error path can only occur finitely often
in a run of procedure LazyNestedRefine. The reason is that whenever we refine an ART node
r we dispose the already explored subtrees of r. It is therefore possible that a spurious error
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trace is rediscovered infinitely often because the same subtree is repeatedly removed and
reconstructed due to refinement steps that are triggered by other spurious error traces. In
principle, one can modify procedure LazyNestedRefine and impose restrictions on how the
ART is explored, or remember already explored subtrees, such that a given error trace only
occurs finitely often in any run. However, this would not make the procedure terminate
more often: we prove that any non-terminating run of procedure LazyNestedRefine that
involves infinitely many refinement steps must involve infinitely many spurious error paths.
Thus, it can never happen that procedure LazyNestedRefine does not terminate because it
gets stuck on refining a specific spurious error path over and over again.

Theorem 42 (Progress) Assume that for all closed formulae F', commands c, and Py, Po
such that Py = extrPreds(wlp(c)(F')) and Py = extrPreds(F) the following entailment holds:

Y[Pal(post? [Pr, Pa] (¢) (al Pr] (wip(e) (F)))) | F .

Then a run A of procedure LazyNestedRefine terminates, unless the set of spurious error
paths encountered in A is infinite.

Proof. Let P be a program. Assume that there is a non-terminating run A of procedure
LazyNestedRefine on P that only encounters finitely many spurious error paths. For the
i-th refinement step in A, let m; be the spurious error path in this refinement step, i.e.,
the sequence of commands labeling the path from the root node ry of the ART to the
error node in the i-th refinement step. Furthermore, let r,; be the pivot node in this
refinement step, rg; the spurious node, m,; the prefix of m; labeling the path to r,;, m,;
the suffix of m; labeling the path from rg; to the error node, and ¢; the command labeling
the edge between ry, ; and ry;, i.e., m; = 7p j; ¢i; s 4. Furthermore, let states; (preds;) be the
function associating abstract states (abstraction predicates) with ART nodes before the i-th
refinement step in A. For i € N let ext(i) be the set of all spurious error paths encountered
in some refinement step j with ¢ < j that are extensions of m,, i.e.

ext(i) & {mjli<jandm,;=mp;} .
Finally, let inf(A) be the set of paths m;, that are encountered infinitely often in A, i.e.
. def .
inf(A) ={m |{ieN[mp=m} =00} .

Since there are only finitely many spurious error paths encountered in A and each such
path itself is finite, inf(A) is nonempty. Moreover, there exists some 7, € inf(A) such that
for all 7, € inf(A), 7, is not a proper prefix of 7,. Choose one such path m, € inf(A). We
can conclude that there is some n € N such that 7, = 7, and for all j > n, m,; is not
a proper prefix of m,. Thus, after the n-th refinement step, A will at most add additional
successors to the ART node 7, ,,. Neither r, ,, nor any of its immediate successor nodes will
be removed from the ART after the n-th refinement step in A. Furthermore, for all j > n

we have:

1. rpn.statesji1 E rpp.states;.

. c
2. for all nodes r with r =rp,, or 7, — 7 for some command c: r.preds; C r.preds;
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Now choose some spurious error path 7 € ext(n). Then there exists some refinement step
m in A with n <m such that 7, = 7, 7y, = mp,, and for all j > m:

extrPreds(wlp(7s ) (false)) C rg p,.preds;

holds. Now assume there exists yet another refinement step k > m with 7, = 7 and 7, ), =
Tpn. Then k is a Cartesian refinement step. Thus, from the assumption in Theorem 42 and
the monotonicity of o and post®, we conclude that for all j > k:

’y[rs,k.predsj](postA[rp,k.predsj,Ts,k.predsj](ck)(rp,k.statesj)) C wlp(ms ) (false) .
From this we conclude that for all j > k:
YIrs k-preds;](rs k-states;) C wip(ms 1) (false) .

This means that for all j > k with m = 7; we have 7, # 7 ; and thus r,, # rp ;. Since
Tpn is never removed from the ART and there is at most one path in the ART labeled
by the commands in 7, ,, we conclude that for all j > k we have m, ; # m,, and hence
Tp,j # Tp. Since 7 was chosen arbitrarily in ext(n), it follows that for all © € ext(n) there
exists some k > n such that for all j > k with 7 = 7; we have 7, ; # 7). Let kjq, be the
maximum of all these k. Then for all j > k4, we have 7, ; # m,. This contradicts the fact
that m, € inf(A). =

4.3 Example Run of Nested Abstraction Refinement

We now come back to our motivating example, program ListFilter shown in Figure 4.1. The
right-hand side of Figure 4.1 represents program LISTFILTER in a form that fits our notion
of programs defined in Section 2.2. In order to make the presentation of the example more
concise, the program only consists of four locations, the initial location ¢y, the loop cut
point £1, an exit location ¢35, and an error location £g. The basic blocks in the left-hand-
side version of the program have been contracted to single commands. Note that we further
transformed the assert command in the loop body into a control-flow edge from location ¢,
to the error location.

We will now apply procedure LazyNestedRefine to this example program using domain
predicate abstraction as the underlying analysis. In our example, all domain predicates are
unary predicates that range over heap objects. To increase readability we will represent
abstract objects as sets of (potentially complemented) abstraction predicates. For instance,
the abstract object [po — {0},p1 — {1},p2 — {0,1}] over domain predicates pg, p1, and
po is represented by the set {Pg, p1}.

We construct the ART starting from the root node ro: (£g, {0} ,0) labeled by location
g, abstract state {0}, and an empty set of abstraction predicates. The abstract state {0}
denotes the set of all concrete states of program LISTFILTER. Two executions of the loop
in procedure LazyNestedRefine produce an ART that consists of the following abstract error
trace og:

Tro: (607 {@},@) = Tt (Elv {@},@) = T2 (EE’ {®}7®) .
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The trace reaches the error location £g, because the assertion NullCheck fails when location
1 is reached for the first time. Now the algorithm determines whether oy corresponds to a
concrete error trace or whether it is an artefact of the abstraction. The trace og is spurious.
The smallest suffix of g that proves its spuriousness is og itself: the weakest precondition
wlp(cp; ¢5)(false) is given by the formula:

first#null A data first A nullZnull - (next null)#null .

This formula is valid, since one of the conjuncts in the antecedent of the implication is
unsatisfiable. The spurious node of this abstract error trace is the ART node r;. We refine
the abstract domain of r; by extracting new domain predicates that express atomic for-
mulae in the weakest liberal precondition wlp(cs)(false) which is equivalent to the assertion
NullCheck. From this formula we extract the set of abstraction predicates Py consisting of
the following new domain predicates:

po = (M. prev=v)
p1 = (Av.null=v)
p2 = (M. (next prev)=v) .

Continuing the algorithm with the new predicates produces yet another abstract error trace
o1:

ro: (Lo, {0},0) S ri: (01, {{po,p1}, {Po, P1}} . Po) =

r3: (0, {{po, p1}, {1t} Po) = ra: (€g, {0} ,0)

The trace o1 starts at location ¢,, iterates once through the while loop by executing the
else branch of the first conditional in the body of the while loop, and goes back to location
¢1 where assertion NullCheck fails. Trace o is again spurious. The first spurious node in
the trace is r3. From the spurious part of the trace we infer one new domain predicate:

p3 = (Av.e=v) .

Note that at this point our abstract domain is able to express the inductive invariant Inv
at location ¢; which guarantees that the error location is not reachable. A set of abstract
states whose concretization corresponds to the models of invariant Inv is, e.g., given by:

{{{ro,p1}{Po, P11}, {{p2: p3}  {P2, P31} -

If our analysis was to compute the most precise abstract post operator for our abstract
domain then it would guarantee that, after adding predicate ps to 73, the abstract error
trace o7 is eliminated.

However, our analysis is based on the context-sensitive Cartesian post rather than the
most precise abstract post. The price that we pay for the loss of precision under this
abstract post is that progress of abstraction refinement is no longer guaranteed. In fact, in
our example the refinement algorithm produces the same spurious error trace o; even after
predicate p3 has been added, i.e., the abstraction of command c3 remains spurious. The
loss of precision under Cartesian abstraction is caused by the fact that the most precise
abstract post operator for command c3 behaves nondeterministically. We can think of
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this nondeterminism as a form of materialization [108|. Cartesian abstraction counteracts
materialization. In order to better understand this problem, we take a closer look at the
abstract post for command c3. Consider the abstract state

s* = {{po,p1} , {Po. P1}}

that labels ART node r; and consider abstract object o = {pg, b1, p2, p3} in the expansion
of abstract state s#. Figure 4.3 shows three concrete states that are represented by s7
and their post states under command c3. There is a concrete object in state s3 that is
represented by o# and this object is pointed to by reference variable e after execution of
command c3. However, in state s; there is a concrete object that is also represented by
abstract object o#, but which is not pointed to by e after execution of ¢3. If we want to
keep track of the correlation between predicates ps and ps, we need to split s# and abstract
objects in s7 according to the fact whether some object is pointed to by reference variable e
after execution of c3 or not. In shape analysis this process of splitting is commonly referred
to as materialization. The most precise abstract post operator performs materialization
implicitly and we say that it behaves nondeterministically if materialization actually occurs.
Computing the most precise abstract post for command c3 and s7 results in the following
three abstract states:

{{p_17p_27p_3} ) {p_07p_17pQ7p3} ) {p_07p_27p_3}} )
{{p_l)p_27p_3} ) {19_0,171,172,173}} )
and {{pO)p_lap27p3} ) {]9_0)1)_2)1)_3}} .

Abstracting these three abstract states by a single abstract state results in:

{{pl)p2)p3} 5 {p_07p_2)p_3} ) {p_(])p27p3} ) {]9_17]9_2)1)_3}} .

This abstract state corresponds to the join of the following two sets of abstract objects:

{{po,p1,p2, 3}, {P0, p1,P2. D3} },
{{po, 1, p2,p3}, {0, P1, P2, D3} , {p0, P1, P2. D3} } -

The first set is the result of applying the context-sensitive abstract post operator on abstract
objects to abstract object {pg,p1} in s7, i.e., this set of abstract objects is the new Boolean
covering in the post states of s7 of objects represented by abstract object {pg,p1} € s7.
The second set is the result of applying the context-sensitive Cartesian post operator to
abstract object {pg,p1}. If we apply Cartesian abstraction to each of these two sets (i.e.,
compute the union of all abstract objects in the set and remove predicates that occur with
both polarities) and join the results, we obtain the Cartesian post for command c3 and
abstract state s%:

{{po, 1}, {P1}} -

The Cartesian post loses the correlation between domain predicates ps and p3, because the
most precise abstract post behaves nondeterministically.

After refining ART node r3 using spurious error trace o1 we still get the same spurious
error path. Thus, we are not able to infer any new abstraction predicates and our analysis
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Figure 4.3: Three concrete states represented by abstract state {{po, p1},{Po,P1}} and their
post states under command c3.

would be stuck if we used spurious error traces to refine only the abstract domain. At this
point Cartesian refinement comes into play. Cartesian refinement refines the Cartesian post
indirectly by splitting the abstract state s labelling the pivot node r; into a set of abstract
states and individual abstract objects in s# into sets of abstract objects, such that the most

precise abstract post operator behaves deterministically with respect to our target property
NullCheck.

Thus, Cartesian refinement performs materialization on-demand and guided by the prop-
erty to verify. For the purpose of splitting we compute the weakest liberal precondition
wlp(cs; cs)(false), extract domain predicates from this formula so that it can be precisely
expressed in our abstract domain, and compute its abstraction. The splitting of s7 is ac-
complished by computing the meet of s# with the abstracted weakest liberal precondition.
In our example we extract one new domain predicate:

pa = (Av. (neat e)=v) .

The meet of s7 with the abstracted weakest liberal precondition is given by the following
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two abstract states:
{{po,p1,p4} ,{Po,P1,Pa}}

{{po,p1. Pz}, {Po, D1, pa} . {P0, 1, Pa}} -

This refined set of abstract states distinguishes between concrete states where null will be
pointed to by e after execution of command c3 and states where null will not be pointed
to by e. Also, in each abstract state there is no abstract object whose covering in the post
states contains, both, abstract objects with ps and abstract objects with p3. The Cartesian
post for the refined set of abstract states and command c3 results in the following two

abstract states:
{{p_07plvp27p3} ) {p_17p_27p_3}} 3

{{p_07plvp_27p_3} {1)_17p27p3} ) {p_17p_27p_3}} :

The concretization of these abstract states implies invariant Inv, i.e., the outgoing ART
edge of rq labeled by command c3 is no longer spurious. After three more iterations of the
abstraction refinement loop the analysis produces an invariant that proves that the error
location /g is not reachable.

4.4 Progress for Domain Predicate Abstraction

We now show that domain predicate abstraction fulfils the requirements for soundness and
progress of lazy nested abstraction refinement. We require that the domain of all domain
predicates that are used as abstraction predicates is fixed a priori, i.e., all abstraction
predicates that are inferred during the analysis range over the same fixed domain. One
can determine an appropriate domain, e.g., by looking at the formulae that occur in the
analyzed program. In the following, the chosen domain of abstraction predicates is denoted
by Dom.

The abstract domain AbsDom[P] over a set of domain predicates P is given by sets
of abstract states AbsStates[P] as defined in Chapter 3. The Galois connection between
concrete and abstract domain is given by the functions a™ and . The abstract post
operator post” is given by the context-sensitive Cartesian post operator postg,
some context operator. We make two minor modifications to the definition of post$ given
in Section 3.4. First, we allow that abstract states in the domain and range of postS are
defined with respect to separate sets of abstraction predicates. Second, recall from the
discussion in Section 3.4 that the Cartesian post operator loses precision in the case where
the image of the concrete post is the empty set of states. We handle this case explicitly
in order to avoid such loss of precision. The abstract post operator of our analysis is then
defined as follows: let P; and Py be two sets of abstraction predicates then:

where k is

post? [Py, Py] € Com — AbsStates[Py] — AbsStates[Ps]
post? [Py, Po](c)(87) = |_| if v(s™) k= wip(c)(false) then () else postS[Py, Po)(c)({s7}) .

sHeS#

From the definitions and properties of domain predicate abstraction that are given in
Chapter 3, it is easy to see that this setup fulfils all the requirements for soundness of nested
lazy abstraction refinement. It remains to show that it also fulfils the requirements for the
progress property.
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4.4.1 Progress for Havoc-free Programs

We first prove that progress of nested lazy abstraction refinement is guaranteed for programs
that do not contain any havoc commands. We need to prove the assumption made in
Theorem 42, i.e., for any deterministic command ¢ and formulae F' the following property
holds: if P; = extrPreds(wlp(c)(F')) and Py = extrPreds(F') then

Y[Pa)(post™ [Pr, Pa] (e) (o [Pr] (wip(e) (F))) = F . (4.1)

We cannot prove this property without imposing any restrictions on the predicate extrac-
tion function extrPreds. First, we expect that function extrPreds extracts sufficiently many
predicates from a given formula F' such that there exists some set of abstract states whose
concretization corresponds to the models of F. This restriction ensures that Condition 4.1
would hold, if post® was the most precise abstract post operator. We need to impose an
additional restriction in order to prove Condition 4.1 for the context-sensitive Cartesian
post. For the progress property to hold, Cartesian refinement needs to ensure that the
most precise abstract post behaves deterministically with respect to abstract states that
imply the weakest liberal precondition of formula F'. However, this is not possible if the
predicate extraction function decreases the granularity of the abstract domain when it ex-
tracts predicates from wlp(c)(F). This means that if we have some abstract object o* over
predicates extracted from F' then the weakest domain precondition of the domain predicate
represented by o# should be precisely representable in terms of abstract objects over do-
main predicates extracted from wlp(c)(F'). The two restrictions on the predicate extraction
function extrPreds are formalized in the following definition.

Definition 43 We say that a predicate extraction function extrPreds is admissible if the
following two conditions hold:

1. for any closed formula F, if P = extrPreds(F") then

2. for any closed formula F and deterministic command c, if P1 = extrPreds(wlp(c)(F))
and Py = extrPreds(F) then for all domain predicates p such that either p or its
complement is in Py, and for all abstract states s with {s7} = o [P1]({s}) for some
state s:

P [Pa(wip(e)(p)) (Y (AG. [P1]({s7})) € wip(e)(p) -

Definition 43 suggests a simple rule for constructing admissible predicate extraction
functions. If we start from a set of domain predicates P, that is able to express some formula
F, e.g., the atomic formulae occuring in F, then the set of predicates P; for wip(c)(F') may
consist of all predicates wip(c)(p) for p € Py. However, in practice one would like to avoid
adding each wlp(c)(p) as a single monolithic predicate. One would rather like to split these
predicates into simpler ones. For instance, if wip(c)(p) is of the form (A7. G - p/ (%)) where
G is a guard from an assume command (i.e., a closed formula) then one can split this
domain formula into simpler domain formulae that represent G and domain formulae that
represent p’. In particular, the predicate extraction function can split a closed formulae G
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into simpler domain predicates that are not nullary predicates and still satisfy the second
condition of Definition 43. For instance, in Section 4.1 we split guards of the form e = null
into domain predicates (Av.e = v) and (Av.null = v). If the abstract domain is able to
express both G and its negation then the abstraction of a single concrete state s will preserve
the information whether s satisfies G. The second condition of admissibility is still satisfied
if this information is also preserved by the context operator.

The following lemma states that for deterministic commands weakest liberal precondi-
tions distribute over joins. The lemma can be easily proved from the semantics of deter-
ministic commands.

Lemma 44 Let ¢ be a deterministic command. Then wlp(c) and W'Ip(c) are complete join-
morphisms.

The next lemma states that, given an admissible predicate extraction function, if ab-
stract domains are constructed from a formula F', respectively its weakest liberal precondi-
tion for some deterministic command, then the granularity of abstract states representing
F' is preserved under wlp.

Lemma 45 Let extrPreds be an admissible predicate extraction function, F a closed for-
mula, ¢ a deterministic command, and P1,Pa such that extrPreds(wlp(c)(F)) and Py =
extrPreds(F). Then for all abstract states s € a™[Po](F):

VPt [Pa(wip(e) (v[P2](s7)))) € wip(e) (v[P2](s7)) -

Proof. We show that for all s7 € o [P](wlp(c)(7[P2](s%))) we have:

VP1(sT) S wip(e)(1[P2)(s7)) -

Let 8 € ot [Py](wlp(c)(v[P2](s7))). From Proposition 27 we know that there is a state sy
such that

F=atPl{sh = || ' (1.9

ocDom

Thus, we have by definition of ~:

VPG = () U APt [P (s1,60)(6) -

02€ Dom 01 €Dom

Furthermore, since wlp(c) distributes over both joins and meets, we have:

wip()(V[P2](s™) = () [ wip(e)(5[P2](0™))(@) -

o€ Dom o# cs#

Thus, we need to show the following set inclusion:

m U &t [P1](s1,01))(02) C m U wip(e)(F[P2] (07))(3) .

02€Dom 61€Dom o€ Dom o# cs#
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Instead, we show that the following stronger property holds:
(Mg € Dom.s[P](sT)) 0 | API@T [P(s1,61) € | wip(e)(§[P2)(0%))
01€Dom o ecsH#

Let ) € Dom. From s1 € wlp(c)(y[P2](s%)) we conclude:

sie | wie(©([Pal(0%))(@1) -

ot st
Thus, there is some o € s# such that
s1 € wip(¢)(§[P2](07)) (1) -
Thus, we have by definition of & (s1,07) and monotonicity of 4:
@ [P(s1,01) € A(@T [P (wip(e) (4[P2)(0¥)))) - (1)
C

Furthermore, we have by definition of 4, the fact that for all joins (P we have & (\P)
[{&"(p) | p€ P}, and the fact that 4 and wlp distribute over meets:

AP [P W3 Po) (%)) € () P [P (wip(e) (0™ ™)) - (2)

pEP2

From the fact that extrPreds is admissible follows that for all p € Po:
AP [P (whe(e) (07 ) A (A6 ([P1])(sT)) € wip(e) (07 P)) (3)

Now, from (1)-(3) follows that for all p € Ps:

AP P (s1,61)) OV (A3 /[P (sT)) € wip(e)(p”" ™)
From this follows:

AP [P(s1,01) A (WGP (7)) € () win(e) (" @) .
PEP2

Now, from the fact that wlp distributes over meets and the definition of 4 we finally conclude:

FP (et [Pr)(s1,61)) O (A8 £[P1)(sT)) € wip(e) ([Pa](0%)
which proves our goal. =

The following proposition together with Theorem 42 states that admissible predicate
extraction functions and the abstract post operator post” guarantee progress of abstraction
refinement for havoc-free programs.

Proposition 46 Let extrPreds be an admissible predicate extraction function. Further-
more, let F' be a closed formula, ¢ a deterministic command, and Py, P2 such that Py =
extrPreds(wlp(c)(F')) and Py = extrPreds(F). Then

VP2l (post™ [Py, Pa](c) (o [P1)(wlp(e) (F)))) E F .
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Proof. It suffices to show that for all sfé € a™(wlp(c)(F)) we have:

post® [Py, Pa)(c)(s] ) T o [Po(F) .

The claim then follows from the fact that post® distributes over joins, monotonicity of 7,
and the fact that extrPreds is admissible.

Let 31 € at(wlp(e)(F)). If 7[771](31) = y(wlp(c )(false)) then the goal immediately
follows from the definition of post®. Thus, assume 7[7’1](81) K~ ~(wlp(c)(false)). Since

[731](81 ) C wlp(c)(F), it follows that there is at least one post state of wlp(c)(F') under

command c that satisfies F'. Hence, we know that there exists at least one abstract state
s in at[Py](F).

By Lemma 44, and the fact that o™ is the upper adjoint of a Galois connection we know
that ot and wlp(c) distribute over joins. We therefore conclude from the definition of :

o [Pwip(e)(F) = || aT[PUwip(e)(1[P2)(s]))) -
s¥ €at[P2](F)

Thus there exists some s3 € at[Py](F) such that

st C o™ [P1](wip(c)(1[P2)(s3))) -

From monotonicity of v and Lemma 45 it follows:
APi](s7) € wip(e)([P2)(s5)) - (1)
#

Now let o] € expand(sft). By the characterization of a* in Proposition 27 there is some s1
and &) € Dom such that s; = wlp(c)(F), a[Pi]({s1}) = s7 and a(s1,51) = of . Further-
more, from (1) and the fact that v[P;]oa[P;] is extensive follows that s1 € wlp(c¢)(y [732](82 ).
By definition of 4 and the fact that wlp(c) distributes over both joins and meets we have:

wip(e)(y[Pal(s)) = [ U wie(e)(3[Pa](0]))() -

oc€Dom # #

It follows that s1 € U #. # W.Ip(c)(ﬁ[Pg](of))(ﬁl). Hence, there is some 072éé € s# such that:
2 2

{07} C 6™ [Py (wip(o) (3 [P2] (0F))) -
From monotonicity of ¥ we can conclude:
A[P1)(0F) S AP (@ [P (wWip(e) (3 [P2] (0F)))) -

Following the same chain of reasoning as in the proof of Lemma 45 we conclude that for all
p € Pa:

. C o - ot

PTG AP(sT)) € win(e) (™ P)

which is equivalent to the statement that for all p € Po:

$P}) € A6 aP(s]) Uwip(e)(p ©(5))
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From the definition of W]pf we can therefore conclude that for all p € Py with 0# (p) = {i}:

{o¥} = wipl (¢)(sF)(o7,) .

From Theorem 38 follows:

aCo pdstf [Py, 'Pg](c)(sfé) o4%(0™) C {072#} )

Since 071‘7E was chosen arbitrarily in sf&, we have by definition of the context-sensitive Carte-

sian post:
postS[P1, Pa)(e)(s7) C {s7}

from which we finally conclude:
postS[P1, Po](c)(s}) C o [Ps)(F)

The goal then follows from the definition of post®. m

4.4.2 Progress for General Programs

We proved the progress property for the analysis of programs that do not contain any
havoc commands. Can we generalize this result to arbitrary programs? The problem with
havoc commands is that they introduce unbounded nondeterminism in the concrete system.
This unbounded nondeterminism is reflected by the weakest liberal preconditions of havoc
commands:

wlp(havoc(x))(F) = Vu. Flxz:=v] wherev ¢ FV(F)

One way to obtain progress in the presence of unbounded nondeterminism would be
to dynamically change the arity of abstraction predicates such that elements in the ab-
stract domain can quantify over additional variables. However, this would unnecessarily
complicate our analysis. Instead, we use a simple trick that sidesteps this problem.

Whenever we add a new edge to the ART that is labeled by a command ¢ of the form
havoc(z) then we replace ¢ by a deterministic update z:=2" where 2’ is a fresh program
variable. If ¢ occurs within a loop then we use a fresh program variable each time the loop
is unrolled by the analysis. Effectively this transformation moves the nondeterminism to
the choice of the initial value of ' in the initial states of the corresponding ART path.
However, all commands that label edges in the ART are deterministic and we get progress
of nested lazy abstraction refinement for general programs.

4.5 Costs and Gains of Automation

We implemented our nested abstraction refinement algorithm in our tool Bohne. We were
able to verify complex properties of programs manipulating data structures without manual
specification of abstract transformers or abstraction predicates. A detailed presentation of
our tool and an overview of our experiments is given in Chapter 6. It is instructive to mea-
sure the costs and gains of automation by comparing Bohne to other shape analysis tools.



68 CHAPTER 4. LAZY NESTED ABSTRACTION REFINEMENT

Due to the similarities between three-valued shape analysis [108] and domain predicate ab-
straction it seems appropriate to compare Bohne with TVLA [81], the implementation of
three-valued shape analysis. A detailed overview and analysis of our comparison can be
found in Section 6.5.3.

Our experiments indicate that the running time of our analysis is approximately one
order of magnitude higher than the running time of TVLA. Almost all running time of the
analysis is spent in the underlying decision procedures. Thus, the increased running time
is the price we pay for automated computation of abstract transformers and automated
abstraction refinement.

On the other hand, the increased degree of automation reduces the burden that is im-
posed on the user of the analysis. However, this is not the only benefit of an increased
automation. Our lazy nested refinement loop seems to achieve the local fine-tuning of the
abstraction at the required precision. This targeted precision results in a smaller space con-
sumption of our analysis. The space consumption of Bohne (measured in number of abstract
states in the least fixed point) can be significantly smaller than the space consumption of
TVLA. One of the main reasons for the lower space consumption is that Cartesian refine-
ment serves as a property-driven focus operation. Our analysis performs materialization of
abstract objects and abstract states only when the additional precision is needed to verify a
particular property. In contrast, TVLA’s focus operation performs materialization eagerly
which potentially leads to an increased number of explored abstract states.

4.6 Further Related Work

The advantages of combining predicate abstraction, abstraction refinement, and shape anal-
ysis are clearly demonstrated in lazy shape analysis [18]. Lazy shape analysis performs
independent runs of a shape analysis algorithm, whose results are then used to improve
the precision of predicate abstraction. In contrast, domain predicate abstraction general-
izes predicate abstraction to the point where it itself becomes effective as a shape analysis.
This approach makes the benefits of lazy abstraction [54] immediately accessible to shape
analysis.

In the previous section we already made a detailed comparison with three-valued shape
analysis [108]. We now summarize additional related work. A method for automated gen-
eration of predicates using inductive learning has been presented in [84]. Recent techniques
also attempt to decrease the space consumption [86,87,106]. However, none of these meth-
ods uses counterexample-guided abstraction refinement. Thus, it is up to the user of the
analysis to determine when the application of such a technique is appropriate.

Shape analyses based on separation logic [96,97,105], such as [31,42] are typically tailored
towards specific data structures and properties. This makes them scale to programs of
impressive size [119], but also limits their application domain. Recent techniques introduce
some degree of parametricity and allow the analysis to automatically adapt to specific classes
of data structures [13|. Similar techniques that infer more general predicates, but require
generators for the data structures are described in [51] and [79] (which, however, is not
based on separation logic). None of these methods uses abstraction refinement.

Shape analysis based on abstract regular tree model checking [25] can take advantage
of abstraction refinement techniques that have been developed in this context [24]. In
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particular, there is an automata-based version of predicate abstraction that can be combined
with abstraction refinement and provide progress guarantees. However, these refinement
techniques cannot prevent any loss of precision that is caused by the initial encoding of a
heap program into tree transducers. Also, this approach focuses on shape invariants of data
structures and does not apply to properties such as sortedness.

Indexed predicates [72]| use predicates with free variables to infer quantified invariants,
similarly to domain predicate abstraction. Heuristics for automatic discovery of indexed
predicates are described in |73]. Unlike indexed predicate abstraction, our abstract domain
contains disjunctions of universally quantified statements. The presence of disjunctions
avoids loss of precision on join points of the control flow graph. This is important in the
context of abstraction refinement because it allows to precisely identify spurious error traces
in the abstract system.

The SLAM tool [9] uses Cartesian abstraction 8] on top of predicate abstraction. In
[5] Ball et al. present a technique based on [40] that guarantees progress of abstraction
refinement in this context. This technique gradually refines the abstract post towards
the most precise abstract post for the current abstract domain, if adding new predicates
alone does not rule out a particular spurious error trace. Thus, the spurious error trace
is eventually eliminated. Our lazy nested abstraction refinement does not implement the
most precise abstract post. Remarkably it still guarantees the progress property. Our
nested refinement is inspired by materialization in shape analysis, i.e., it implements a
property-driven focus operation. In fact, one can think of nested abstraction refinement
as an improvement of the focus operator that is used in classical predicate abstraction [§].
The focus operator in [8] eliminates loss of precision under Cartesian abstraction in cases
where the most precise abstract post behaves deterministically. Our nested abstraction
refinement also prevents loss of precision in cases where the most precise abstract post is
nondeterministic.

McMillan describes a technique that uses interpolants to infer new reachability predi-
cates from spurious counterexamples [89]. In this chapter we chose not to discuss individual
techniques for extracting predicates from counterexamples, since they are orthogonal to the
point of our contribution in this chapter. A description of the concrete techniques used in
our implementation is given in Section 6.4. Future work will investigate more and more
sophisticated ways to extract predicates. McMillan’s paper is very interesting for work in
this direction. The use of his idea may yield the same improvement upon our technique as
the one of [53| upon [54].

4.7 Conclusion

In this chapter we presented a nested abstraction refinement technique for symbolic shape
analysis. This technique enabled us to verify complex properties of a variety of data struc-
ture implementations without providing any user assistance other than stating the proper-
ties to verify.

Our technique uses spurious error traces to refine both the abstract domain of the
analysis and the abstract post operator for that abstract domain. We showed that our
nested refinement loop can be viewed as a solution to the problem of materialization in
shape analysis and that the refinement of the abstract post operator implements a property-
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driven focus operation. We further showed that nested refinement guarantees the progress
property, i.e., every spurious error trace is eventually eliminated. While at first glance the
progress property seems to be merrily of theoretical importance, it was the key for making
the analysis practical.



Chapter 5

Field Constraint Analysis

In the last two chapters we have developed techniques that use decision procedures as
black boxes in order to obtain a fully automated shape analysis. In this chapter we are
concerned with decision procedures for reasoning about data structures in heap programs.
These decision procedures provide the missing link to make our shape analysis applicable
in practice.

For recursive data structures such as lists and trees it is important to be able to reason
about reachability in graphs. Reachability properties are useful for expressing constraints
on the shapes of data structures as well as for defining useful abstractions. Unfortunately
most logics for reasoning about reachability are either undecidable [59], or restrict the class
of considered structures. This makes any analysis that depends on such a logic inapplicable
to many useful data structures. Among the most striking examples is the restriction on
pointer fields in the Pointer Assertion Logic Engine [92]|. This restriction states that all
fields of the data structure that are not part of the data structure’s tree backbone must be
functionally determined by the backbone; that is, such fields must be specified by a formula
that uniquely determines where they point to. Formally, we have

Vow. f(v) =w < F(v,w) (5.1)

where f is a function representing the field, and F' is the defining formula for f. The
restriction that F' is functional means that, although data structures such as doubly-linked
lists with backward pointers can be verified, many other data structures remain beyond
the scope of the analysis. This includes data structures where the exact value of pointer
fields depends on the history of data structure operations, and data structures that use
randomness to achieve good average-case performance, such as skip lists [103]. In such
cases, the invariant on the pointer field does not uniquely determine where the field points
to, but merely gives a constraint on the field, of the form

Vo w. f(v)=w — F(v,w) (5.2)

This constraint is equivalent to Vv. F'(v, f(v)), which states that the function f is a solution
of a given binary predicate. The motivation of this chapter is to find a technique that
supports reasoning about constraints of this, more general, form. In a search for existing
approaches, we have considered structure simulation [58,60], which, intuitively, allows richer
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logics to be embedded into existing logics that are known to be decidable, and of which [92]
can be viewed as a specific instance. Unfortunately, even the general structure simulation
requires definitions of the form

Vo w.r(v,w) < F(v,w)

where r(v,w) is the relation being simulated. When the relation r(v,w) is a function,
which is the case with most reference fields in programming languages, structure simulation
implies the same restriction on the functionality of the defining relation. To handle the
general case, an alternative approach therefore appears to be necessary.

Field constraint analysis. This chapter presents field constraint analysis, our approach
for analyzing data structures with general constraints of the form (5.2). Field constraint
analysis is a proper generalization of the existing approach and reduces to it when the
constraint formula F' is functional. It is based on approximating the occurrences of field f
with its constraint formula F', taking into account the polarity of f, and is always sound. It
is expressive enough to verify constraints on pointers in data structures such as two-level skip
lists. The applicability of our field constraint analysis to nondeterministic field constraints is
important because many complex properties have useful nondeterministic approximations.
Yet despite this fundamentally approximate nature of field constraints, we were able to
prove its completeness for some important special cases. Field constraint analysis naturally
combines with structure simulation, as well as with our symbolic approach to shape analysis
presented in Chapter 3 and 4. Our presentation and current implementation are in the
context of the monadic second-order logic (MSOL) over trees [64], but our results extend
to other logics. We therefore view field constraint analysis as a useful component of shape
analysis approaches that makes shape analysis applicable to a wider range of data structures.

Contributions. In this chapter we make the following contributions:

e We introduce an algorithm (Figure 5.7) that uses field constraints to eliminate de-
rived fields from verification conditions.

e We prove that the algorithm is both sound (Theorem 49) and, in certain cases,
complete. The completeness applies not only to deterministic fields (Theorem 51),
but also to the preservation of field constraints themselves over loop-free code (The-
orem 57). The last result implies a complete technique for checking that field con-
straints hold, if the programmer adheres to a discipline of maintaining them, e.g., at
the beginning of each loop.

o We describe how to combine our algorithm with our symbolic shape analysis to infer
loop invariants.

5.1 Examples

We next explain our field constraint analysis with a set of examples. The doubly-linked
list example shows that our analysis handles, as a special case, the ubiquitous back point-
ers of data structures. The skip list example shows how field constraint analysis handles
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nondeterministic field constraints on derived fields, and how it can infer loop invariants.
Finally, the students example illustrates inter-data-structure constraints, which are simple
but useful for high-level application properties.

5.1.1 Doubly-Linked Lists with Iterators

This section presents a class implementing doubly-linked lists with built-in iterators. This
example illustrates the usefulness of field constraints for specifying pointers that form
doubly-linked structures.

Our doubly-linked list implementation is a data structure with operations add and
remove that insert and remove elements from the list, as well as the operations initlter,
nextlter, and lastlter for manipulating the iterator built into the list. We have verified all
these operations using our system; we here present only the remove operation. Figure 5.2
depicts an instance of the data structure. It consists of a list of Node objects which are
connected via fields next and prev and the list’s head object with two fields first and current.
Field first points to the first Node object in the list and field current indicates the current
position of the iterator in the list.

The behavior of method remove is given by a procedure contract. The contract uses two
sets: content, which contains the set of Node objects in the list, and iter, which specifies
the set of elements that remain to be iterated over. These two sets abstractly characterize
the behavior of operations, allowing the clients to soundly reason about the hidden imple-
mentation of the data structure. The system verifies that the implementation conforms
to the specification, using the definitions of sets content and iter. These definitions are
expressed in a subset of Isabelle/HOL [95] formulae that can be translated into monadic
second-order logic [64]. The set content is defined as the set of all objects reachable from the
first field of the head object followed by arbitrary many next fields. The set iter is defined
correspondingly by taking field current instead of field first.

In addition to the procedure contract there are four data structure invariants specified.
The definitions of sets content and iter are hidden from the data structure clients. Thus,
without exposing additional information clients would be unable to relate these two sets.
Therefore, the first invariant is a public invariant that expresses that the set of nodes that
remain to be iterated over is always a subset of the content of the list. The remaining
representation invariants are private to the data structure implementation. The invariant
tree [first, next] expresses that fields first from class List and field next from class Node are
backbone fields that form a forest in the heap. The third invariant is a field constraint
on field prev. It expresses that field prev is the inverse of field next. The last invariant
indicates that all objects which are not contained in the any instance of the data structure
are isolated: they have no outgoing next pointers.

Our system verifies that the remove procedure implementation conforms to its specifi-
cation as follows. The system expands the modifies clause into a frame condition, which
it conjoins with the ensures clause. This frame condition expresses that only the content
and iter sets of other instances of the doubly-linked list data structure are not modified.
Next, it conjoins the data structure invariants to both the requires and ensures clause. The
resulting pre- and postcondition are expressed in terms of the sets Content and lter, so the
system applies the definitions of the sets to obtain pre and postcondition expressed only



74 CHAPTER 5. FIELD CONSTRAINT ANALYSIS

public final class Node {
public /x: claimedby DLL/ter +/ Node next;
public /x: claimedby DLLIter «+/ Node prev;

public class DLLlIter

{

private Node first, current;

/*: public specvar content :: objset;
public specvar iter :: objset;

private vardefs "content == {x. x # null A next* first x}";

private vardefs "iter == {x. x # null A next* current x}";

public invariant "iter C content";
invariant "tree [first ,next]";

invariant "V xy. prev x =y —
(y # null — nexty = x) A
(y = null A x 7é null — (v Z. next z # X))“;

invariant "V n (V I. | € DLLIter — n ¢ content |) — next n = null";

*/

public void remove(Node n)
/*: requires "n € content"
modifies content, iter
ensures "content = old content — {n} A iter = old iter — {n}"
*/
{
if (n==current) current = current.next;
if (n==first) first = first .next;
else n.prev.next = n.next;
if (n.next != null) n.next.prev = n.prev;
n.next = null;
n.prev = null;

Figure 5.1: Iterable lists implementation and specification

next next next next

prev
current

prey, prev prev

Figure 5.2: An instance of a doubly-linked list with iterator
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in terms of fields first, current, next, and prev. It then uses standard weakest precondition
computation |1] to generate a verification condition that captures the correctness of remove.

To decide the resulting verification condition, our system analyzes the verification con-
dition and recognizes assumptions of the form:

L. tree [...] and
2. Vxy fx=y— F(xy).

These assumptions enable an encoding of the verification condition into monadic second-
order logic over trees [64]. The details of this encoding are described in Section 6.3. The first
form of assumptions determines the backbone fields of the data structure. The second form
determines the derived fields and their constraints expressed in terms of backbone fields.
The system uses the constraints on the derived fields to reduce the verification condition
to a formula expressible only in terms of the backbone fields. (This elimination is given
by the algorithm in Figure 5.7.) Because the backbone fields form a tree, the system can
decide the resulting formula using monadic second-order logic over trees. In our case, fields
first and next are the backbone fields and field prev is a derived field. The invariants in our
example do not determine whether field current is a backbone field or a derived field. In
this case the system handles field current as a derived field with a trivial field constraint of
the form

V xy. current x =y — (x = null = y = null).

While reasoning over such fields which are completely unconstrained is generally incomplete,
our system is still able to prove the verification conditions generated for our example.

We note that a first implementation of the doubly-linked list with an iterator was in the
context of the Hob system [77|. This implementation was verified using a Hob plugin that
relies on the Pointer Assertion Logic Engine tool [92]. What distinguishes field constraint
analysis from the previous Hob analysis based on PALE is the ability to handle the cases
where the field constraints are nondeterministic, such as the trivial field constraint generated
for field current. In the examples that follow, we illustrate the usefulness of nondeterministic
field constraints for data structure specification. Additionally, we show how field constraints
are combined with our symbolic shape analysis to synthesize loop invariants.

5.1.2 Skip List

We next present the analysis of a two-level skip list. Skip lists [103] support logarithmic
average-time access to elements by augmenting a linked list with sublists that skip over
some of the elements in the list. The two-level skip list is a simplified implementation of
a skip list, which has only two levels: the list containing all elements, and a sublist of
this list. Figure 5.3 presents an example two-level skip list. Our implementation uses the
next field to represent the main list, which forms the backbone of the data structure, and
uses the derived nextSub field to represent a sublist of the main list. We focus on the add
procedure, which inserts an element into an appropriate position in the skip list. Figure 5.4
presents the implementation of add, which first searches through nextSub links to get an
estimate of the position of the entry, then finds the entry by searching through next links,
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nextSub

nextSub
root—> hext /A \next / \next hext /A \next
o U U Y

Figure 5.3: An instance of a two-level skip list

and inserts the element into the main next-linked list. Optionally, the procedure also inserts
the element into the nextSub list, which is modelled using a nondeterministic choice and is
an abstraction of the insertion with certain probability in the original implementation. The
contract for add indicates that add always inserts the element into the set of elements stored
in the list. The abstract set content is defined as the set of nodes reachable from root.

The skip list implementation has three representation invariants. The first invariant
defines next as the backbone field of the data structure. The second invariant is a field
constraint on the field nextSub, which defines it as a derived field. It expresses that nextSub
points from x to some object y reachable via next fields starting from the next successor
of x. Note that the constraint for this derived field is nondeterministic, because it only
states that if x.nextSub=y, then there exists a path of length at least one from x to y along
next fields, without indicating where nextSub points. Indeed, the simplicity of the skip list
implementation stems from the fact that the position of nextSub is not uniquely given by
next; it depends not only on the history of invocations, but also on the random number
generator used to decide when to introduce new nextSub links. The ability to support such
nondeterministic constraints is what distinguishes our approach from approaches that can
only handle deterministic fields.

Our analysis successfully verifies that add preserves all invariants, including the non-
deterministic field constraint on nextSub. While doing so, the analysis takes advantage of
these invariants as well, as is usual in assume/guarantee reasoning. In this example, the
analysis is able to infer the loop invariants in add using our symbolic shape analysis.

5.1.3 Students and Schools

Our next example illustrates the power of nondeterministic field constraints. This example
contains two linked lists: one containing students and one containing schools. Each Elem
object may represent either a student or a school; students have a pointer to the school
which they attend. Both students and schools use the next backbone pointer to indicate
the next student or school in the relevant linked list. Figure 5.5 presents an example of the
data structure.

The specification and implementation of the data structure is given in Figure 5.6. The
method addStudent adds a student to the student list and associates it with a school that
is supposed to be already contained in the school data structure. The specification uses
the abstract sets ST and SC. The specification variable ST denotes all students, that is, all
Elem objects reachable from the root reference students through next fields. The specification
variable SC denotes all schools, that is, all Elem objects reachable from schools. The class
further defines several representation invariants. The first two invariants state disjointness
properties: no objects are shared between ST and SC (if an object is reachable from schools
through next fields, then it is not reachable from students through next fields, and vice-
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public final class Node {
public /«: claimedby Skiplist x/ Node next;
public /«: claimedby Skiplist */ Node nextSub;
public /x: claimedby Skiplist */ int value;

public class Skiplist

private static Node root;
Ves
public static specvar content :: objset;
private vardefs "content == {x. x # null A next* root x}";
invariant "tree [next]";
invariant "V x y. nextSub x = y — next* (next x) y";
invariant "V x. x # null A next* root x —
next x = null A (Vy.y # null = nexty # x)";
o/
public static void add(Node €)
/*: requires "e = null A e ¢ content"
modifies content
ensures "content = old content U {e}"
*/
if (root == null) {
root = e;
return;
int v = e.value;
Node sprev = root;
Node scurrent = root.nextSub;
while ((scurrent !'= null) && (scurrent.value < v)) {
sprev = scurrent; scurrent = scurrent.nextSub;
Node prev = sprev;
Node current = sprev.next;
while ((current != scurrent) && (current.value < v)) {
prev = current; current = current.next;
e.next = current; prev.next = e;
boolean nondet;
if (nondet) {
sprev .nextSub = e; e.nextSub = scurrent;
} else {
e.nextSub = null;

Figure 5.4: Skip list example
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Figure 5.5: Students data structure instance

versa). The third invariant defines field next as the backbone field of the data structure.
The fourth invariant states that if an object x is not in either ST or SC, then its next field
is set to null, and no object points to x.

The last invariant is a field constraint on the attends field: it states that for any student,
field attends points to some (undetermined) element of the SC set of schools. Note that this
goes beyond the power of previous analyses, which required the identity of the school pointed
to by the student be functionally determined by the identity of the student. The example
therefore illustrates how our analysis eliminates a key restriction of previous approaches—
certain data structures exhibit properties that the logics in previous approaches were not
expressive enough to capture. In general, previous approaches could express and verify
properties that were, in some sense, more restrictive than the properties of many data
structures that we would like to implement. Because our analysis supports properties that
express the correct level of partial information (for example, that a field points to some
undetermined object within a set of objects), it is able to successfully analyze these kinds
of data structures.

5.2 Field Constraint Analysis

This section presents the field constraint analysis algorithm and proves its soundness as well
as, for some important cases, completeness.

5.2.1 Field Constraints

We consider a logic £ over a signature ¥ = (B, C, ty) as described in Section 2.2.1 where 3
consists of unary function symbols f € Fld corresponding to fields in data structures and
constant symbols z € Var corresponding to reference variables. For simplicity we assume
that there is only one other type constant than bool and that D is the domain of that type
constant. The extension to multisorted logics is straightforward.

We use monadic second-order logic (MSOL) over trees as our working example, but in
general we only require £ to support conjunction, implication and equality reasoning. For
a formula F' in £, we denote by Fields(F') C C' the set of all fields occurring in F.

We assume that £ is decidable over some set of well-formed structures and we assume
that this set of structures is expressible by a closed formula I in £. We call I the simulation
invariant |60]. For simplicity, we consider the simulation itself to be given by the restriction
of a structure to the fields in Fields(I), i.e., we assume that there exists a decision procedure
for checking validity of implications of the form I — F where F' is a formula such that
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class Elem {
public /«: claimedby Students x/ Elem attends;
public /«: claimedby Students x/ Elem next;

class Students {
private static Elem students;
private static Elem schools;

/*:
public static specvar ST :: objset;
vardefs "ST == {x. x # null A next* students x}";
public static specvar SC :: objset;
vardefs "SC == {x. x # null A next* schools x}";

public invariant "null ¢ (ST U SC)";
public invariant "ST N SC = 0";

invariant "tree [next]";

invariant "V x y. attends x =y — (x € ST -y € SC) A
(x ¢ ST -y =null)";

invariant "V x. x ¢ (ST U SC U {null}) —
(Vy.y # null = nexty # x) A next x = null";
*/

public static void addStudent(Elem st, Elem sc)
/*: requires "st ¢ (ST USC U {null}) A sc € SC"
modifies ST
ensures "ST = old ST U {st}"

*/
{
st .attends = sc;

st.next = students;
students = st;

}
}

Figure 5.6: Students and schools example

Fields(F') C Fields(I). In our running example, MSOL, the simulation invariant I states
that the fields in Fields(I) span a forest.

We call a field f € Fields(I) a backbone field, and call a field f € FId\Fields(I) a derived
field. We refer to the decision procedure for formulae with fields in Fields(I) over the set of
structures defined by the simulation invariant I as the underlying decision procedure. Field
constraint analysis enables the use of the underlying decision procedure to reason about
nondeterministically constrained derived fields. We state invariants on the derived fields
using field constraints.

Definition 47 (Field constraints on derived fields) A field constraint FC; for a sim-
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ulation invariant I and a derived field f is a formula of the form
FC; = Yow. f(v) =w — Fy(v,w)

where Fy¢ is a formula with two free variables such that (1) Fields(F¢) C Fields(I), and (2)
F¢ is total with respect to I, i.e., I |=Vv.3y. Fr(v,w).
We call the constraint FC; deterministic if Fy is deterministic with respect to I, i.e.,

I'=EvVvwu. Felv,w) ANFf(v,u) = w=mu .
We write FC for the conjunction of FCy for all derived fields f.

Note that Definition 47 covers arbitrary constraints on a field because FCy is equivalent to
Vu. F¢(v, f(v)).

The totality condition (2) is not required for the soundness of our approach, only for
its completeness, and rules out invariants equivalent to “false”. The condition (2) does not
involve derived fields and can therefore be checked automatically using a single call to the
underlying decision procedure.

Our goal is to check validity of formulae of the form I A FC' — G, where G is a formula
with possible occurrences of derived fields. If G does not contain any derived fields then
there is nothing to do because in that case checking validity immediately reduces to the
validity problem without field constraints, as given by the following lemma.

Lemma 48 Let G be a formula such that Fields(G) C Fields(I).
Then I =G iff INFC = G.

Proof. The left-to-right direction follows immediately. For the right-to-left direction
assume that I A FC — G is valid. Let A be a structure such that A = I. By totality of all
field constraints in FC there exists a structure A’ such that A’ = I A FC and A’ differs from
A only in the interpretation of derived fields. Since Fields(G) C Fields(I) and I contains no
derived fields we have for any assignment 3 that A, 8 = G implies A, = G. =

To check validity of I A FC' — G, we therefore proceed as follows. We first obtain a
formula G’ from G by eliminating all occurrences of derived fields in G. Next, we check
validity of G’ with respect to I. In the case of a derived field f that is defined by a
deterministic field constraint, occurrences of f in G can be eliminated by flattening the
formula and substituting each term f(x) =y by Fs(x,y). However, in the general case of
nondeterministic field constraints such a substitution is only sound for negative occurrences
of derived fields, since the field constraint gives an over-approximation of the derived field.
Therefore, a more sophisticated elimination algorithm is needed.

5.2.2 Eliminating Derived Fields

Figure 5.7 presents our algorithm Elim for elimination of derived fields. Consider a derived
field f and let F' = F;. The basic idea of Elim is that we can replace an occurrence G(f(v))
of f by a new variable w that satisfies F'(v,w), yielding a stronger formula Yw. F(v,w) —
G(w). As an improvement, if G contains two occurrences f(v1) and f(v2), and if v; and
vy evaluate to the same value, then we attempt to replace f(v1) and f(vy) with the same
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S — aterm or a formula

) — terms occurring in S

) — variables free in S

S) = {t € Terms(S). FV(t) C FV(S)}
)

derived function symbols in S

proc Elim(G) = elim(G, 0)
proc elim(G: formula in negation normal form;
K : set of (variable field,variable) triples):
let T'={f(t) € Ground(G). f € Derived(G) A Derived(t) = 0}
if T # 0 do
choose f(t) e T
choose v, w fresh first-order variables
let F' = Ff
let F1 = F(v,w) AN\, fuwnerx(V =1 = w=w;)
let G1 = G[f(t):=w]
return Yv.v =t — Yw. (F1 — elim(G1, K U {(v, f,w)}))
else case G of
|  Qu.G1 where Q € {V,3}:
return Qu. elim(Gy, K)
| Gy op G2 where op € {\,V}:
return elim(Gp, K) op elim(Ga, K)

| else return G

Figure 5.7: Derived-field elimination algorithm

value. Elim implements this idea using the set K of triples (v, f,w) to record previously
assigned values for f(v). Elim runs in time O(n?) where n is the size of the formula and
produces an at most quadratically larger formula. Elim accepts formulae in negation normal
form, where all negation signs apply to atomic formulae. We generally assume that each
quantifier Qv binds a variable u that is distinct from other bound variables and distinct
from the free variables of the entire formula. The algorithm Elim is presented as acting on
first-order formulae, but is also applicable to checking validity of quantifier-free formulae
because it only introduces universal quantifiers which can be replaced by Skolem constants.
The algorithm is also applicable to multisorted logics, and, by treating sets of elements as
a new sort, to MSOL. To make the discussion simpler, we consider a deterministic version
of Elim where the nondeterministic choices of variables and terms are resolved by some
arbitrary, but fixed, linear ordering on terms. We write Elim(G) to denote the result of
applying Elim to a formula G.

The correctness of Elim is given by Theorem 49. The proof of Theorem 49 relies on the
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monotonicity of logical operations and quantifiers in negation normal form of a formula.

Theorem 49 (Soundness) The algorithm Elim is sound: if I A FC = Elim(G), then
INFC = G. What is more, I AN FC NElim(G) = G.

Proof. By induction on the first argument G of elim we prove that, for all finite K,

INFC Nelim(G,K) A /\ Fr(vi,ws)) =G
(vi, fi;wi) €K

For K = () we obtain I A FC A Elim(G) | G, as desired. In the inductive proof, the cases
when 7' = () are straightforward. The case f(t) € T uses the fact that if A, 8 = G[f(t):=w]
and A, 8 = f(t) = w, then A, = G. =

5.2.3 Completeness

We now analyze the classes of formulae G for which Elim is complete.

Definition 50 We say that algorithm Elim is complete for (FC, Q) if and only if
INFC = Gimplies I A FC = Elim(G) .

Note that we cannot hope to achieve completeness for arbitrary constraints FC. Indeed,
if we let FC = true, then FC imposes no constraint whatsoever on the derived fields, and
reasoning about the derived fields becomes reasoning about uninterpreted function symbols,
that is, reasoning in unconstrained predicate logic. Such reasoning is undecidable not only
for monadic second-order logic, but also for much weaker fragments of first-order logic [47].
Despite these general observations, we have identified two cases important in practice for
which Elim is complete (Theorem 51 and Theorem 57).

Theorem 51 expresses the fact that, in the case where all field constraints are determin-
istic, Elim is complete (and then it reduces to previous approaches [60,92] that are restricted
to the deterministic case). The proof of Theorem 51 uses the assumption that F' is total
and functional to conclude Vv w. F(v,w) — f(v) =w, and then uses an inductive argument
similar to the proof of Theorem 49.

Theorem 51 (Completeness for deterministic field constraints) Algorithm Elim is
complete for (FC,G) when each field constraint in FC is deterministic.
What is more, I AN FC A G |= Elim(G).

Proof. Consider a field constraint I’ = F;. Let A be a structure and (3 an assignment
such that A, 5 = I A FC A F(v,w). Because A, |= F(v, f(v)) and F' is deterministic by
assumption, we have A, 3 = f(v) = w. It follows that I A FC A F(v,w) |E f(v) = w. We
then prove by induction on the argument G of elim that, for all finite K,

INFCNANGA /\ fi(vi) = w; = elim(G, K)
(vi, fiswi) €K

For K = () we obtain I AFC AG = Elim(G), as desired. The inductive proof is similar to the
proof of Theorem 49. In the case f(t) € T, we consider a structure A and assignment (3 such
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that A, 8 = INFCANGANy, 1 wier Ji(vi) = wi. Consider any v,w € D and assignment e
such that: 1) 8/ = Bv — v, w — @], 2) A, Ev=1t3) A F E F(v,w)and4) A, Ev =
v; — w = w; for all (v, f,w;) € K. To show A, 3’ = elim(Gy, K U{(v, f,w)}), we consider
a modified structure A; = A[fv:=w] which is like A except that the interpretation of f at
vis w. By A, E F(v,w) we conclude A1 =TI AFC. By A, Ev=w — w=w;, we
conclude Ay, 8" = A, 1, wiex fi(vi) = w; as well. Because I A FC A F(v,w) | f(v) = w,
we conclude Ay, | f(v) = w. Because A, = v = t and Derived(t) = (), we have
A1, E v =tsofrom A, 5 E G we conclude Ay, E Gy where G1 = G[f(t):=w].
By induction hypothesis we then conclude Ay, = elim(G1, K U {(v, f,w)}. Then also
A, 5 Eelim(Gy, KU{(v, f,w)} because the result of elim does not contain f. Because v, w
were arbitrary, we conclude A, 3 |= elim(G, K). »

We next turn to completeness in the cases that admit nondeterminism of derived fields.
Theorem 57 states that our algorithm is complete for derived fields introduced by the
weakest precondition operator to a class of postconditions that includes field constraints.
This result is very important in practice. For example, when we used a previous version
of an elimination algorithm that was incomplete, we were not able to verify the skip list
example in Section 5.1.2. To formalize our completeness result, we introduce two classes of
well-behaved formulae: nice formulae and pretty nice formulae.

Definition 52 (Nice Formulae) A formula G is a nice formula if each occurrence of each
derived field f in G is of the form f(t), where t € Ground(QG).

Nice formulae generalize the notion of quantifier-free formulae by disallowing quantifiers
only for variables that are used as arguments to derived fields. Lemma 53 shows that
the elimination of derived fields from nice formulae is complete. The intuition behind
Lemma 53 is that if I A FC |= G, then for the choice of w; such that F'(v;, w;) we can find
an interpretation of the function symbol f such that f(v;) = w;, and I A FC holds, so G
holds as well, and Elim(G) evaluates to the same truth value as G.

Lemma 53 Elim is complete for (FC,G) if G is a nice formula.

Proof. Lemma 53 Let G be a nice formula. To show that I A FC |= G implies I A FC =
Elim(G), let I A FC |= G and let fi(t1),..., fn(tn) be the occurrences of derived fields in
G. By assumption, ¢y, ...,t, € Ground(G) and Elim(G) is of the form

Yoy wy. v =t — (F11 VAN
Yv9 wy. Vg = t/2 — (F12 VAN
Vg, wy. vy, = th, — (F* AGp) ...))

where ¢ differs from ¢; in that some of its subterms may be replaced by variables w; for
J <. Here F* = Fy, and

Fi = F'(v;,w;) A /\ (v; = vj = w; = wj).
J<ifi=fi
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Consider a model A of I A F'C, we show A is a models of Elim(G). Consider any assignment
0 to variables v;, w; for 1 < i < n. If any of the conditions v; = t; or Ff are false for this
assignment, then Elim(G) is true because these conditions are on the left-hand side of an
implication. Otherwise, conditions F}(v;, w;) hold, so by definition of F{, if 8(v;) = B(v;),
then B(w;) = B(w;). Therefore, for each distinct function symbol f; there exists a function
f; such that f;(B(v;)) = B(w;) for f; = fi. Because A, = F'(v;,w;) holds and each
F; is total, we can define such f; so that FC holds. Let A" = A[f; — f;]; be a model
that differs from A only in that all f; are interpreted as fj Then A’ = I because I does
not mention derived fields and A’ = FC by construction. We therefore conclude A" = G.
Because A, 8 = v; = t; and Derived(t;) = () we have A’, 3 = v; = t;. Using this fact, as
well as f;(B8(vi)) = B(w;), by induction on subformulas of Gy we conclude that G has the
same truth value as G for A" and 3, so A', 8 |E Gy. Because Gy does not contain derived
function symbols, A, 5 = Gy as well. Because 3 was arbitrary, we conclude A = Elim(G).
This completes the proof.

Remark. Note that it is not the case that a stronger statement I A FC' A G = Elim(G)
holds. For example, take FC = true, and G = f(a) = b. Then Elim(G) is equivalent to
Vw.w = b and it is not the case that I A f(a) =bEYw.w=>0. »

Definition 54 (Pretty Nice Formulae) The set of pretty nice formulae is defined in-
ductively by 1) a nice formula is pretty nice; 2) if G1 and G are pretty nice, then G1 A G
is pretty nice; 3) if G is pretty nice and v is a first-order variable, then Yv. G is pretty nice.

Pretty nice formulae therefore additionally admit universal quantification over argu-
ments of derived fields. Define function skolem as follows: 1) skolem(Vv.G) = G; 2)
skolem(G1 A G2) = skolem(Gy) A skolem(G2); and 3) skolem(G) = G if G is not of the
form VYv. G or G1 A Gs.

Lemma 55 The following observations hold:

1. each field constraint FCy is a pretty nice formula;

2. if G is a pretty nice formula, then skolem(G) is a nice formula and
H = G iff H | skolem(G) for any set of formulae H.

The next Lemma 56 shows that pretty nice formulae are closed under wlp; the lemma, follows
from the conjunctivity of the weakest precondition operator.

Lemma 56 Let ¢ be a command. If G is a nice formula, then wlp(c)(G) is a nice formula.
If G is a pretty nice formula, then wlp(c)(G) is equivalent to a pretty nice formula.

Lemmas 56, 55, 53, and 48 imply our main theorem, Theorem 57. Theorem 57 implies
that Elim is a complete technique for checking preservation (over straight-line code) of field
constraints, even if they are conjoined with additional pretty nice formulae. Elimination
is also complete for data structure operations with loops as long as the necessary loop
invariants are pretty nice.

Theorem 57 (Completeness for preservation of field constraints) Let FC be a con-
gunction of field constraints, G a pretty nice formula, and ¢ a command. Then

INFC E=wlp(c)(GAFC) iff I} Elim(wlp(c)(skolem(G A FC))).
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FCrestsup = V1 v2. nextSub(vi) = vy — next™ (v, v2)

G

wlp((e.nextSub:= root.nextSub 5 e.next:= root), FCperrsup)
=  VYuy ug. nextSuble:=nextSub(root)|(u1) = ug —

(next[e:= root])* (u1,us)

G' = skolem(Elim(GQ)) =
v1 = root — next™ (vy,wy) —
ve = v1 — nextt[e:=w1](ve, wa) A (vg = v — we = wy) —

wy = ug — (nexte:= root]) ™ (u1, us)

Figure 5.8: Elimination of derived fields from a pretty nice formula. The notation next™
denotes the irreflexive transitive closure of predicate next(v) = w.

Example 58 The example in Figure 5.8 demonstrates the elimination of derived fields
using algorithm Elim. It is inspired by the skip list example from Section 5.1.

The formula G expresses the preservation of field constraint FC,,cug, for updates of
fields next and nextSub that insert e in front of root. This formula is valid under the as-
sumption that Vv. next(v) # e holds. The algorithm Elim first replaces the inner occurrence
nextSub(root) and then the outer occurrence of nextSub. Theorem 57 implies that the re-
sulting formula skolem(Elim(G)) is valid under the same assumption as the original formula

G.

¢

Limits of completeness. In our implementation, we have successfully used Elim in the
context of MSOL, where we encode transitive closure using second-order quantification.
Unfortunately, formulae that contain transitive closure of derived fields are often not pretty
nice, leading to false alarms after the application of Elim. This behavior is to be expected
due to the undecidability of transitive closure logics over general graphs [59]. On the other
hand, unlike approaches based on axiomatizations of transitive closure in first-order logic,
our use of MSOL enables complete reasoning about reachability over the backbone fields. It
is therefore useful to be able to consider a field as part of a backbone whenever possible. For
this purpose, it can be helpful to verify conjunctions of constraints using different backbone
for different conjuncts.

5.2.4 Discussion

Verifying conjunctions of constraints. In our skip list example, the field nextSub
forms an acyclic (sub-)list. It is therefore possible to verify the conjunction of constraints
independently, with nextSub a derived field in the first conjunct (as in Section 5.1.2) but a
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backbone field in the second conjunct. Therefore, although the reasoning about transitive
closure is incomplete in the first conjunct, it is complete in the second conjunct.

Verifying programs with loop invariants. The technique described so far supports
the following approach for verifying programs annotated with loop invariants:

1. generate verification conditions using loop invariants, pre-, and postconditions;
2. eliminate derived fields from verification conditions using Elim (and skolem);

3. decide the resulting formula using a decision procedure such as MONA [64].

Field constraints specific to program point. Our completeness results also apply
when, instead of having one global field constraint, we introduce different field constraints
for each program point. This allows the developer to refine data structure invariants with
the information about the data structure specific to particular program points.

Field constraint analysis and loop invariant inference. Field constraint analysis is
not limited to verification in the presence of loop invariants. It can also be used to infer
loop invariants automatically. Our implementation described in Chapter 6 combines field
constraint analysis with domain predicate abstraction.

Recall from Section 3.4.3 that in domain predicate abstraction the abstraction of the
concrete post operator is computed by deciding validity of implications of the form:

KAC@) — wlp(c)(p(?)) .

Here K is a closed formula, C'(¥) is a conjunction of literals over abstraction predicates and
p(7) a literal over abstraction predicates. We use field constraint analysis to check validity
of these formulae by augmenting them with the appropriate simulation invariant I and field
constraints F'C' that specify the data structure invariants we want to preserve:

INFCNANKACW@) — wlp(e)(p(®)) .

The only problem arises from the fact that these additional invariants may be temporarily
violated during program execution. To ensure applicability of the analysis, we abstract
complete loop free paths in the control flow graph of the program at once. That means we
only require that simulation invariants are valid at loop cut points and hence part of the
loop invariants. This supports the programming model where violations of data structure
invariants are confined to the interior of basic blocks [92].

Amortizing invariant checking in loop invariant inference. A straightforward ap-
proach to combine field constraint analysis with abstract interpretation would do a well-
formedness check for global invariants and field constraints at every step of the fixed-point
computation, invoking a decision procedure at iteration of the fixed-point computation. The
following insight allows us to use a single well-formedness check per basic block: the loop
iwvariant synthesized in the presence of well-formedness is identical to the loop invariant
synthesized by ignoring the well-formedness check. We therefore speculatively compute the
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abstraction of the system under the assumption that both the simulation invariant and the
field constraints are preserved. After the least fixed point fp™ of the abstract system has
been computed, we generate for every loop free path ¢ with start location £ a verification
condition: I A FC A ’y(lfpf) — wlp(c)(I A FC') where lfp?E is the projection of Ifp™ to
program location £. We then use again our elimination algorithm to eliminate derived fields
and check the validity of these verification conditions. If they are all valid then the analysis
is sound and the data structure invariants are preserved. Note that this approach suc-
ceeds whenever the straightforward approach would have succeeded, so it improves analysis
performance without degrading the precision.

5.3 Further Related Work

Some decision procedures are effective at reasoning about local properties in data structures
[71,90], but are not complete for reasoning about reachability. Promising, although still
incomplete, approaches include [82] as well as [74,93|. Some reachability properties can be
reduced to first-order properties using hints in the form of ghost fields [68,90] or by using
decidable extensions of first-order logic [48]. Separation logic [96,97,105] eliminates the
need for reasoning about reachability, but instead requires techniques for reasoning about
inductive predicates |14, 94].

In general, completeness can be achieved by representing loop invariants or candidate
loop invariants by formulae in a decidable logic that supports transitive closure [4,70,92,
102,115,120,122,124]. These approaches treat decision procedure as a black box and, when
applied to MSOL, inherit the limitations of structure simulation [60]. Our work can be
viewed as a technique for lifting existing decision procedures into decision procedures that
are applicable to a larger class of structures. Therefore, it can be incorporated into all of
these previous approaches.

5.4 Conclusion

Historically, the primary challenge in shape analysis was seen to be dealing effectively with
the extremely precise and detailed consistency properties that characterize many (but by no
means all) data structures. Perhaps for this reason, many formalisms were built on logics
that supported only data structures with very precisely defined referencing relationships.
This chapter presents a technique that supports both the extreme precision of previous
approaches and the controlled reduction in the precision required to support a more general
class of data structures whose referencing relationships may be random, depend on the
history of the data structure, or vary for some other reason that places the referencing
relationships inherently beyond the ability of previous logics and analyses to characterize.
We have deployed this analysis in the context of the Jahob program analysis and verification
system. Our results show that it is effective at analyzing individual data structures. Our
analysis is further able to verify data structure interfaces. Our experience in the Hob system
[77] indicates that such interfaces allow other, more scalable analyses to verify larger-grain
data structure consistency properties whose scope spans larger regions of the program [76].

In a broader context, we view our result as taking an important step towards the prac-
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tical application of shape analysis. By supporting data structures whose backbone func-
tionally determines the referencing relationships as well as data structures with inherently
less structured referencing relationships, it promises to be able to successfully analyze the
broad range of data structures that arise in practice. Its integration within the Jahob pro-
gram analysis and verification framework shows how to leverage this analysis capability to
obtain more scalable analyses that build on the results of shape analysis to verify important
properties that involve larger regions of the program. Ideally, this research will significantly
increase our ability to effectively deploy shape analysis and other subsequently enabled
analyses on important programs of interest to the practicing software engineer.



Chapter 6

Design and Implementation of the
Bohne Verifier

In the previous chapters we developed a new symbolic shape analysis. All the presented
techniques have been implemented and evaluated in a tool called Bohne. Bohne is imple-
mented on top of the Jahob data structure verification system [66,67,125]. In the following,
we give an overview of the tool. We describe details of the analysis that are more imple-
mentation specific but important for making the analysis practical.

Contributions. The main contributions described in this chapter are summarized as
follows:

e We describe a method for synthesis of Boolean heap programs that improves the
efficiency of fixed point computation by precomputing abstract transition relations and
that can control the precision/efficiency trade-off by recomputing abstract transition
relations on demand during fixed point computation.

e We present a domain-specific quantifier instantiation technique that significantly im-
proves the running time of the analysis. Furthermore, it often eliminates the need for
the underlying decision procedures to deal with quantifiers.

e We introduce semantic caching of decision procedure queries across different fixed
point iterations and even different analyzed procedures. The caching yields substan-
tial improvements for procedures that exhibit some similarity, which opens up the
possibility of using our analysis in an interactive context.

e We describe an implementation of field constraint analysis that enables automated
reasoning in higher-order logic by approximating higher-order logic formulae with
formulae in monadic second-order logic over trees.

We used Bohne to verify a range of data structures implementations and data structure
clients without manually specified loop invariants or manually provided abstractions. Our
examples include implementations of lists (with iterators and with back pointers), two-
level skip lists, sorted lists, trees (with and without parent pointers), threaded trees as

89
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well as combinations of these data structures. An overview of our case studies is found in
Section 6.5.

6.1 Deployment in the Jahob System

The goal of the Jahob system [66,67,125] is to verify data structure consistency properties
in the context of non-trivial programs. The input language for Jahob is a subset of Java
extended with annotations written as special comments. Therefore, Jahob programs can
be compiled and executed using existing Java compilers and virtual machines. Jahob’s
specification language is similar to JML [78]: it supports preconditions, postconditions,
invariants, and specification variables. The main difference is that assertions in Jahob are
expressed in a subset of Isabelle/HOL [95].

Figure 6.1 gives an overview of Jahob’s system architecture. Our symbolic shape analysis
is implemented on top of Jahob. Bohne can be either used as a stand-alone program or
called from within Jahob. Both versions take as input the source program annotated with
the properties to verify. The stand-alone version will analyze the program and either produce
an invariant that guarantees the correctness of the annotated properties, or an error trace
if the system is incorrect. If called from within Jahob then the output of Bohne is the
source program annotated with the inferred loop invariants. The annotated program can
be either passed directly to a verification condition generator or used as input to other
program analyses. Bohne exploits Jahob’s facilities for verification condition generation
and its reasoning backend as black boxes.

Jahob’s reasoning backend integrates a diverse set of theorem provers and decision pro-
cedures which are used to automate reasoning about higher-order logic formulae. The
reasoning backend works as follows. Jahob first splits formulae into an equivalent conjunc-
tion of independent smaller formulae. Jahob then attempts to prove each of the resulting
conjuncts using a (potentially different) specialized reasoning procedure. Each specialized
reasoning procedure in Jahob decides a subset of higher-order logic formulae. Such a proce-
dure therefore first approximates a higher-order logic formula using a formula in the subset,
and then proves the resulting formula using a specialized algorithm. We will describe this
approximation by means of our field constraint analysis that we presented in Chapter 5.

6.2 Implementation of Domain Predicate Abstraction

In this section we discuss some of the algorithmic aspects of the implementation of domain
predicate abstraction in Bohne. Bohne implements the lazy nested abstraction refinement
algorithm presented in Chapter 4 with domain predicate abstraction as the underlying
analysis. The abstract post operator of the analysis is the context-sensitive Cartesian post
that we described in Section 3.4. Recall that we used the context operator « as the key
tuning parameter for the precision/efficiency trade-off of our abstract post operator. The
context operator is a monotone function that maps a set of abstract states S# to an over-
approximation of the concretization of S#. Its purpose is to provide non-local information
for computing precise local updates of abstract objects. In the following, we describe the
context operator that is implemented in Bohne and explain how it is incorporated into
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Figure 6.1: Jahob system architecture.

Bohne’s fixed point computation loop.

What makes Bohne’s fixed point computation loop special is the fact that the abstract
post is computed on-demand in each fixed point iteration. In particular, the context oper-
ator that defines the abstract post is not fixed throughout the analysis. Instead, it is pa-
rameterized by the already explored abstract states. Note that this on-demand abstraction
is directly incorporated into the lazy abstraction refinement loop presented in Chapter 4.
However, for exposition purposes we explain the idea of on-demand abstraction by means
of a simple fixed point computation loop without abstraction refinement. Therefore, in the
following we will fix a global set of abstraction predicates P that is used throughout the
analysis.

The procedure OnDemandAbstraction in Figure 6.2 sketches the fixed point computation
loop with on-demand abstraction. The input of this procedure is the program to be analyzed
and a set of abstraction predicates. The procedure constructs an abstract reachability tree
(ART), similar to the nested lazy abstraction refinement loop presented in Chapter 4. Each
node in the ART is labeled by a location and a set of abstract states. Edges between
nodes are labeled by commands of the input program. The paths in the ART correspond
to traces in the abstract program. Upon termination the procedure returns the root node
of the computed ART from which the least fixed point of the abstract post operator can be
extracted.

In each iteration of the loop in procedure OnDemandAbstraction, one unprocessed ART
edge (r1,c¢,7r2) is selected. Then the abstract post for command ¢ and abstract states
r1.states is computed and the result stored in ro. If new abstract states have been discovered
at location ro.loc then new outgoing ART edges for ry are created and added to the set
of unprocessed edges. The abstraction of command c¢ is computed on-demand. It uses a
context operator x that depends on the abstract states at location 71.loc that have been
discovered, so far. Thus, the context operator and the abstraction of a particular command
can change from one iteration of the loop to the next. However, we make sure that the
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proc OnDemandAbstraction
input
(X,D,X, L, 0y, 0p,T): program
P set of abstraction predicates
begin
let succ(r) =
let Succ =)
for all (r.loc,c,t') € T do
let r' = (loc: ', states: 1)
add an edge r = 7/
Succ:= Suce U {(r,c,r")}
done

return Succ
let ro = (loc = ly; states: T)

let Unprocessed = succ(ro)

while Unprocessed # () do
choose (11, ¢,1r3) € Unprocessed
Unprocessed:= Unprocessed — {(r1,¢,r2)}
let Context = | |, { r.states | r.loc = ry.loc }
let k = contextop(Context)
let New = CSCPost(c, k, r1.states)
let Old = | |, { r.states | r.loc = ry.loc }
r9.states:= New
if New IZ Old then

Unprocessed:= Unprocessed U succ(ra)
return ry

Figure 6.2: On-demand abstraction

context operator changes monotonically. This allows our analysis to take advantage of
precomputed abstractions from previous fixed point iterations and incrementally recompute
the abstraction when the context changes in a significant way. In the following, we show how
the context operator and the context-sensitive Cartesian post operator are implemented.

6.2.1 Implementation of Context Operator

If we take into account all available context for the abstraction of a command (i.e., the con-
text operator is the concretization function on abstract states) then we need to recompute
the abstraction in every iteration of the fixed point computation. Otherwise the analy-
sis would potentially be unsound. In order to avoid unnecessary recomputations we use
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contextop(Sf) LNS# if S C Sf then mstantz’ate(l_l Sf) else true

where instantiate(s*) < /\ A(s7 F1o? (M.t =v))t
(Av. t=v)eP

o (p) & \p/ € P.if p=yp' then {1} else {0,1}

Figure 6.3: Context instantiation and the context operator

the operator contextop to compute a new context operator for each iteration of the fixed
point computation. This context operator abstracts the context by a formula that less
likely changes from one iteration to the next, but still provides enough information to ob-
tain sufficiently precise updates. For this purpose we introduce a domain-specific quantifier
instantiation technique. We use this technique not only in connection with the context
operator, but more generally to eliminate any universal quantifier in a decision procedure
query that originates from the concretization of an abstract state. This eliminates the need
for the underlying decision procedures to deal with quantifiers.

Our context operator is specifically designed for the analysis of heap programs where
abstraction predicates are mostly unary predicates. For the analysis of heap programs, the
context operator provides the necessary information for precisely computing the effect of
destructive updates on reachability properties. We observed that the most valuable part of
the context is the information available over the objects that are involved in the destructive
update: if we have a destructive update s.f:=t, these are the objects denoted by terms s and
t. If s and t are in fact relevant for proving some property then our abstraction refinement
loop will generate corresponding domain predicates (Av.s = v) and (Av.t = v). We call
domain predicates of this form singleton predicates. Our context operator instantiates the
universally quantified formulae that result from the concretization of abstract states to the
objects that satisfy such singleton predicates.

Figure 6.3 defines the function contextop. Let S# be the set of already explored abstract
states in the current fixed point iteration. Then contextop(SSéé ) maps all abstract states that
are processed in this iteration to one fixed formula. This fixed formula is computed by the
function instantiate. Recall Definition 32: the function contextop(SSéé ) is a context operator
if (1) instantiate is monotone and (2) for every abstract state s* the formula instantiate(s7)
is entailed by the concretization of s#.

Function instantiate uses singleton predicates to instantiate an abstract state s to a
quantifier free formula (assuming all domain predicates itself are quantifier free). For every
singleton predicate p that denotes the object given by the evaluation of some term t it
computes the meet of s# with abstract object o™ (p), i.e., the set of all abstract objects in
s™ that have a positive occurrence of predicate p. This set of abstract objects is concretized
and the resulting domain formula applied to ¢. The final formula is represents finitely many
instantiations of v({s#}) with the terms ¢ that occur in singleton predicates. Thus, it is easy
to see that instantiate is monotone and that for a given abstract state s instantiate(s?)
is an abstraction of v({s#}).
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Proposition 59 For any set of abstract states S# the function contextop(S#) is a context
operator.

An important property of our fixed point computation loop is that the computed context
operators change monotonically from one iteration to the next.

Proposition 60 The function contextop is monotone, i.e., let 51‘7E and Sf be sets of ab-
stract states with Sfﬁ cC S#. Then for all sets of abstract states S¥ :

contextop(Sfé)(S#) = contextop(Sf)(S#) .

Proposition 60 follows immediately from the monotonicity of joins and monotonicity of
function instantiate.

6.2.2 Implementation of Abstract Post Operator

We now describe the implementation of the context-sensitive Cartesian post operator.
Bohne represents sets of abstract states as sets of ordered binary decision diagrams (OB-
DDs) |27]. This representation is not canonical. While it is in principle possible to canoni-
cally represent sets of abstract states (e.g., by using nondeterministic BDDs [43]), in practice
the number of explored abstract states is rather small and there exist many efficient and
mature BDD implementations. In the following, we denote by the symbols =, A, and V
negation, conjunction and disjunction of Boolean functions represented as OBDDs.

Figure 6.4 sketches the implementation of the context-sensitive Cartesian post operator
in Bohne. Procedure CSCPost takes a command, a context-operator and a set of abstract
states as input and returns a set of abstract states. The implementation exploits the repre-
sentation of abstract states as BDDs. First it precomputes an abstract transition relation
¢ . This abstract transition relation represents the context-sensitive Cartesian post for the
given command c in terms of abstract objects over primed and unprimed abstraction predi-
cates. The computation of the abstract transition relation relies on a function AbstractWLP
that computes an under-approximation of the weakest domain preconditions of abstraction
predicates, as described in Section 3.4.3.

Once the abstract transition relation has been computed, procedure CSCPost computes
the relational product of ¢# and each given abstract state. The relational product is a
standard operation provided by many BDD packages. It conjoins an abstract state with
the abstract transition relation, projects the unprimed predicates, and renames primed
to unprimed predicates in the resulting abstract state. Note that the abstract transition
relation only depends on command ¢ and the context formula K. This allows us to cache
abstract transition relations and avoid their recomputation in later fixed point iterations if
K is unchanged.

6.2.3 Semantic Caching

Our context operator does not prevent that the abstraction of a given command has to
be recomputed occasionally in later fixed point iterations. Whenever we recompute the
abstraction, we would like to do this incrementally and reuse the results from previous fixed
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proc CSCPost
input
c: Com

K: context operator
S#: AbsStates

output
S#': AbsStates
begin
let K = k(S%)
let ¢ =T

if ¢ is precomputed for (¢, K) then ¢ :=lookup(c, K)
else foreach p € P do

p' A =AbstractWLP(¢, K, —p) V
cti=c* A
—p’ A =AbstractWLP(c, K, p)
S#' =)
foreach s# ¢ S# do
let s#' = RelationalProduct(s#, c#)
S# .= 5# ) {s*}
return 5%’
end

Figure 6.4: Implementation of context-sensitive Cartesian post

point iterations. We do this on the level of decision procedure calls by caching the queries
and the results of the calls. Syntactic caching of decision procedure queries has been used
before (e.g. [6] mentions its use in the SLAM system [7]). The problem with simple syntactic
caching of formulae in our approach is that the context formulae are passed to the decision
procedure as part of the queries, so a simple syntactic approach is ineffective. However,
we know that the context and, thus, the context formulae change monotonically from one
iteration to the next. We therefore cache formulae by keeping track of the partial order
on the context. Since context formulae occur in the antecedents of the queries, this allows
us to reuse negative results of entailment checks from previous fixed point iterations. This
method is effective because in practice the number of invalid entailments that are checked
for computing the abstraction is significantly higher than the number of valid ones.
Furthermore, formulae are cached up to alpha equivalence. Since the cache is self-
contained, this enables caching results of decision procedure calls not only across different
fixed point iterations for a single run of the analysis, but even across different runs of the
analysis. This yields substantial improvements for the analysis of programs that exhibit
some similarity, which opens up the possibility of using our analysis in an interactive con-
text. For example, we verified a procedure inserting an element into a sorted list (see
SortedList.add in Figure 6.1) and repeated the analysis without erasing the cache on a mod-
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ified version of the same procedure where two commuting assignments were exchanged.
About 90% of the results to decision procedure calls were found in the cache, causing that
running time went down from 10s to 3s.

6.2.4 Further Optimizations

The main challenge for making our symbolic shape analysis practical is to reduce the num-
ber of queries to the underlying decision procedure. We have to deal with a general problem
of predicate abstraction based approaches, namely that the number of queries grows expo-
nentially with the number of predicates. In the following, we describe the techniques that
we use to solve this problem.

Incremental Abstraction and Predicate Abstraction Heuristics. The context-sen-
sitive Cartesian post reduces the problem of abstracting a concrete command ¢ to the
problem of checking entailments between conjunctions of domain predicates and weakest
liberal preconditions of domain predicates. There are well-known techniques in predicate
abstraction (see e.g. [7,45]) that prevent an exponential explosion of the number of decision
procedure calls when computing the abstraction of such formulae. We use these techniques
in combination with new methods that we developed for our generalized setting. First,
Bohne only considers conjunctions up to a fixed length which gives a polynomial bound
on the number of decision procedure calls. Second, Bohne incrementally computes the
abstraction starting from conjunctions of length one: whenever some conjunction C implies
a formula then so do all conjunctions subsumed by C. Finally, we use syntactic heuristics to
determine whether a predicate is relevant for the abstraction of a formula, e.g., by comparing
the free variables occurring in the predicate and the abstracted formula.

Topological Order on Locations. The number of recomputations of abstract transi-
tions also depends on the strategy used for exploring unprocessed ART edges in the fixed
point computation because it influences how often the context changes. For example, if
we have a sequence of two loops in the control flow graph then one should first explore
all abstract states reachable by following the first loop before one starts the abstraction of
the second loop; otherwise the context of the second loop changes more often. To avoid
this problem we store unprocessed edges in the reachability graph in a priority queue. The
priority is defined by the topological order of the associated program locations in the DAG
that results from removing loop back-edges from the control-flow graph. We then choose
unprocessed edges with minimal priority to ensure that they are explored in the proper
order.

6.3 Implementation of Field Constraint Analysis

This section presents one of the paths through Jahob’s reasoning back end to one of the
external decision procedures. We describe the translation from an expressive subset of
Isabelle/HOL formulae (the input language) to monadic second-order logic over trees (the
output language of the translation). Our field constraint analysis is an integral part of this
translation. The soundness of the translation is given by the condition that, if the output
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formula is valid, so is the input formula. Validity of the output formula is automatically
checked using MONA [63].

The input language allows constructs such as lambda abstraction, sets and set compre-
hensions, higher-order quantifiers, conditional expressions, and cardinality operators. The
output language supports atomic formulae build from set expressions over uninterpreted
sets, equalities over terms build from unary function symbols that contribute to the tree
backbone as well as first and second-order quantification.

6.3.1 Splitting into Sequents

The proof obligations generated by Jahob’s verification condition generator can be repre-
sented as conjunctions of multiple statements, because they represent all possible paths in
the verified procedure, the validity of multiple invariants and postcondition conjuncts, and
the absence of run-time errors at multiple program points. The entailment tests generated
by Bohne often have a similar conjunctive structure. The first step in the translation splits
formulae into these individual conjuncts to prove each of them independently. This pro-
cess does not lose completeness, yet it improves the effectiveness of the theorem proving
process because the resulting formulae are smaller than the starting formula. Moreover,
splitting enables Jahob to prove different conjuncts using different techniques, allowing the
translation described in this section to be combined with other translations |26, 69, 125].
In particular, Jahob has an inbuilt syntactic prover that can discharge many simple proof
obligations immediately. Thus, only a small number of split proof obligations is actually
passed on to an external prover.

After splitting, the resulting formulae have the form of sequents A1 A... A A4, = G.
We call Aq,..., A, the assumptions and G the goal of the sequent. The assumptions
typically encode a path in the procedure being verified, the precondition, class invariants
that hold at procedure entry, as well as properties of our semantic model of memory and
the relationships between sets representing Java types.

6.3.2 Translation to Monadic Second-order Logic

After splitting of proof obligations the translation determines the set of backbone fields
and derived fields for our field constraint analysis. The backbone fields are the successor
functions in the trees that interpret formulae in the output language. The translation
searches for the special assumption of the form

tree [f1,..., fnl

in the proof obligation. This assumption states that we are considering structures that form
a forest of trees with successor functions f1 to f,. Formally, the semantics of tree is defined
as follows:

tree [fl, .. ,fn] oot let f = ()\Ul V9. V1§i§n fz ’U1:’U2) in
Mvw. fowA ffwv— v =null)A
Mvwu. fouN fouAv#w—u=nul)A

Algi;éjgn(\v/vw'fiv =wA fjv=w—w=null) .
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Next the translation searches for assumptions that are field constraints, i.e., assumptions
that have the special syntactic form

Yow. fo=w— F

where F' only refers to backbone fields. A field constraint of this forms determines that f is
a derived field. If some field in the input formula neither occurs in the tree assumption nor
in the antecedent of a field constraint then the translation adds a trivial field constraint of
the form

Yow. fv=w — true .

After each field in the input formula has been determined to be either a backbone or
derived field, the translation applies the elimination algorithm for derived fields presented
in Chapter 5. The outcome is a formula that is potentially stronger than the input formula
but only refers to backbone fields. However, the resulting formula still contains many
constructs that are not supported by the output language. Therefore, the next step is to
apply a set of rewrite and approximation rules that eliminate these constructs. We describe
these rules in the following.

Definition Substitution and Function Unfolding. When one of the assumptions is a
variable definition, the translation substitutes its content in the rest of the formula (using
rules in Figure 6.5). This approach supports definitions of variables that have complex and
higher-order types, but are used simply as shorthands, such as tree and the transitive closure
operator rtrancl _pt defined in Section 2.2.1. When the definitions of variables are lambda
abstractions, the substitution enables the subsequent beta reduction. In addition to beta
reduction, this phase also expands the equality between functions using the extensionality
rule (with f = g becoming Vx.fz = gx).

Flattening. To simplify further rewriting the next step is to flatten the formula. The
rules for flattening equalities are given in Figure 6.6. Similar rules apply to other pred-
icate symbols. Flattening introduces fresh quantified variables, which could in principle
create additional quantifier alternations, making the proof process more difficult. However,
each variable can be introduced using either an existential or universal quantifier because
Jv.v=e A F' is equivalent to Vv.v=e — F. Our translation therefore chooses the quantifier
kind that corresponds to the most recently bound variable in a given scope (taking into
account the polarity), preserving the number of quantifier alternations. The starting quan-
tifier kind at the top level of the formula is V, ensuring that freshly introduced variables for
quantifier-free expressions become Skolem constants.

Cardinality Constraints. Constant cardinality constraints express natural generaliza-
tions of quantifiers. For example, the statement “there exists at most one element satisfying
predicate P” is given by card({z. Pz}) > 1. Our translation reduces constant cardinality
constraints using the rules in Figure 6.7.
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Var-Eq
(Hl/\---/\Hi_l/\’Ul=Ug/\Hi+1/\--~/\Hn)=>G

((Hl AN~ NH;_1 /\Hi_|_1 AN /\Hn) — G)[Ultzvg]

Var-True
(H1/\"'/\Hi_l/\v/\Hi+1/\--~/\Hn):>G

((H1 AN NHi g NHigg A2 A Hn) — G) [UZ: true]

Var-False
(H1/\--~/\Hi_1/\—|’U/\Hi_|_1/\--~/\Hn):>G

((H1 AN ANHi g NHigqg Ao A Hn) — G) [’UIZ false]

Var-Def
(H1/\--~/\Hi_1/\U:€/\Hi_|_1/\"'/\Hn):>G

(HyA-ANHisg NHigg A+~ A Hy) = G) [v:=¢]

v ¢ FV(e)

Figure 6.5: Rules for definition substitution

Function-argument Equality-Normalization
vo:f(el,....,ei_1,t,ei+1,---,ek) t=wv
Fv.v=tAvg= f(€1,....,€-1,0V,€i41, " ,€k) v=t

Equality-Unfolding
t1 =t
Jv.v=t1 ANv ="ty

Figure 6.6: Rewriting rules for flattening complex expressions below equalities. Term ¢
denotes a term which is not a variable.

Set Expressions. Both our input and output language support set expressions. How-
ever, in the output language set expressions are exclusively built from uninterpreted sets.
We therefore need to eliminate set comprehensions and finite set enumerations. Set com-
prehensions are useful, e.g., for defining specification variables that model the content of
data structures. Figure 6.8 shows the rules for eliminating these constructs from a flattened
formula.

Conditional Expressions. Conditional expressions are used to express function updates
during computation of weakest liberal preconditions. Conditional expressions can be elimi-
nated using case analysis (Figure 6.9). Flattening ensures that this case analysis duplicates
only variables and not complex expressions, keeping the translated formula polynomial.
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Card-Constraint-Eq Card-Constraint-Leq
card(S) =k card(S) < k
card(S) < k Acard(S) > k Juy, ..., 0.8 C{ur,..., v}

Card-Constraint-Geq
card(S) > k

v, ..., vg. {Ul,...,vk}QS/\ /\ 'Ui;évj
1<i<j<k

Figure 6.7: Rules for constant cardinality constraints

Comprehension-Eq Comprehension-Lincl Comprehension-Rincl
S ={v.F} {v.F}CS S C{v.F}
Yv.v €S« F Yo.F —veS Yv.v e S — F
Comprehension-Elem Enumeration-Eq Enumeration-Lincl
w € {v. F} S={v,...,vn} {v1,...,9,} C S
Flv:=w] Yv.v € S « \/ v = v;
1<i<n Yv. \/ v=v | 2veES
1<i<n
Enumeration-Rincl Enumeration-Elem
S C{vy,...,vn} w € {v1,...,vn}
Yv.v € S — \/vzvi \/vzvi
1<i<n 1<i<n

Figure 6.8: Rules for set comprehensions and finite set enumerations

Approximation. Our translation maps higher-order formulae into monadic-second order
logic over trees, so there are constructs that it cannot translate exactly. Examples include
arithmetic, non-monadic relations, and symbolic cardinality constraints (as in BAPA [69]).
Our translation approximates such subformulae in a sound way by replacing them with
fresh sets or Boolean variables. If the unsupported subformula F' contains free variables
then we replace the formula by the formula v € S where v is the first free variable occuring
in F and S is a fresh set variable. The variable S is bound in the same scope as v. These
replacements also ensure that uninterpreted unary predicate symbols in the input formula
are translated into monadic sets. If the unsupported subformula is closed then we replace
it by a fresh Boolean variable. In both cases, multiple occurrences of a replaced subformula
in the same scope are replaced by the same fresh variable.

Another problem is caused by the fact that the input language is multi-sorted while the
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Conditional
v1 = if vy then v3 else vy

(UQ Nvp = ’1)3) V (‘!’Ug Nvp = ’1)4)

Figure 6.9: Rule for conditional expressions

output language is unsorted. Our translation only keeps subformulae that exclusively use the
type constants bool and obj. Any subformula that uses other type constants is approximated
using the same technique as described above. The result of the approximation is a stronger
formula whose validity implies the validity of the original formula.

6.3.3 Structure Simulation with MONA

After translation of the input formula into monadic second-order logic over trees, we give
the translated formula to the MONA decision procedure. MONA supports different modes
with different semantic models such as weak monadic second-order logic with one successor
(WS1S) and weak monadic second-order logic with two successors (WS2S). Unfortunately
none of these modes corresponds one-to-one to the semantic model in Jahob. In particular,
the assumption tree[fq,..., f,] only states that there acyclicity and sharing-freeness for
objects that are different from null. In fact, in Jahob we assume that for all fields f we
have f null = null. On the other hand, the interpretations of successor relations in MONA
are always acyclic and sharing-free. We therefore use structure simulation [60]| to encode
formulae interpreted in logical structures that satisfy Jahob’s tree assumption in terms of
formulae in MONA. For performance reasons we use different modes depending on the
number of backbone fields occuring in the proof obligation.

Simulating Lists. If the proof obligation contains a tree assumption tree[f] over one
backbone field then we use MONA’s m21-str mode. In this mode MONA interprets for-
mulae over finite strings, or equivalently, over the natural numbers from 0 to some constant
n; see 63, Section 3.1] for details. Structures that satisfy the assumption tree [f] form a (fi-
nite) forest of sharing free lists over field f that are terminated by a unique object null. The
object null has a self cycle with respect to field f. We encode such structures by simulating
the field f in terms of the successor function on the natural numbers. In order to separate
the individual lists we define a subset $NullSet of the natural numbers as terminals. This
means that the natural numbers between two consecutive elements in the set $NullSet
form one list in the original structure. All predicate symbols such as equality on individ-
ual objects, equality on sets, and set operations correspond to the respective operations in
MONA, modulo equivalence of terminals. Figure 6.10 shows an example of a sequent with
a tree assumption over one backbone field and the final output of the translation. MONA
proves that the formula resulting from the translation is valid.

Simulating Trees. If the proof obligation contains a tree assumptions with more than
one backbone field then we use MONA’s ws2s mode. In this mode MONA interprets
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Proof obligation:

tree[f] A x #£null A ffzax A =(ffzy) A
Mvw.bv=w — fw=vV w=nulA (v=nulVv Vu fu#v)))
= (Aw. (if v =z then y else bv) = w)*y 2

MONA input file:

m2l-str;
var2 $NullSet where exl v : v in $NullSet & (alll v’ : v’ "= v + 1);
pred null(varl v) = v in $NullSet;
pred $Eqi(varl vi, v2) = null(v2) & null(vl) | vl = v2;
pred $Elem(varl vil, var2 S) = exl v2 : v2 in S & $Eql(vl, v2);
pred $Sub(var2 S1, S2) alll vl : $Elem(vi, S1) => $Elem(vl, S2);
pred $Eq2(var2 S1, S2) $Sub(S2, S1) & $Sub(S1, S2);
pred $Union(var2 S1, S2, S3) alll vl : $Elem(vi, S2) | $Elem(vl, S1) <=> $Elem(vl, S3);
pred $Inter(var2 S1, S2, S3) alll vl : $Elem(vl, S2) & $Elem(vl, S1) <=> $Elem(vl, S3);
pred $Diff(var2 S1, S2, S3) = alll vl : $Elem(vi, S1) & ~ $Elem(vl, S2) <=> $Elem(vl, S3);
varl x
varl y
varl z
pred f(varl vi, v2)
pred b(varl v, w) =
~ null(x) &
(all2 S : $Elem(z, S) & (alll v : $Elem(v, S) =>

(exl w : $Elem(w, S) & f£f(v, w))) => $Elem(x, S)) &
~ (all2 S : $Elem(z, S) & (alll v : $Elem(v, S) =>

(ex1 w : $Elem(w, S) & £(v, w))) => $Elem(y, S)) &

= null(v2) & null(vl) | $Eqi(vi + 1, v2) & " null(vl);
(f(w, v) | (null(v) | ~ (ext u : f(u, v))) & null(w));

=>
(all2 S : $Elem(y, S) &
(alll v, w :
exl ¢ : ($Elem(v, S) & (- $Eqi(y, v) & $Eqi(c, w) |
$Eql(y, v) & $Eqi(x, w)) => $Elem(w, S)) & b(v, c)) => $Elem(z, S));

Figure 6.10: Translation of a valid sequent with a tree assumption over one backbone field
and a field constraint over a derived field

formulae over binary trees; see [63, Section 7]. We can encode forests of trees with finitely
many successor relations into binary trees. In order to simplify such an encoding MONA
provides recursive type declarations. We simulate structures satisfying assumptions of the
form tree[fi,..., fn] by declaring a recursive type that represents lists of trees of arity n.
Each entry of such a list corresponds to one root object of a tree in the simulated structure.
Similar to the encoding of lists we define a unary predicate null that holds for all leaf nodes
of trees in the list. All predicate symbols are again interpreted modulo equivalence of leaf
nodes. Figure 6.11 shows an example of a sequent with a tree assumption for binary trees
and the result of our translation.

6.3.4 Optimizations

Monadic-second order logic is among the most expressive decidable logics. Thus, the de-
cision problem has high complexity. We developed a set of formula transformations that
significantly decreases space consumption and running time of MONA. Without these trans-
formations MONA would often run out of space.
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Proof obligation:

tree[l,7] A reach (lz)y A reach (rz)y A

reach = rtrancl_pt (Aww.lv=wVrv=w) = y=null

MONA input file:

ws2s;
type Bb = Bb_null, Bb_node(l: Bb, r: Bb);
type HEAP = Empty, BbTree(bbroot: Bb, $next: HEAP);
universe $U: HEAP;
tree [$U] $Heap where tree_root($Heap) = root ($U);
pred null(varl v) = variant(v, $Heap, Bb, Bb_null) & v in $Heap;
pred $Eqi(varl vi, v2) = null(v2) & null(vl) | vi = v2;
pred $Elem(varl vi, var2 S) = exl v2 : v2 in S & $Eql(vi, v2);
pred $Sub(var2 S1, S2) = alll vl : $Elem(vl, S1) => $Elem(vl, S2);
pred $Eq2(var2 S1, S2) = $Sub(S2, S1) & $Sub(S1, S2);
pred $Union(var2 S1, S2, S3) alll vl : $Elem(vi, S2) | $Elem(vi, S1) <=> $Elem(vi, S3);
pred $Inter(var2 S1, S2, S3) alll vl : $Elem(vl, S2) & $Elem(vl, S1) <=> $Elem(vl, S3);
pred $Diff(var2 S1, S2, S3) = alll vl : $Elem(vi, S1) & ~ $Elem(vl, S2) <=> $Elem(vi, S3);
varl [$U] y where type(y, Bb) & y in $Heap;
varl [$U] z where type(z, Bb) & z in $Heap;
pred r(varl vi, v2) =

type(vl, Bb) & type(v2, Bb) & vl in $Heap & v2 in $Heap & $Eql(v2, succ(vl, Bb, Bb_node, r)) |

null(vl) & null(v2);
pred 1l(varl vi, v2) =

type(vl, Bb) & type(v2, Bb) & vl in $Heap & v2 in $Heap & $Eql(v2, succ(vl, Bb, Bb_node, 1)) |

null(vl) & null(v2);
(all2 S : (exl v : v in $Heap & type(v, Bb) & $Elem(v, S) & r(x, v)) &

(alll w : ((exl u : u in $Heap & type(u, Bb) & $Elem(u, S) & 1(u, w)) |
(ex1 u : u in $Heap & type(u, Bb) & $Elem(u, S) & r(u, w))) &
w in $Heap & type(w, Bb) => $Elem(w, S)) & S sub $Heap => $Elem(y, S)) &
(all2 S : (exl v : v in $Heap & type(v, Bb) & $Elem(v, S) & 1(x, v)) &
(alll w : ((exl u : u in $Heap & type(u, Bb) & $Elem(u, S) & 1(u, w)) |
(ex1 u : u in $Heap & type(u, Bb) & $Elem(u, S) & r(u, w))) &
w in $Heap & type(w, Bb) => $Elem(w, S)) & S sub $Heap => $Elem(y, S))

=> null(y);

Figure 6.11: Translation of a valid sequent with tree assumption over two backbone fields

Validity Preserving Transformations. The problem with MONA is not so much that
the complexity of monadic second-order logic is non-elementary. In practice, the number
of quantifier alternations in proof obligations is rather small. Instead, the problem is that
the size of the constructed automata can be exponential in the number of variables that
occur in the same scope of a quantifier. Unfortunately, MONA itself does not implement
any strong optimizations on the formula representation. We therefore implemented several
validity preserving transformation in Jahob that optimize the formula representation for
automata construction in MONA. The first transformation is to push quantifiers inside the
formula as much as possible, so that quantified subformulae are minimized. Next, we try
to eliminate quantifiers of the form Vv.v=e — F and Jv.v=e A F' by replacing them with
F[v = e]. This means that the formula is unflattened and thus the size of the formula is
increased. However, our experience is that the effect of a decreased number of quantified
variables far outweighs the effect of increased formula size.
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Formula Slicing. We faced the problem that the formulae passed to the decision proce-
dure contain many assumptions coming from the guards of transitions and the background
formula. Often these assumptions are irrelevant for proving a particular goal. However,
they introduce additional free variables to the proof obligation. This significantly increases
the running time of MONA. Using domain-specific knowledge, we developed heuristics for
eliminating irrelevant assumptions from proof obligations. Our experience suggest that this
is one of the most valuable techniques that are needed to make the deployment of expensive
decision procedures such as MONA practical.

6.4 Implementation of Nested Abstraction Refinement

Our tool uses a few simple heuristics to guess an initial set of domain predicates from the
input program and its specification. In particular, Bohne uses a simple syntactic analysis
that computes for each program location a set of singleton domain predicates that denote
object-valued program variables that are relevant for this program point. For this purpose
the analysis propagates back weakest liberal preconditions from the program’s error location
and extracts for each program location the set of object-valued program variables occuring
in the computed weakest liberal precondition. The propagation is continued until a fixed
point is reached and the set of generated domain predicates stabilizes at each program loca-
tion. We infer any additional domain predicates by using our nested abstraction refinement
procedure presented in Chapter 4.

6.4.1 Domain Predicate Extraction

We now describe the predicate extraction function extrPreds that is used in the nested
abstraction refinement algorithm to extract new predicates from spurious error traces. For
a formula F, extrPreds(F') skolemizes top-level universal quantifiers in F' and extracts all
atomic propositions in the resulting formula. We obtain the new domain predicates by
lambda abstraction over the introduced Skolem constants in the atomic propositions.

6.4.2 Reachability Predicates

Our predicate extraction function syntactically extracts new predicates from weakest liberal
preconditions of finite paths in the analyzed program. Thus, using this approach we cannot
infer new reachability predicates if such predicates do not already occur in the program’s
specification. We therefore use an additional widening technique to infer new reachability
predicates from the domain predicates that are extracted from weakest liberal preconditions.
For instance, if the predicate extraction function extracts a domain predicate (Av. f (f z) =
v) then Bohne will also add the widening of this predicate (Av. f* xv).

Furthermore, if a reachability predicate occurs in the specification of the program then
computing weakest liberal preconditions will often introduce field updates in fields that
occur below the transitive closure operator. It is useful to split such predicates into simpler
predicates in order to obtain a more fine grained abstraction. For instance, Bohne uses
the following equivalence to rewrite field updates below reflexive transitive closure of single
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‘ benchmark ‘ checked properties ‘ DPp ‘ time (in s) ‘ CR ‘
List.traverse MS, AC, SF MONA 0.11| no
List.create MS, AC, SF MONA 0.78 | yes
List.getLast MS, AC, SF, PC MONA 0.53 | no
List.contains MS, AC, SF, PC MONA 0.53 | no
List.insertBefore | MS, AC, SF MONA 2.48 | yes
List.append MS, AC, SF MONA 8.95 | no
List.filter MS, AC, SF MONA 5.31 | yes
List.partition MS, AC, SF MONA 149.16 | yes
List.reverse MS, AC, SF MONA 5.52 | yes
DLL.addLast MS, AC, SF, DL, PC MONA 2.05 | yes
SortedList.add MS, AC, SF, SO, PC MONA, Z3 9.88 | no
SkipList.add MS, AC, SF, PC MONA 10.82 | yes
Tree.add MS, AC, SF, PC MONA 18.51 | no
ParentTree.add MS, AC, SF, PL, PC MONA 20.48 | no
ThreadedTree.add | MS, AC, SF, TH, SO, PC | MONA, Z3 445.93 | no
Client.move MS, CS 73 3.11| no
Client.createMove | MS, CS, PC 73 41.07 | yes
Client.partition MS, CS, FC, PC 73 108.15 | no

Properties: MS = memory safety, CS = call safety, AC = acyclic, SF = sharing free, DL = doubly
linked, PL = parent linked, TH = threaded, SO = sorted, FC = frame condition, PC = post
condition

Table 6.1: Summary of experiments. Column DP lists the used decision procedures. Col-
umn CR indicates whether Cartesian refinement was required to successfully verify the
corresponding program.

fields:

(flxz=y])"vw = rtrancl_pt (Avy va. fvi=v9 Avi#z)vW V
ffvx Artrancl_pt (Avg ve. for=ve Avi#£x)yw .
Therefore, such formulae introduce three new predicates. Note that this kind of rewrit-
ing does not violate the admissibility criterion on the predicate extraction function that
is formulated in Definition 43 of Section 4.4, which means that our predicate extraction
procedure guarantees progress of abstraction refinement.

6.5 Case Studies

We now provide the details of the case studies that we used to evaluate our approach.

6.5.1 Overview

We applied Bohne to verify operations on a diverse set of data structures and properties.
Our case studies cover data structures such as (sorted) singly-linked lists, doubly-linked
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lists, two-level skip lists, trees, trees with parent pointers, and threaded trees. The verified
properties include:

e absence of runtime errors such as null dereferences,

e complex data structure consistency properties such as preservation of the tree struc-
ture and sortedness

e procedure contracts stating, e.g., how the set of elements stored in a data structure is
affected by the procedure, and

e full functional correctness of individual procedures.

In particular, we verified procedure contracts and preservation of representation invariants
such as sortedness and the in-order traversal invariant for operations on threaded binary
trees.

We further performed modular verification of data structure clients that use the interface
for sets with iterators from the java.util library [110]. For these benchmarks we annotated
procedure contracts to all operations in the interfaces Set and Iterator. We then used
assume-guarantee reasoning inside Bohne to infer invariants for the client. The inferred
invariants ensured that all preconditions of data structure operations are satisfied at call
sites in the client. Furthermore we verified functional correctness properties of the client
code. All benchmarks can be found in the Jahob distribution that is provided on the Jahob
project web page [67].

Table 6.1 shows a summary for a collection of benchmarks running on a 2.66 GHz
Intel Core2 with 3 GB memory using one core. The system is implemented in Objective
Caml and compiled to native code. All the listed properties have been verified in a single
run of the analysis. We used different decision procedures for verifying the data structure
implementations and the data structure clients. We used mainly MONA [63] for reasoning
about data structure implementations and the SMT solver Z3 [41] for proving sortedness
properties. For the data structure clients we used Z3 only.

Note that our examples are not limited to stand-alone programs that build and then
traverse their own data structures. Instead, our examples verify procedures with non-trivial
preconditions, postconditions and representation invariants that can be part of arbitrarily
large code.

Further details of the benchmarks are given in Tables 6.2 and 6.3. Table 6.3 gives details
on the calls to the validity checker and its underlying decision procedures. One immediately
observes that the calls to the validity checker are the main bottleneck of the analysis.
On average, 98% of the total running time is spent in the validity checker. The reasons
for the high running times are diverse. First, communication with decision procedures is
currently implemented via files which is slower than passing data directly. Second, we
use expensive decision procedures such as MONA. In some of the examples individual
calls to these decision procedures can take up to several seconds. Running times can be
improved by incorporating more efficient decision procedures for reasoning about specific
data structures [19,75,121].
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benchmark #appl. of | #ref. final ART #predicates
abs. post | steps | size | depth | st./loc. | total | avrg. | max.
List.traverse 3 0 4 4 1.00 4 2.8 3
List.create 11 6 6 6 1.67 11 6.7 9
List.getLast 7 1 6 6 2.00 7| 6.0 7
List.contains 5 1 5 ) 2.00 6 5.2 6
List.insert Before 8 2 5 5 13.50 10 7.4 8
List.append ) 1 4 4 1.50 13| 8.2 11
List.filter 31 5 14 5 2.50 12 7.1 10
List.partition 62 21| 40 7 3.50 15| 10.8 12
List.reverse 9 3 5 5 2.00 11 7.0 9
DLL.addLast 7 3 5 5 1.50 8 7.2 8
SortedList.add 21 3| 13 5 1.33 9 6.2 9
Skiplist.add 19 4| 16 6 3.67 12 9.6 11
Tree.add 11 0] 12 5 3.00 11| 10.5 11
ParentTree.add 11 0 12 5 3.00 11| 10.5 11
ThreadedTree.add 151 4| 82 6 4.33 17 7.8 17
Client.move 8 0 9 9 1.00 16 8.4 11
Client.createMove 46 6| 21 18 1.00 33| 10.1 14
Client.partition 118 18| 24 19 1.00 32| 11.9 15

Table 6.2: Analysis details for experiments. The columns list the number of applications of
the abstract post, the number of refinement steps, the size and depth of the final ART that
represents the computed fixed point, the average number of abstract states per location in
the fixed point, the total number of predicates, and the average and maximal number of
predicates in a single ART node.

6.5.2 Impact of Context-sensitive Abstraction and Optimizations

We also examined the impact of context-sensitive abstraction and our optimizations such
as context instantiation on the analysis. The results are shown in Table 6.4. As expected,
running times for context-sensitive abstraction without any of the optimizations enabled
are significantly higher (2-21 times) than with our optimizations. In particular, without
context instantiation abstract transition relations have to be recomputed many times and
caching of decision procedure calls is less effective. If context-sensitive abstraction is disabled
completely the analysis becomes less precise, but also in many cases slower. Most likely the
less precise analysis needs to explore a larger part of the abstract state space.

6.5.3 Comparison with TVLA

In order to estimate the costs and gains of an increased degree of automation, we compared
Bohne to TVLA [81], the implementation of three-valued shape analysis [108].

We used TVLA version 3.0 alpha [21] for our comparison. We ran both tools on a set
of singly-linked list benchmarks. For each example program we used the same precondition
in both tools: heaps that form a forest of acyclic, sharing free lists. For TVLA we provided
preconditions in the form of sets of three-valued logical structures. Bohne automatically
computed the abstraction of preconditions given as logical formulae. We did not use finite
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benchmark #VC calls rel. time spent in VC | time/DP call

tota1| DP| cache tota1| abstr.| refine. avrg.| max.
List.traverse 411 20 |51.22% | 92.59% | 92.59% | 0.00% | 0.005| 0.012
List.create 189 | 68]64.02% | 95.36% | 57.22% | 38.14% | 0.011 | 0.016
List.getLast 158 | 56|64.56% | 97.74% | 54.89% | 42.86% | 0.009 | 0.028
List.contains 114 | 52(54.39% | 95.45% | 55.30% | 40.15% | 0.010 | 0.028
List.insertBefore 246 | 143 |41.87% | 97.25% | 80.61% | 16.64% | 0.017 | 0.052
List.append 311 | 254 |18.33% |99.46% | 97.10% | 2.37% | 0.035| 0.080
List. filter 820 | 273 |66.71% | 97.36% | 87.20% | 10.17% | 0.019 | 0.060
List.partition 7650 | 3027 | 60.43% | 99.17% | 95.63% | 3.54% [ 0.049| 0.088
List.reverse 615| 312(49.27% | 98.55% | 89.05% | 9.50% | 0.017| 0.048
DLL.addLast 161 | 89|44.72% | 97.86% | 62.57% | 35.28% | 0.023 | 0.040
SortedList.add 470 | 190 |59.57% | 97.89% | 65.65% | 32.24% | 0.051 | 0.120
Skiplist.add 679 | 241|64.51% | 97.52% | 43.84% | 53.68% | 0.044 | 0.076
Tree.add 390 | 124|68.21%|99.52% | 67.59% | 31.94% | 0.149 | 0.624
ParentTree.add 428 | 141 (67.06% | 99.36% | 63.41% | 35.94% | 0.144| 0.596
ThreadedTree.add | 2882 | 619 | 78.52% | 99.65% | 91.80% | 7.85%|0.720 | 3.816
Client.move 111 82(26.13% | 97.17% | 85.48% | 11.70% | 0.037 | 0.136
Client.createMove | 662 | 393 |40.63% | 96.35% | 33.35% | 63.00% | 0.101 | 5.428
Client.partition 2138 | 896 | 58.09% | 94.92% | 27.13% | 67.79% | 0.115| 5.540

Table 6.3: Statistics for validity checker calls.

The columns list the total number of calls to

the validity checker, the number of actual calls to decision procedures and the corresponding
cache hit ration, the time spent in the validity checker relative to the total running time,
and the average and maximal time spent for a single call to a decision procedure.

| benchmark

| List.reverse | List.filter | List.insertBefore | List.append | Skiplist.add | Tree.add |

context-sensitive and with optimizations

running time (in s) | 5.52 5.31 2.48 8.95 10.82 18.51

DP calls 615 820 246 311 679 390

(cache hits) (49.27%) (66.71%) | (41.87%) (18.33%) (64.51%) (68.21%)
context-sensitive (k = -y) and without optimizations

running time (in s) | 43.93 14.38 5.64 83.61 128.8 391.3

DP calls 1555 1222 336 1374 3049 1611

(cache hits) (19.55%) (36.74%) | (22.62%) (8.95%) (26.57%) (27.56%)
no context (k = AS7.true) but with optimizations

running time (in s) | 11.26 timeout | timeout 11.75 timeout 15.86

DP calls 2396 - - 954 - 465

(cache hits) (67.86%) (29.45%) (73.98%)

Table 6.4: Effect of context-sensitive abstraction and optimizations
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differencing [104] to automatically compute predicate updates in TVLA. With finite differ-
encing TVLA was unable to prove preservation of acyclicity of lists in some of the examples.
We therefore used the standard predicates and predicate updates for singly-linked lists that
are shipped with TVLA. The corresponding abstract domain provides high precision for
analyzing list-manipulating programs. We checked for properties that require such high
precision, in order to get a meaningful comparison. We checked for absence of null deref-
erences as well as preservation of acyclicity and absence of sharing. All properties where
checked in a single run of each analysis. Both tools were able to verify these properties for
all our benchmarks.

The results of our experiments are summarized in Table 6.5. The running times for
Bohne are between one and two orders of magnitude higher than for TVLA. Observe that
almost all time is spent in the decision procedure. Thus, the increase in running time is the
price that we pay for automation.

It might be surprising that the space consumption of Bohne (measured in number of
explored abstract states) is smaller than TVLA’s, in some examples significantly. We believe
that there are three reasons that explain this fact. First, in contrast to summary nodes in
three-valued structures, abstract objects in domain predicate abstraction are allowed to be
empty. This results in a more compact abstraction. For instance, in order to represent the
set of all states containing a list of arbitrary length, one needs at least two three-valued
structures, one representing a nonempty list and one representing the empty list. On the
other hand, this set of states can be represented by just one Boolean heap.

Next, TVLA uses a fixed set of predicates throughout the analysis. This means that the
analysis often tracks information which is irrelevant for proving a specific property. In con-
trast, our analysis refines the abstract domain by adding predicates on demand and targeted
towards specific properties. This can be seen, e.g., at program LISTFILTER in Section 4.1
where we only need 5 predicates to prove absence of null dereferences. For both analyses
the size of the abstract domain is triple exponential in the number of predicates. Thus, a
lower number of tracked predicates can make a significant difference in space consumption.

The final reason for lower space consumption is related to materialization. TVLA’s focus
operator eagerly splits abstract states (and summary nodes) during fixed point computation
in order to retain high precision. This potentially leads to an explosion in the number of
explored abstract states. Instead, our Cartesian refinement splits abstract states on demand,
only if the additional precision is required to rule out some spurious error trace. We can
therefore think of Cartesian refinement as a property-driven focus operation.

6.5.4 Limitations

The set of data structures that our implementation can handle is limited by the decision
procedures that we have, so far, incorporated into our system. Currently we use monadic
second-order logic over trees as our main logic for reasoning about reachability properties.
This makes it difficult to verify data structures that admit cycles or sharing. While structure
simulation [60] makes it possible to verify some of these data structures with our current
implementation, such a simulation needs to be defined by the user.

Furthermore, our widening technique for inferring new reachability predicates only works
for flat tree-like structures. It is not appropriate for handling nested data structures such
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benchmark running time (in s) avrg. #abs. states| #predicates
Bohne | w/o VC | TVLA | Bohne | TVLA | Bohne | TVLA
traverse 0.11 0.008 | 0.179 1.0 8 4 12
create 0.78 0.036 | 0.133 1.7 6 11 12
getLast 0.53 0.012| 0.214 2.0 10 7 14
insertBefore |  2.48 0.068| 0.503| 13.5 15 10 18
append 8.95 0.048 | 0.462 1.5 23 13 18
filter 5.31 0.140 | 0.600 2.5 19 12 18
partition 149.16 1.238 | 1.508 3.5 72 15 18
reverse 5.02 0.080| 0.331 2.0 12 11 14

Table 6.5: Comparison between Bohne and TVLA. The columns list total running times,
average number of abstract states per location in the fixed point, and total number of
predicates (we refer to the total number of unary predicates used by TVLA.). The third
column shows the running time of Bohne without the time spent in the validity checker, i.e.,
this would be the total running time if we had an oracle for checking validity of formulae
that would always return instantaneously.

as lists of lists, which may require the inference of nested reachability predicates [13].

6.6 Conclusion

In this chapter we have presented Bohne, our implementation of symbolic shape analysis.
We have deployed a range of techniques that significantly improve the running time of the
analysis compared to direct application of the algorithms developed in the previous chap-
ters. These techniques include context-sensitive finite-state abstraction, semantic caching
of formulae, and domain-specific quantifier instantiation.

We further compared Bohne to TVLA, the implementation of a non-symbolic shape
analysis. In terms of running time, we have to pay the price for the increased degree of
automation. In terms of space consumption, however, we even gain from automation; the
nested abstraction refinement loop of our symbolic shape analysis seems to achieve the local
fine-tuning of the abstraction at the required precision.

Our current experience with Bohne in the context of the Jahob data structure verification
system suggests that it is effective for verifying complex properties of a wide range of data
structures with a high degree of automation.



Chapter 7

Conclusion

In this thesis we have presented a symbolic shape analysis. Our shape analysis uses log-
ical formulae to symbolically represent sets of states in heap programs. Automated rea-
soning is used to automatically construct a finitary abstraction from the concrete heap
program and to automatically refine the abstraction guided by spurious counterexamples.
To our knowledge this is the first shape analysis that incorporates counterexample-guided
abstraction refinement from first principles. We used our shape analysis to verify complex
user-specified properties of a variety of data structures. Our examples include programs
manipulating lists (with iterators and with back pointers), two-level skip lists, sorted lists,
trees (with and without parent pointers), threaded trees as well as combinations of these
data structures. The analysis offers a high degree of automation: we were able to verify
these examples without manually adjusting the analysis to the specific verification problem
and without providing user assistance beyond stating the properties to verify.

Our shape analysis is based on a new abstract interpretation called domain predicate
abstraction. Domain predicate abstraction provides a new abstract domain that enables
the inference of universally quantified invariants over the program’s unbounded memory.
Our approach incorporates the key idea of three-valued shape analysis [108] into predicate
abstraction [49] by replacing predicates on program states by predicates on objects in the
heap of program states. Domain predicate abstraction not only provides the foundation
for our symbolic shape analysis, but also sheds a new light on the underlying concepts of
three-valued shape analysis.

Building on top of domain predicate abstraction we developed a new counterexample-
guided abstraction refinement technique for shape analysis. Our search for an appropriate
refinement procedure was guided by the progress property, i.e., the requirement that every
spurious counterexample is eventually eliminated by a refinement step. The resulting proce-
dure uses a lazy nested abstraction refinement loop that refines both the abstract domain of
the analysis and the abstract transformer on these abstract domains. The nested refinement
guarantees the progress property. In retrospect, it was this search for the progress property
that ensured the practical success of our analysis: for many of our example programs the
analysis would not succeed without the nested refinement.

Finally, we presented field constraint analysis which provides the missing link to the
underlying reasoning procedures that automate our shape analysis. Field constraint analysis
relaxes the restrictions on the verified data structures that are imposed by the logics of the
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underlying decision procedures. This approach enables our shape analysis to successfully
analyze a broad range of data structures that arise in practice.

We implemented the presented techniques in our prototype tool Bohne. Our experience
with Bohne is in the context of the Jahob system [67] for modular data structure veri-
fication. The modular verification exploits user-provided procedure contracts to separate
the verification of libraries (that implement data structures) from the verification of clients
(that use these data structures). The library interfaces hide the complexity of the underly-
ing data structure implementation. The analysis of the clients calls for more scalable (but
perhaps less precise) techniques while the analysis of the libraries requires high precision.
Our symbolic shape analysis enables such a modular verification and provides the required
precision to verify procedure contracts that express functional correctness properties of data
structure operations. We believe that such a modular approach towards data structure ver-
ification may be the key to make precise and flexible, but also comparably expensive shape
analyses applicable to large programs.

7.1 Future Work

We would like to conclude this thesis with an outlook on possible directions for future work.

Increased Scalability. We have given experimental evidence that the targeted precision
that comes with the increased degree of automation in symbolic shape analysis decreases the
space consumption compared to non-symbolic shape analyses. Still, automation also comes
at the price of increased running times. We have seen that almost the complete running time
of our analysis is spent in the underlying decision procedures. We are currently incorporating
more efficient decision procedures for specific classes of data structures into our automated
reasoning framework. Our symbolic shape analysis can immediately take advantage of these
improvements. We are also taking more radical measures for decreasing the running times.
One idea is to persistently cache the results of decision procedure calls across multiple runs
of the analysis. We are currently investigating how techniques developed in the context of
data base systems can be used to increase cache hit ratios by exploiting the partial order
on formulae. First experiments with this idea are very promising.

Beyond Safety. In this thesis we investigated techniques for verifying safety properties of
heap-manipulating programs, i.e., properties that can be expressed in terms of reachability
of an error location. However, safety properties only cover one dimension of the space of
temporal properties. Liveness properties are another important class of temporal properties.
Like any safety property can be reduced to reachability, any liveness property can be reduced
to termination. Automatic termination checkers require different techniques [2,36,99,100]
than safety checkers. Still, a termination proof often depends on certain assumptions that
are safety properties, e.g., a termination proof for a loop that iterates over a list might de-
pend on the assumption that the list is acyclic. We started to explore how symbolic shape
analysis can be used to automatically infer and verify such assumptions. In [101] we pre-
sented an algorithm for the inference of preconditions for termination of heap-manipulating
programs. The algorithm exploits a unique interplay between a counterexample-producing
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abstract termination checker and symbolic shape analysis. The shape analysis produces
heap assumptions on demand to eliminate counterexamples, i.e., non-terminating abstract
computations. Currently our results only apply to list-manipulating programs. Extending
this approach to more complex data structure remains an interesting direction for future
research.

Unifying Program Analysis and Automated Reasoning. Many of the innovations
that have been made in automated reasoning in recent years have been driven by the desire
to apply these techniques in program verification. Among the most striking examples is the
development of efficient satisfiability modulo theory solvers and techniques for combining
decision procedures for different logical theories. An interesting question is whether it is
possible to achieve a more tight integration of these techniques into program analyses. Along
these lines we are currently exploring how facts that are synthesized by our program analysis
can be used to exchange information between different decision procedures. The result is
a combination of program analysis and decision procedures that is able to prove properties
in theories that are beyond the scope of any of the individual decision procedures and that
cannot be effectively handled by traditional combination techniques for logical theories.

Beyond Shape Analysis. So far, the experience with domain predicate abstraction is in
the context of heap-manipulating programs. However, this approach is clearly not restricted
to verification of heap programs. Instead, it can more generally be used to verify systems
where properties that involve universal quantification over some unbounded domain play
an important role. Programs that manipulate arrays, concurrent programs with unbounded
thread creation, parameterized systems, and distributed systems with an unbounded num-
ber of participants are among the cases where our analysis could be beneficial. Exploring
the potential applications of domain predicate abstraction is a goal for our future research.






Kapitel 8

Zusammenfassung

Software ist der unzuverlissigste Bestandteil heutiger Technologie. Ein zentrales Ziel in der
Erforschung von Programmiersprachen besteht daher in der Entwicklung von Methoden,
die die Zuverldssigkeit von Software erhchen konnen.

Den ambitioniertesten Weg an dieses Problem heranzugehen beschreitet die formale Pro-
grammverifikation. Das Ziel formaler Programmuverifikation besteht in der Erbringung eines
mathematischen Beweises, der sicherstellt, dass ein Programm seine Spezifikation erfiillt.
Traditionell werden solche Beweise vom Programmierer selbst in einem formalen Kalkiil
wie zum Beispiel Hoare-Logik [46,57| oder einer Temporallogik [98| erbracht. Es gibt zwei
Griinde, die der praktischen Anwendung dieser Methode in der Softwareentwicklung ent-
gegenstehen. Zum einen gibt es nur wenige Softwareentwickler, die die notigen Kenntnisse
und Erfahrungen besitzen solche formalen Korrektheitsbeweise zu erbringen. Zum ande-
ren fithrt die zunehmende Komplexitdt von Software dazu, dass es extrem aufwendig ist
selbst einfache Korrektheitseigenschaften fiir ein vollstdndiges Softwaresystem manuell zu
verifizieren.

Die Forschung in der Programmverifikation ist daher seit vielen Jahren von dem Ideal
geleitet Programmanalysewerkzeuge zu entwickeln, die den Programmierer dabei unterstiit-
zen die Korrektheit seiner Software sicherzustellen, d.h. Software zu entwickeln, die in der
Lage ist Software automatisch zu verifizieren. Da die meisten Verifikationsprobleme unent-
scheidbar sind, kénnen solche Verfahren nur approximative Losungen bereitstellen. Einen
formalen Rahmen fiir den Entwurf approximativer Programmanalyseverfahren bietet die
abstrakte Interpretation [37,38|. Eine abstrakte Interpretation transformiert das konkrete
Programm in ein abstraktes Programm fiir das das Verifikationsproblem entscheidbar ist.
Die Abstraktion garantiert, dass das konkrete Programm immer dann korrekt ist, wenn
auch das abstrakte Programm korrekt ist. Die Analyse ist approximativ, weil das konkre-
te Programm auch dann korrekt sein kann, wenn das abstrakte Programm nicht korrekt
ist, d.h. die Analyse kann Gegenbeispiele fiir die zu beweisende Programmeigenschaft gene-
rieren, die auf das konkrete Programm nicht zutreffen. Wir nennen solche Gegenbeispiele
Scheingegenbeispiele. Die Methode der abstrakten Interpretation verschiebt das Problem
der formalen Beweisfithrung iiber Programme vom Programmierer auf den Designer des
Programmanalysewerkzeugs, d.h. es ist die Aufgabe des Designers eine geeignete Abstrak-
tion fiir ein spezifisches Verifikationsproblem zu finden und das abstrakte Programm zu
konstruieren. Auch wenn es immer Programmeigenschaften geben wird, deren automati-
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sche Verifikation schwierig ist und die daher einen manuellen Beweis erfordern, so ist die
Methode der abstrakten Interpretation dennoch ein grofer Erfolg. Sie bildet die Grundlage
vieler moderner Werkzeuge, die Eigenschaften, wie zum Beispiel die Abwesenheit von Lauf-
zeitfehlern, fiir Programme industrieller Groke automatisch verifizieren konnen [20,117].

Jiingst haben Forscher damit begonnen die Frage zu untersuchen, ob es moglich ist
den Automatisierungsgrad in der Programmverifikation noch weiter zu erhéhen. In den
letzten Jahren gab es wesentliche Fortschritte im Bereich des automatischen Theorembe-
weisens [12,41,113,114] und leistungsfahige Entscheidungsprozeduren wurden entdeckt |[63].
Diese Fortschritte haben es ermoglicht das Fiihren von Beweisen iiber Programme selbst
zu automatisieren. Das Ziel dieser Forschung ist es, Programmverifikation vollstindig auf
das Problem des automatischen Theorembeweisens in ausdrucksstarken Logiken zu reduzie-
ren, d.h. man verwendet Software, um automatisch Software zu konstruieren, die Software
automatisch verifiziert.

Wir nennen die Symbiose aus abstrakter Interpretation und Methoden der automati-
schen Beweisfiihrung symbolische Programmanalyse. Symbolische Programmanalyseverfah-
ren sind aus vielerlei Griinden interessant. Zum ersten ermoglicht die Verwendung automa-
tischer Theorembeweiser nicht nur die Automatisierung der Transformation eines konkreten
Programms in ein abstraktes Programm und die darauffolgende Analyse des abstrakten Pro-
gramms, sondern sie ermoglicht sogar die Automatisierung der Konstruktion der Abstrakti-
on. Abstraktionsverfeinerungstechniken [35,53] verwenden automatische Theorembeweiser,
um Scheingegenbeispiele, die die Analyse des abstrakten Programms generiert, als solche zu
erkennen. Die erkannten Scheingegenbeispiele werden dann dazu verwendet die Abstraktion
automatisch zu verfeinern. Zum zweiten separiert der Einsatz von Logiken das Problem der
Beweisfithrung iiber die Semantik des konkreten Programms von der eigentlichen Analyse
des abstrakten Programms. Dies erlaube es die Analyse des abstrakten Programms als ein
algorithmisches Problem zu formulieren, das unabhingig vom konkreten Programm und
der zu beweisenden Eigenschaft ist. Eine Konsequenz dieser Aufgabenteilung ist, dass der
Korrektheitsbeweis fiir eine symbolische Programmanalyse in der Regel einfacher zu fiihren
ist als fiir eine nichtsymbolische Analyse. Der aufwendigste Teil des Korrektheitsbeweises
folgt aus der Korrektheit der zugrundeliegenden automatischen Theorembweiser. Schliefilich
stellen Logiken auch eine natiirliche Sprache zur Verfiigung, um das Verhalten von Pro-
grammfragmenten zu beschreiben. Dies erlaubt eine einfache Kombination von symbolische
Programmanalysen mit Techniken, die die Programmuverifikation modularisieren [11,44,66].

Auch wenn es immer Verifikationsprobleme geben wird, die den Einfallsreichtum eines
Programmanalysedesigners erfordern, der eine Abstraktion fiir das gegebene Problem maf-
schneidert, so kann die symbolische Programmanalyse diesen doch entlasten. In der Tat
hat die Idee der symbolischen Programmanalyse eine neue Generation von Verifikations-
werkzeugen hervorgebracht [9,30,55], die einen uniibertroffen hohen Automatisierungsgrad
bieten. Diese Werkzeuge sind bereits im industriellen Einsatz, zum Beispiel als Bestandteil
des Microsoft Windows device driver development kits |91].

Ein Problem, dem in jlingster Zeit viel Beachtung geschenkt wird, ist die Fragestel-
lung, wie man in der Verifikation und Programmanalyse effektiv mit dynamisch allozierten
Zeigerstrukturen umgehen kann. Die Fahigkeit von Zeigerstrukturen ihre Grofe und Form
dynamisch zu verdndern macht sie zu einem wichtigen Programmierkonzept in imperativen
Programmiersprachen. Daher ist es nicht iiberraschend, dass Zeigerstrukturen den Kern
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vieler effizienter Algorithmen bilden und in vielen Software-Entwurfsmustern Verwendung
finden. Die Flexibilitdat und Vielfalt von Zeigerstrukturen erschwert aber auch die Verifikati-
on von Programmen, die diese manipulieren. Die praktische Relevanz und die Herausforde-
rungen, die die Verifikation von Zeigerstrukturen aufwirft, erklart das gestiegene Interesse
daran diese Schwierigkeiten zu iiberwinden.

Programmanalysen, deren Hauptaufgabe in der Verifikation von Eigenschaften solcher
Zeigerstrukturen besteht, werden im allgemeinen als Shape-Analysen bezeichnet [62]. Eine
symbolische Shape-Analyse verspriache ein Spektrum verschiedener dynamisch allozierter
Zeigerstrukturen und ein Spektrum an Eigenschaften verifizieren zu kénnen, ohne dass der
Benutzer die Analyse manuell an eine spezifische Probleminstanz anpassen miisste. Die
Frage, wie solch eine symbolische Shape-Analyse aussehen kénnte und ob sie den an sie ge-
stellten Erwartungen gerecht wiirde, war offen. In der vorliegenden Dissertation beschéftigen
wir uns mit dieser Frage.

Symbolische Shape-Analyse

Das Ziel einer Shape-Analyse ist die Verifikation komplexer Konsistenzeigenschaften von
Zeigerstrukturen. Unter Konsistenzeigenschaften verstehen wir Invarianten, die die Form
einer Datenstruktur beschreiben und die an bestimmten Punkten wahrend der Programm-
ausfiihrung gelten miissen (zum Beispiel an Ein- und Austrittspunkten von Bibliotheks-
funktionen, die die Datenstruktur implementieren). Als Beispiel betrachten wir das in Ab-
bildung 8.1 dargestellte Fragment eines Java-Programms. Dieses Programmfragment zeigt
Teile einer Datenstruktur, die Container zur Speicherung einer unbeschrénkten Menge von
Objekten implementiert. Die Datenstruktur stellt verschiedene Operationen bereit, wie zum
Beispiel das Hinzufiigen und Entfernen von Elementen aus einer Menge von Objekten, aber
auch komplexere Operationen wie das Filtern der gespeicherten Objekte in Abhéngigkeit
von einem gegebenen Pradikat. Die eigentliche Menge ist durch eine doppeltverkettete Liste
implementiert. Eine der Konsistenzeigenschaften dieser Datenstruktur besagt daher, dass
die Liste, auf die das Feld root zeigt, tatsédchlich eine doppeltverkettete Liste ist. Mit Hilfe
einer Shape-Analyse kann man verifizieren, dass solche Invarianten unter allen Operationen
der Datenstruktur erhalten bleiben.

Die Verifikation von Konsistenzeigenschaften ist fiir sich betrachtet bereits wichtig, da
die korrekte Ausfithrung eines Programms héufig von der Konsistenz der verwendeten Da-
tenstrukturen abhéngt. Wenn zum Beispiel die Liste, auf die das Referenzfeld root zeigt,
bei Eintritt in die Methode filter nicht doppeltverkettet ist, dann wird das Verhalten der
Methode nicht vorhersagbar sein. Unter Umsténden wird die Methode sogar einen Laufzeit-
fehler verursachen. Dariiber hinaus spielen Konsistenzeigenschaften eine wichtige Rolle bei
der Verifikation anderer Programmeigenschaften. So lasst sich zum Beispiel die Terminie-
rung der while-Schleife in der Methode filter unter der Annahme beweisen, dass die Liste,
auf die das Feld root zeigt, azyklisch ist. Mit Hilfe einer Shape-Analyse kann man solche
Annahmen iiberpriifen.

In dieser Dissertation untersuchen wir eine neuartige symbolische Shape-Analyse. Unsere
Shape-Analyse verwendet automatische Theorembeweiser, um ein Programm, dass Zeiger-
strukturen manipuliert, automatisch durch ein Programm zu abstrahieren, das logische For-
meln manipuliert. Unser Ansatz verallgemeinert das Prinzip der Prédikatenabstraktion [49],
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public interface Predicate {
//: public specvar pred :: objset;

public boolean contains(Object 0);
//: ensures "result = (o € pred)"

public class DLLSet {
class Node {
Node next;
Node prev;
Object data;

}

private Node root;

/*: public specvar content :: objset;
private vardefs "content == {x. <root erreicht ein NodeObjekt y via next, so dass y.data=z>}";
invariant " <die Liste ausgehend von root ist azyklisch >";
invariant " <die Liste ausgehend von root ist doppeltverkettet >"; x/

public void add(Object o)
/*: requires "o ¢ content"

modifies content

ensures "content = old content U {o}" %/
{

Node n = new Node();

n.next = root;

n.data = o;

root.prev = n;

root = n;

}

public void filter (Predicate p)
/*: requires "p # null"
modifies content
ensures "content = old content N (pred p)" */

Node e = root;
while (e = null) {
Node ¢ = ¢;
e = e.next;
if (!p.contains(c.data)) {
if (c.prev == null) {
e.prev = null;
root = eg;
} else {
c.prev.next = e,
e.prev = c;
¥
¥
¥
}
}

Abbildung 8.1: Konténer fiir Mengen von Objekten, die durch doppeltverkettete Listen
implementiert sind
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ein existierendes symbolisches Programmanalyseverfahren, durch Einbezug der Schliisseli-
dee in der dreiwertigen Shape-Analyse [108], einem existierenden nichtsymbolischen Shape-
Analyseverfahren. Die Verkniipfung dieser Techniken resultiert in einer Shape-Analyse, die
iiber eine einzigartige Kombination von Eigenschaften verfiigt. Unsere Shape-Analyse ist
nicht a priori auf die Verifikation einer bestimmte Klasse von Datenstrukturen und Ei-
genschaften eingeschriankt. Dennoch bietet sie einen hohen Automatisierungsgrad. Insbe-
sondere waren wir in der Lage die Erhaltung von Konsistenzeigenschaften fiir Operationen
auf geketteten Bindrbdumen [112] zu verifizieren (darunter Sortiertheit und die Inorder-
Traversierungseigenschaft). Dies gelang ohne unsere Analyse speziell fiir dieses Problem
anzupassen und ohne jegliche Hilfe des Benutzers, die iiber die blofe Formulierung der zu
beweisenden Eigenschaften hinausginge. Uns ist keine andere Shape-Analyse bekannt, die
diese Eigenschaften mit einem vergleichbaren Automatisierungsgrad verifizieren kdnnte.
Schlieklich fiigt sich unsere Shape-Analyse auf natiirliche Weise ein in den Ansatz der
modularen Verifikation von Datenstrukturen, den wir im Jahob-System [66,125] beschreiten.
Dieser Ansatz verwendet vom Benutzer zur Verfiigung gestellte Prozedurkontrakte, um die
Verifikation von Bibliotheken (die Datenstrukturen implementieren) von der Verifikation von
Klienten (die diese Datenstrukturen verwenden) zu trennen. Die Schnittstellen der Biblio-
theken deklarieren abstrakte Mengen und Relationen, die das Verhalten der Datenstruktur
charakterisieren, dabei aber die Komplexitdt der darunterliegenden Implementierung ver-
bergen. Zum Beispiel deklariert die Schnittstelle der Klasse DLLSet in Abbildung 8.1 eine
abstrakte Menge content, die die Menge der in einer gegebenen Instanz der Klasse gespei-
cherten Objekte denotiert. In den Vor- und Nachbedingungen der 6ffentlichen Methoden der
Klasse DLLSet wird die Menge content dazu verwendet, um den vom Klienten der Daten-
struktur beobachtbaren Effekt der Methoden zu beschreiben. Wir waren in der Lage solche
Prozedurkontrakte von Bibliotheksfunktionen mit unserer Shape-Analyse zu verifizieren.

Technische Beitrage

Unsere neue Shape-Analyse basiert auf einer Reihe technischer Beitrdge. Diese Beitrige
lassen sich wie folgt zusammenfassen:

e Wir entwickeln die universelle Pradikatenabstraktion als Basis fiir eine symbolische
Shape-Analyse. Die universelle Pradikatenabstraktion stellt eine neuartige parame-
trierte abstrakte Doméne bereit, die detaillierte Eigenschaften verschiedener Regionen
im unbeschrinkten Speicher eines Programms ausdriicken kann. Wir zeigen wie man
mit Hilfe von automatischen Theorembeweiser ein Programm, das Zeigerstrukturen
manipuliert, automatisch in ein abstraktes Programm transformiert.

e Wir prisentieren eine Abstraktionsverfeinerungsmethode fiir die universelle Préadika-
tenabstraktion. Diese Methode beseitigt die Anforderung an den Benutzer, die Ab-
straktion manuell fiir die Analyse eines bestimmten Programms oder einer bestimmten
Programmeigenschaft anpassen zu miissen.

e Wir entwickeln die Feldbedingungsanalyse, eine neue Technik zur Beweisfithrung {iber
Eigenschaften von Datenstrukturen. Unsere Feldbedingungsanalyse ermoglicht die
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Verwendung entscheidbarer Logiken fiir die Verifikation von Datenstrukturen, die ur-
spriinglich auferhalb des Anwendungsbereichs dieser Logiken lagen. Damit ist unsere
symbolische Shape-Analyse auf ein breites Spektrum von Datenstrukturen, die in der
Praxis Verwendung finden, anwendbar.

Im folgenden diskutieren wir diese Beitrédge im Detail.

Universelle Pradikatenabstraktion. Wir zeigen, dass sich die Schliisselidee der drei-
wertigen Shape-Analyse [108], die Partitionierung des Heaps beziiglich einer Menge von
Pradikaten iiber Heap-Objekten, in die Methode der Prédikatenabstraktion [49] iibertra-
gen lasst. Dieser Ansatz resultiert in einem neuen Abstraktionsverfahren, die wir universelle
Pradikatenabstraktion (engl. domain predicate abstraction) nennen. Die universelle Pradika-
tenabstraktion ermdglicht die Herleitung von Invarianten in der Form von Disjunktionen
universell quantifizierter Aussagen iiber den unbeschrinkten Speicher eines Programms. Die
Bausteine dieser quantifizierten Aussagen sind Pridikate iiber Heap-Objekte. Unsere Kon-
struktion des abstrakten Post-Operators verlauft analog zur entsprechenden Konstruktion
in der klassischen Pradikatenabstraktion, mit dem Unterschied, dass Pradikate iiber Heap-
Objekte den Platz von Zustandspréidikaten einnehmen und Boolesche Heaps (Mengen von
Bitvektoren) den Platz von Booleschen Zustédnden (Bitvektoren). Das konkrete Programm
wird abstrahiert durch ein Programm {iber Boolesche Heaps. Fiir jedes Kommando des kon-
kreten Programms konstruieren wir das entsprechende abstrakte Kommando effektiv mit
Hilfe von automatischen Theorembeweisern. Die universelle Priadikatenabstraktion bietet
daher den parametrisierten Unterbau fiir eine symbolische Shape-Analyse.

Bedarfsgerechte, verschachtelte Abstraktionsverfeinerung. Wir entwickeln eine
automatische Abstraktionsverfeinerungsmethode fiir unsere symbolische Shape-Analyse. Un-
sere Methode besteht aus zwei Verfeinerungsphasen, die Scheingegenbeispiele verwenden,
um entweder die abstrakte Domé&ne oder den abstrakten Post-Operator unserer symboli-
schen Shape-Analyse zu verfeinern. Diese beiden Phasen sind in einer Schleife verschachtelt,
die eine bedarfsgerechte Abstraktionsverfeinerung ermoglicht [54]. Die zweite Phase der Ab-
straktionsverfeinerung ist entscheidend fiir den praktischen Erfolg unserer Shape-Analyse. In
vielen unserer Fallstudien schldgt die Analyse ohne diese zweite Phase fehl. Dieses praktische
Resultat stimmt mit unserem theoretischen Befund iiberein, der sich mit der so genannten
Fortschritteigenschaft befasst. Diese Figenschaft besagt, dass jedes von der Analyse gefun-
dene Scheingegenbeispiel irgendwann durch einen Verfeinerungsschritt ausgeschlossen wird.
Unsere Methode der Abstraktionsverfeinerung besitzt die Fortschrittseigenschaft nur mit
der zweiten Verfeinerungsphase.

Wir liefern einen experimentellen Nachweis dafiir, dass der erh6hte Automatisierungs-
grad unserer Analyse auch zu zielgerichteter Prézision fithrt. Diese zielgerichtete Prazision
spiegelt sich in einem geringeren Platzverbrauch unserer Analyse wider; die verschachtelte
Verfeinerungsschleife scheint die lokale Feinabstimmung der Abstraktion auf das erforderli-
che Mafs an Prizision zu bewirken.

Feldbedingungsanalyse. Eine der faszinierenden Eigenschaften unserer symbolischen
Shape-Analyse ist die Tatsache, dass die zugrundeliegende automatische Theorembewei-
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ser als Black-Box betrachtet wird. Man kann daher einen beliebigen, existierenden Theo-
rembeweiser oder Entscheidungsprozedur verwenden. In der Praxis erfiillen existierende
Entscheidungsprozeduren aber hdufig nicht alle Anforderungen, die die Analyse stellt. Da-
her kann es notig sein, eine zusétzliche Schicht zwischen Analyse und der tatsdchlichen
Entscheidungsprozedur einfiihren zu miissen.

Wir entwickeln die so genannte Feldbedingungsanalyse (engl. field constraint analysis),
eine solche Technik, um Eigenschaften von Datenstrukturen zu beweisen. Eine Feldbedin-
gung fiir ein Referenzfeld einer Datenstruktur ist eine logische Formel, die eine Menge
von Objekten spezifiziert, auf die das Feld zeigen kann. Feldbedingungen ermoglichen die
Anwendung entscheidbarer Logiken fiir die Verifikation von Datenstrukturen, die urspriing-
lich auferhalb des Anwendungsbereichs dieser Logiken lagen, indem sie die Referenzfelder
in zwei Klassen aufteilen: Felder, die das Grundgeriist der Datenstruktur aufspannen und
abgeleitete Felder, die dieses Grundgeriist in beliebiger Weise durchkreuzen konnen. Die
abgeleiteten Felder werden dabei durch Feldbedingungen sperzifiziert. Die Feldbedingungen
der abgeleiteten Felder werden ausgenutzt, um das Beweisen von Eigenschaften der Da-
tenstruktur auf das Beweisen von Eigenschaften des Grundgeriists der Datenstruktur zu
reduzieren. Bisher war die Behandlung solcher abgeleiteten Felder nur mdglich, wenn sie
vollstdndig durch ihre Feldbedingungen charakterisiert waren. Die Klasse der unterstiitzten
Datenstrukturen wurde dadurch signifikant eingeschrankt.

Unsere Feldbedingungsanalyse erlaubt die Spezifikation nichtdeterministischer Feldbe-
dingungen fiir abgeleitete Felder. Nichtdeterministische Feldbedingungen ermoglichen die
Verifikation von Datenstrukturen wie zum Beispiel Skip-Listen und erlauben auferdem die
Verifikation von Invarianten zusammengesetzter Datenstrukturen. Damit stellen sie eine
ausdrucksstarke Verallgemeinerung statischer Typedeklarationen da.

Die Allgemeinheit unserer Feldbedingungen erfordert neue Techniken, die orthogonal zur
traditionellen Methode der Struktursimulation sind [58,60|. Wir prasentieren eine solche Me-
thode und beweisen sowohl ihre Korrektheit, als auch ihre Vollstdndigkeit in bestimmten,
interessanten Féllen. Mit Hilfe unserer neuen Technik waren wir in der Lage Datenstruktu-
ren zu verifizieren, die zuvor aukerhalb der Reichweite vergleichbarer Verfahren waren.

Machbarkeitsstudie

Alle in dieser Dissertation prisentierten Techniken wurden in einem Werkzeug namens
Bohne implementiert und evaluiert. Bohne baut auf dem Jahob-System [67] fiir die Verifika-
tion von Konsistenz von Datenstrukturen auf. Bohne analysiert Java-Programme (&hnlich
dem in Abbildung 8.1 gezeigten), die mit speziellen Kommentaren annotiert werden, um
Prozedurkontrakte und Reprisentationsinvarianten von Datenstrukturen zu spezifizieren.
Unser Werkzeug verifiziert, dass alle Methoden ihre Prozedurkontrakte einhalten und alle
Reprisentationsinvarianten unter Ausfiithrung von Datenstrukturoperationen erhalten blei-
ben. Wir haben Bohne dazu verwendet komplexe, benutzerspezifizierte Eigenschaften fiir
eine Reihe von Datenstrukturimplementierungen und deren Klienten zu verifizieren, ohne
Schleifeninvarianten manuell zu spezifizieren oder die Abstraktion von Hand zu erstellen.
Dies beweist, dass die symbolische Shape-Analyse ihre Erwartungen erfiillen kann, ndmlich
eine Vielfalt von Datenstrukturen und Eigenschaften mit einem hohen Automatisierungs-
grad zu verifizieren.
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