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Abstract. Scalability is a key challenge in static analysis. For imper-
ative languages like C, the approach taken for modeling memory can
play a significant role in scalability. In this paper, we explore a family of
memory models called partitioned memory models which divide memory
up based on the results of a points-to analysis. We review Steensgaard’s
original and field-sensitive points-to analyses as well as Data Structure
Analysis (DSA), and introduce a new cell-based points-to analysis which
more precisely handles heap data structures and type-unsafe operations
like pointer arithmetic and pointer casting. We give experimental results
on benchmarks from the software verification competition using the pro-
gram verification framework in Cascade. We show that a partitioned
memory model using our cell-based points-to analysis outperforms mod-
els using other analyses.

1 Introduction

Solvers for Satisfiability Modulo Theories (SMT) are widely used as back ends
for program analysis and verification tools. In a typical application, portions of
a program’s source code together with one or more desired properties are trans-
lated into formulas which are then checked for satisfiability by an SMT solver.
A key challenge in many of these applications is scalability: for larger programs,
the solver often fails to report an answer within a reasonable amount of time
because the generated formula is too complex. Thus, one key objective in pro-
gram analysis and verification research is finding ways to reduce the complexity
of SMT formulas arising from program analysis.

For imperative languages like C, the modeling of memory can play a signifi-
cant role in formula complexity. For example, a flat model of memory represents
all of memory as a single array of bytes. This model is simple and precise and
can soundly and accurately represent type-unsafe constructs and operations like
unions, pointer arithmetic, and casts. On the other hand, the flat model im-
plicitly assumes that any two symbolic memory locations could alias or overlap,
even when it is known statically that such aliasing is impossible. Introducing
disjointness constraints for every pair of non-overlapping locations leads to a
quadratic blow-up in formula size, quickly becoming a bottleneck for scalability.

The Burstall model [6] is a well-known alternative that addresses this by
having a separate array for each distinct type in the language. It is based on the
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assumption that pointers with different types never alias, eliminating the need
for disjointness constraints between such pointers. However, it cannot model
many type-unsafe operations, making it unsuitable for languages like C.

This paper discusses a family of memory models, which we call partitioned
memory models, whose goal is to provide much of the efficiency of the Burstall
model without losing the accuracy of the flat model. These models rely on a
points-to analysis to determine a conservative approximation of which areas of
memory may alias or overlap. The memory is then partitioned into distinct
arrays for each of these areas.

When deciding which points-to analysis performs best in this context, there
are two key attributes to consider: (1) the precision of the analysis (i.e. how many
alias groups are generated); and (2) the ability to track the access size of objects
in the alias group. The first is important because more alias groups means more
partitions and fewer disjointness constraints. The second is important because
if we know that all objects in the group are of a certain access size, then we can
model the corresponding partition as an array whose elements are that size. Af-
ter a review of existing field-sensitive points-to analyses (including Steensgaard’s
original analysis [27], Steensgaard’s field-sensitive analysis [26], and Data Struc-
ture Analysis (DSA) [18]), we introduce a new cell-based points-to analysis and
show that it improves on both of these attributes when compared to existing
analyses. This is supported by experiments using the Cascade verification plat-
form [29].

2 Memory Models for C Program Analysis

Consider the C code in Fig. 1. We will look at how to model the code using the
flat memory model, the Burstall memory model, and the partitioned memory
models.

int a;

void foo() {
int *b = &a;
*b = 0xFFF;
char *c = (char *) b;
*c = 0x0;
assert(a != 0xFFF);

}

Fig. 1. Code with unsafe pointer cast.

a τ3

bτ1

cτ2

Fig. 2. The points-to graph of foo. Each
τi represents a distinct alias group.

Flat model. In the flat model, a single array of bytes is used to track all
memory operations, and each program variable is modeled as the content of
some address in memory. Suppose M is the memory array, a is the location in
M which stores the value of the variable a, and b is the location in M which
stores the value of the variable b. We could then model the first two lines of foo

in Fig. 1 (following SMT-LIB syntax [3]) as follows:

(assert (= M1 (store M b a)) ; M[b] := a
(assert (= M2 (store M1 (select M1 b) #xfff)) ; M[M[b]] := 0xfff
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This is typical of the flat model: each program statement layers another store
on top of the current model of memory. As a result, the depth of nested stores
can get very large. Also, note that C guarantees that the memory regions of
any two variables are non-overlapping. But the flat model must explicitly model
this using an assumption on each pair of variables. This can be done with the
following disjointness predicate, where p and q denote locations of variables, and
size(p) is the size of the memory region starting at location p:

disjoint(p, q) ≡ p+ size(p) ≤ q ∨ q + size(q) ≤ p.

For the code in Fig. 1, the required assumption is: disjoint(a, b)∧disjoint(a, c)∧
disjoint(c, b). Deeply nested stores and the need for such disjointness assertions
severely limit the scalability of the flat model.

Burstall model. In the Burstall model, memory is split into several arrays
based on the type of the data being stored. In Fig. 1, there are four different types
of data, so the model would use four arrays: Mint, Mchar, Mint∗ and Mchar∗. In
this model, a is a location in Mint, b is a location in Mint∗, and c is a location in
Mchar∗. Disjointness is guaranteed implicitly by the distinctness of the arrays.
The depth of nested stores is also limited to the number of stores to locations
having the same type rather than to the number of total stores to memory.
Both of these features greatly improve performance. However, the model fails to
prove the assertion in Fig. 1. The reason is that the assumption that pointers to
different types never alias is incorrect for type-unsafe languages like C.

Partitioned models. In the partitioned memory model, memory is divided
into regions based on information acquired by running a points-to analysis.3 The
result of a standard points-to analysis is a points-to graph whose vertices are
sets of program locations called alias groups. An edge from an alias group τ1 to
an alias group τ2 indicates that dereferencing a location in τ1 gives a location in
τ2. As an example, the points-to graph for the code in Fig. 1 is shown in Fig. 2.
There are three alias groups identified: one for each of the variables a, b, and
c. We can thus store the values for these variables in three different memory
arrays (making their disjointness trivial). Note that according to the points-to
graph, a dereference of either b or c must be modeled using the array containing
the location of a, meaning that the model is sufficiently precise to prove the
assertion. Like the Burstall model, the partitioned model divides memory into
multiple arrays, reducing the burden on the solver. However, it does this in a
way that is sound with respect to type-unsafe behavior.

The points-to analysis employed by the partitioned memory model must de-
rive points-to relations that are also functions. That is, each node must have
only a single successor in the points-to graph. This is because the successor de-
termines the array to use when modeling a pointer dereference. The unification-
based analyses proposed by Steensgaard [27] naturally guarantee this property.

3 A formal presentation of the semantics of the partitioned memory model is presented
in [28].
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However, inclusion-based analyses proposed by Andersen [1] and others violate
it. For this reason, we focus on Steensgaard’s method and its variants.

Partitioned memory models that rely on unification-based points-to analy-
ses are already used in a number of verification tools. For example, SMACK [24]
leverages data structure analysis (DSA) [18], a field-sensitive and context-sensitive
points-to analysis, to divide the memory. SeaHorn [13] uses a simpler context-
insensitive variant of DSA. CBMC [7] and ESBMC [20] also use may-points-to
information to refine their memory models. These tools illustrate the practical
value of partitioned memory models. Note that in each case, the efficiency of
the memory model depends heavily on the precision of the underlying points-to
analysis. The more precise the analysis, the more partitions there are, which
means fewer disjointness constraints and shallower array terms, both of which
reduce the size and difficulty of the resulting SMT formulas.

3 Field-sensitive Points-to Analyses

Field-sensitivity is one dimension that measures the precision of points-to anal-
yses. We say a pointer analysis is field-sensitive if it tracks individual record
fields with a set of unique locations. That is, a store to one field does not affect
other fields. In this sense, a field-sensitive analysis is much more precise than a
field-insensitive one. Unfortunately, field-sensitivity is complicated by the weak
type system of the C language. With the presence of union types, pointer casts,
and pointer arithmetic, fields may not be guaranteed to be disjoint. The orig-
inal Steensgaard’s points-to analysis treats fields as a single alias group, while
his field-sensitive analysis [26] improves the precision by separating fields into
distinct alias groups only if the fields do not participate in any type-unsafe op-
erations. Yong et al. [30] also propose to collapse fields upon detecting a field
access through a pointer whose type does not match the declared type of the
field. However, none of these analyses are able to distinguish fields on heap data
structures (dynamic memory allocations).

Lattner et al. [18] present a data structure based points-to analysis (DSA), a
unification-based, field-sensitive, and context-sensitive analysis. DSA explicitly
tracks the type information and data layout of heap data structures and performs
a conservative but safe field-sensitive analysis. The other key feature of DSA is
that two objects allocated at the same location in a function called from different
call sites are distinguished. It is in this sense that the analysis is context-sensitive.
This feature, however, is orthogonal to our focus in this paper.

DSA computes a Data Structure Graph (DS graph) to explicitly model the
heap. A DS graph consists of a set of nodes (DS nodes) representing memory
objects and a set of points-to edges. Each DS node tracks the type information
and data layout of the represented objects. If two DS nodes or their inner fields
may be pointed to by the same pointer, they are merged together. When two
DS nodes are merged, their type information and data layouts are also merged
if compatible; otherwise, both nodes are collapsed, meaning that all fields are
combined into a single alias group. To illustrate the DS node merging and col-
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lapsing process, we use the code in Fig. 3 as a running example (for simplicity,
we assume pointers are 32 bits in this example).

typedef struct list {
struct list *prev , *next;
int32 data;

} list;

void bar(int32 undef , list **p) {
list *k = malloc(sizeof(list ));
k->data = 1;
p = undef < 0 ?

&k->prev : &k->next;
}

void foo(int32 undef , list **p) {
list *k1 = malloc(sizeof(list ));
list *k2 = malloc(sizeof(list ));
k1->data = 1; k2->data = 2;
p = undef < 0 ?

&k1 ->next : &k2->prev;
}

Fig. 3. Code for running example.
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Fig. 4. DS Graph for function foo and bar (see [18]). Note that the numbers under
each DS node are the offsets of its inner fields in bytes.

In function foo, an alias relationship between k1−>next and k2−>prev is intro-
duced via a conditional assignment. The aliasing of the two fields, as mentioned
above, causes the merging of their containing DS nodes. The merging process
is shown in Fig. 4. Before being merged, the DS nodes pointed to by k1 and k2

are disjoint, and each holds the type information of structure list , including the
field layout. During the process of merging, the DS node pointed by k2 is shifted
by 4 bytes to align the aliased fields and is then merged with the node pointed
to by k1. In the resulting graph, we can see that the aliased fields k1−>next and
k2−>prev are placed together, but the subsequent fields k1−>data and k2−>next

are also placed in the same cell (colored gray), even though they are not aliased.
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In function bar, the conditional assignment introduces an alias relationship
between two fields in the same DS node pointed to by k. In this case, as shown in
Fig. 4, the whole DS node is collapsed and all the fields are merged into a single
alias group. The reason for this is that in DSA, if a DS node is merged with
itself with shifting, this is considered an incompatible merge. In other words,
DSA does not support field sensitivity for records with inner field aliasing.

As shown above, while DSA does support field-sensitive points-to analysis on
heap data structures, the computed alias information is still rather conservative.
By performing the merging process at the object level (DS nodes) rather than at
the field level, invalid alias relationships are introduced. Partly to address these
issues, we developed a novel cell-based field-sensitive (CFS) points-to analysis.

4 Cell-based Points-to Analysis

A cell4 is a generalization of an alias group. Initially, each program expression
that corresponds to a memory location at runtime (i.e. an l-value) is associated
with a unique cell whose size is a positive integer denoting the size (in bytes)
of the values that expression can have. In addition, each cell has a type, which
is scalar unless its associated program expression is of structure or union type
(in which case the cell type is record). Under certain conditions, the analysis
may merge cells. If two cells of two different sizes are merged, then the result
is a cell whose size is >. The analysis maintains an invariant that the locations
associated with any two isolated scalar cells are always disjoint, which makes
the memory partitioning using the analysis possible.

Our analysis creates a points-to graph whose vertices are cells. The graph has
two kinds of edges. A points-to edge plays the same role here as in the points-to
graphs mentioned in the previous section: α ⇀ β denotes that dereferencing
some expression associated with cell α yields an address that must be in one of
the locations associated with cell β. A key contribution of our approach which
improves precision is that unlike other field-sensitive analyses (e.g. [18, 26]), in-
ner cells (fields) may be nested in more than one outer cell (record). Thus, we
use additional graph edges to represent containment relations. A contains edge
α ↪→i,j β denotes that cell α is of record type and that β is associated with a
field of the record whose location is at an offset of i from the record start and
whose size in bytes is j− i. Each cell may have multiple outgoing contains edges
to its inner cells and multiple incoming contains edges from its outer cells.

Fig. 5 shows a simple example. On the left is the memory layout of a singly-
linked list with one element. The element is a record with two fields, a data value
and a next pointer (which points back to the element in this case). The graph,
shown on the right, contains three cells. The square cell is associated with the
entire record element and the round cells with the inner fields (here and in the
other points-to graphs below, we follow the convention that square cells are of

4 We borrow this term from Miné [19], but use it in a different context. Miné aimed
to build a cell-based abstract domain for value analysis, while we target a cell-based
points-to analysis.
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Fig. 5. Concrete memory state and its graph representation.

record type and round cells are of scalar type). The solid edge is a points-to
edge from the next field to the record cell, and the dashed edges are contains
edges from the record cell to the field cells. These contains edges are labeled with
their corresponding starting and ending offsets within the record. The following
properties hold for contains edges:

– reflexivity: α ↪→0,s α, if α is a cell with a numeric size s;

– transitivity: if α1 ↪→i1,j1 α2 and α2 ↪→i2,j2 α3, then α1 ↪→i1+i2,i1+j2 α3;

– linearity: if α1 ↪→i1,j1 α2 and α1 ↪→i2,j2 α3, then α2 ↪→i2−i1,j2−i1 α3 if
i1 ≤ i2 < j2 ≤ j1.
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Fig. 6. CFS points-to graph for function foo and bar.

Let us revisit the running example from Fig. 3. The points-to graphs com-
puted by our cell-based points-to analysis are shown in Fig. 6. In these graphs,
record fields are separated out into individual cells. When field aliasing is de-
tected, the individual field cells are merged (rather than their containing record
cells), and any associated contains edges are kept unchanged. As shown in the
graph on the left, in function foo, fields k1−>next and k2−>prev are merged into
a single cell with contains edges from the record cells pointed to by k1 and k2,
while other unaliased fields are kept separate. In function bar, as shown in the
graph on the right, fields k−>prev and k−>next share the same cell with two
incoming contains edges from the record cell pointed to by k, each labeled with
different offsets. The record cell itself is not collapsed. Note that for these exam-
ples (and unlike DSA), our analysis introduces no extraneous alias relationship.
Below, we explain our analysis in more detail by illustrating how it behaves in
the presence of various type-unsafe operations.
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Union types declare fields that share the same memory region. In a union, all
fields with scalar types (e.g. float or int) are aliased. If there are nested records
in a union, then two nested fields are aliased only if their offset ranges overlap.
Both cases can be captured naturally in our analysis using contains edges.

Pointer arithmetic is particularly problematic for points-to analyses as it
can (in principle) be used to access any location in the memory. We follow the
standard approach of assuming that pointer arithmetic will not move a pointer
outside of the memory object it is pointing to [30]. This assumption, coupled
with the appropriate checks in the verification tool, is still sound in the sense
that if it is possible to access invalid memory, the tool will detect it [10]. In our
algorithm, any cell pointed to by operands of a pointer arithmetic expression is
collapsed, meaning all of its outer record and inner field cells are merged into
a single scalar cell. Consider function buz in Fig. 7. The call to foo(undef, p)

induces the same graph for foo as in Fig. 6. However, the expression ∗(p + undef)

results in this graph being collapsed into a single cell (colored in gray), as shown
on the left of Fig. 9.

list** buz(int32 undef) {
list **p;
foo(undef , p);
*(p + undef) = 0;
return p;

}

Fig. 7. Code with pointer arithmetic.

typedef struct dlist {
struct dlist *prev , *next;

} dlist;

dlist qux(int32 undef) {
list **p;
foo(undef , p);
dist *q = (dist *) p;
return *q;

}

Fig. 8. Code with pointer casting.

Pointer casting creates an alternative view of a memory region. To model
this, a fresh cell is added to the points-to graph representing the new view. To
illustrate, consider function qux in Fig. 8. Again, the function call foo(undef, p)

induces the same graph for foo as in Fig. 6. After the call, pointer p is cast to the
type dlist ∗. A new record cell (colored in gray) is added to the graph as shown in
the middle of Fig. 9. The newly added cell is essentially a copy of the cell pointed
to by p except that the offset intervals are enlarged in order to match the size of
dlist . The casting introduces an alias between k1−>data and k2−>next, as both
may alias with q−>next. By applying the properties of contains edges, the graph
can be simplified into the one on the right of Fig. 9, which precisely captures
the alias introduced by casting.

Another contribution of our analysis is that we track the size of each alias
group (either a numeric value or >). The size enables further improvements
in the memory model: the memory array for an alias group whose size is > is
modeled as an array of bytes, while the memory array for a group whose size is
some numeric value n can be modeled as an array of n-byte elements. For these
latter arrays, it then becomes possible to read or write n bytes with a single
array operation (whereas with an array of bytes, n operations are needed). Not
having to decompose array accesses into byte-level operations reduces the size
and complexity of the resulting SMT formulas.
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Fig. 9. CFS point-to graphs of function buz and qux.

5 Constraint-based Analysis

In this section, we formalize the cell-based field-sensitive points-to analysis de-
scribed above using a constraint framework. Our constraint-based program anal-
ysis is divided into two phases: constraint generation and constraint resolution.
The constraint generation phase produces constraints from the program source
code in a syntax-directed manner. The constraint resolution phase then computes
a solution of the constraints in the form of a cell-based field-sensitive points-to
graph. The resulting graph describes a safe partitioning of the memory for all
reachable states of the program.

5.1 Language and Constraints

For the formal treatment of our analysis, we consider the idealized C-like lan-
guage shown in Fig. 10. To simplify the presentation, complex assignments are
broken down to simpler assignments between expressions of scalar types, static
arrays are represented as pointers to dynamically allocated regions, and a sin-
gle type ptr is used to represent all pointer types. Function definitions, function
calls, and function pointers are omitted.5

t ::= uint8 | int8 | . . . | int64 integer types

| ptr pointer types

| struct{ t1f1; . . . tnfn; }S structure types

| union{ t1f1; . . . tnfn; }U union types

� ::= + | − | ∗ | / operators

e ::= n | x constants, variables

| ∗ e | &e pointer operations

| (t∗) e | e.f cast, field selection

| (t∗) malloc(e) heap allocation

| e1 � e2 binary operation

| e1 = e2 assignment

| e1, e2 sequencing

Fig. 10. Language syntax

Let C be an infinite set of cell variables (denoted τ or τi). We will use cell
variables to assign program expressions to cells in the resulting points-to graph.

5 They can be handled using a straightforward adaptation of Steensgaard’s approach.
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To do so, we assume that each subexpression e′ of an expression e is labeled
with a unique cell variable τ , with the exception that program variables x are
always assigned the same cell variable, τx. Cell variables associated with program
variables and heap allocations are called source variables. To avoid notational
clutter, we do not make cell variables explicit in our grammar. Instead, we write
e : τ to indicate that the expression e is labeled by τ .

Constraints. The syntax of our constraint language is defined as follows:

η ::= i | > | size(τ) i ∈ N
φ ::= i < η | η1 = η2 | τ1 = τ2 | τ1 ⇀ τ2 | τ1 ↪→i,j τ2 | τ1 E τ2

| source(τ) | scalar(τ) | cast(i, τ1, τ2) | collapsed(τ) | φ1 ∧ φ2 | φ1 ∨ φ2
Here, a term η denotes a cell size. The constant > indicates an unknown cell
size. A constraint φ is a positive Boolean combination of cell size constraints,
equalities on cell variables, points-to edges τ1 ⇀ τ2, contains edges τ1 ↪→i,j τ2 and
special predicates whose semantics we describe in detail below. We additionally
introduce syntactic shorthands for certain constraints. Namely, we write i v η
to stand for the constraint i = η ∨ η = >, i ≤ η to stand for i < η ∨ i = η, and
i � η to stand for i ≤ η ∨ η = >.

Constraints are interpreted in cell-based field-sensitive points-to graphs (CF-
PGs). A CFPG is a tuple G = (C, cell , size, source, scalar , contains, ptsto) where

– C is a finite set of cells,
– cell : C→ C is an assignment from cell variables to cells,
– size : C → N ∪ {>} is an assignment from cells to cell sizes,
– source ⊆ C is a set of source cells,
– scalar ⊆ C is a set of scalar cells,
– contains ⊆ C × N× N× C is a containment relation on cells, and
– ptsto : C → C is a points-to map on cells.

For c1, c2 ∈ C, and i, j ∈ N, we write c1
G
↪→i,j c2 as notational sugar for

(c1, i, j, c2) ∈ contains, and similarly c1
G
⇀ c2 for ptsto(c1) = c2. Let contains ′ be

the projection of contains onto C×C: contains ′(c1, c2) ≡ ∃ i, j.contains(c1, i, j, c2).
The functions and relations of G must satisfy the following consistency prop-

erties. These properties formalize the intuition of the containment relation and
the roles played by source and scalar cells:

– the contains ′ relation is reflexive (for cells of known size), transitive, and
anti-symmetric. More specifically,

∀ c ∈ C. size(c) 6= > =⇒ c
G
↪→0,size(c) c (1)

∀
(
c1, c2, c3 ∈ C,
i1, i2, j1, j2 ∈ N

)
. c1

G
↪→i1,j1 c2 ∧ c2

G
↪→i2,j2 c3 =⇒ c1

G
↪→i1+i2,i1+j2 c3 (2)

∀
(
c1, c2 ∈ C,
i1, i2, j1, j2 ∈ N

)
. c1

G
↪→i1,j1 c2 ∧ c2

G
↪→i2,j2 c1 =⇒ c1 = c2 (3)
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– cells that are of unknown size or that point to other cells must be scalar:

∀ c ∈ C. size(c) = > =⇒ c ∈ scalar (4)

∀ c, c′ ∈ C. c G
⇀ c′ =⇒ c ∈ scalar (5)

– the contains relation must satisfy the following linearity property:

∀
(
c1, c2, c3 ∈ C,
i1, i2, j1, j2 ∈ N

)
.

 i1 ≤ i2 < j2 ≤ j1 ∧
c1

G
↪→i1,j1 c2 ∧

c1
G
↪→i2,j2 c3

 =⇒ c2
G
↪→i2−i1,j2−i1 c3 (6)

– scalar cells do not contain other cells:

∀ c, c′ ∈ C, i, j ∈ N. c ∈ scalar ∧ c G
↪→i,j c

′ =⇒ c = c′ (7)

– overlapping scalar cells are equivalent. The notion of overlap is formally
expressed as

overlapG(c1, c2) ≡ ∃
(
c ∈ C,
i1, i2, j1, j2 ∈ N

)
.

(
c

G
↪→i1,j1 c1 ∧

c
G
↪→i2,j2 c2

)
∧
(
i1 ≤ i2 < j1 ∨
i2 ≤ i1 < j2

)
∀ c, c′ ∈ C. c ∈ scalar ∧ c′ ∈ scalar ∧ overlapG(c, c′) =⇒ c = c′ (8)

– cell sizes must be consistent with the contains relation:

∀
(
c1, c2 ∈ C,
i, j ∈ N

)
. c1

G
↪→i,j c2 =⇒

(
0 ≤ i < j ∧
j � size(c1) ∧ j − i v size(c2)

)
(9)

Semantics of Constraints. Let G be a CFPG with components as above.
For a cell variable τ ∈ C, we define τG = cell(τ) and for a size term η we define
ηG = size(τG) if η = size(τ) and ηG = η otherwise. The semantics of a constraint
φ is given by a satisfaction relation G |= φ, which is defined recursively on the
structure of φ in the expected way. Size and equality constraints are interpreted
in the obvious way using the term interpretation defined above. Though, note
that we define G 6|= i < > and G 6|= i = >. Points-to constraints τ1 ⇀ τ2 are

interpreted by the points-to map τG1
G
⇀ τG2 ; contains constraints τ1 ↪→i,j τ2 are

interpreted by the containment relation τG1
G
↪→i,j τ

G
2 ; and source and scalar are

similarly interpreted by source and scalar .
Intuitively, a cast predicate cast(k, τ1, τ2) states that cell τ2 is of size k and

is obtained by a pointer cast from cell τ1. Thus, any source cell that contains τ1
at offset i must also contain τ2 at that offset. That is, G |= cast(k, τ1, τ2) iff:

∀ c ∈ C, i, j ∈ N. c ∈ source ∧ c G
↪→i,j τ

G
1 =⇒ c

G
↪→i,i+k τ

G
2 .

The predicate collapsed(τ) indicates that τ points to a cell c that may be
accessed in a type-unsafe manner, e.g., due to pointer arithmetic. Then, G |=
collapsed(τ) iff

∀ c, c′ ∈ C, i, j ∈ N. τG G
⇀ c ∧ c′ G

↪→i,j c =⇒ c′ = c .
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The predicate τ1 E τ2 (taken from [26]) is used to state the equivalence of
the points-to content of τ1 and τ2. Formally, G |= τ1 E τ2 iff

∀ c ∈ C. τG1
G
⇀ c =⇒ τG2

G
⇀ c .

5.2 Constraint Generation

The first phase of our analysis generates constraints from the target program in
a syntax-directed bottom-up fashion. The constraint generation is described by
the inference rules in Fig. 11. Recall that each program expression e is labeled
with a cell variable τ . The judgment form e : τ |φ means that for the expression
e labeled by the cell variable τ , we infer the constraint φ over the cell variables
of e (including τ). A box with annotated φ in the premise of an inference rule is
used to indicate that φ is the conjunction of the formulas contained in the box.
Thus, the formula in the box is the constraint inferred in the conclusion of that
rule.

For simplicity, we assume the target program is well-typed. Our analysis
relies on the type system to infer the byte sizes of expressions and the field
layout within records (e.g. structures or unions). To this end, we assume a type
environment T that assigns C types to program variables. Moreover, we assume
the following functions: typeof (T , e) infers the type of an expression following
the standard type inference rules in the C language; |t| returns the byte size of
the type t; and offset(t, f) returns the offset of a field f from the beginning of
its enclosing record type t. Finally, isScalar(t) returns true iff the type t is an
integer or pointer type.

The inference rules are inspired by the formulation of Steensgaard’s field-
insensitive analysis due to Forster and Aiken [12]. We adapt them to our cell-
based field-sensitive analysis. Note that implications of the form isScalar(t) =⇒
scalar(τ), which we use in some of the rules, are directly resolved during the rule
application and do not yield disjunctions in the generated constraints.

We only discuss some of the rules in detail. The rule Malloc generates the
constraints for a malloc operation. We assume that each occurrence of malloc in
the program is tagged with a unique identifier l and labeled with a unique cell
variable τ representing the memory allocated by that malloc. The return value
of malloc is a pointer with associated cell variable τ ′. Thus, τ ′ points to τ .

The rules Dir-Sel, Arith-Op, and Cast are critical for the field-sensitive
analysis. In particular, Dir-Sel generates constraints for field selections. A field
f within a record expression e is associated with a cell variable τf . The rule
states there must be a contains-edge from the cell variable τ associated with
e to τf with appropriate offsets. Rule Arith-Op is for operations that may
involve pointer arithmetic. The cell variables τ1, τ2 and τ are associated with
e1, e2, and e1 � e2, respectively. Any cells pointed to by τ1 and τ2 must be
equal, which is expressed by the constraints τ1 E τ and τ2 E τ . Moreover, if
τ points to another cell τ ′, then pointer arithmetic collapses all relevant cells
containing τ ′, since we can no longer guarantee structured access to the memory
represented by τ ′. Rule Cast handles pointer cast operations. A cast can change
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Const
τ = τ

φ

n : τ | φ Seq

e1 : τ1 | φ1 e2 : τ2 | φ2
τ = τ2

φ

e1, e2 : τ | φ1 ∧ φ2 ∧ φ

Assg

e1 : τ1 | φ1 e2 : τ2 | φ2
τ2τ1 τ = τ2

φ

e1 = e2 : τ | φ1 ∧ φ2 ∧ φ
Var

t = x (τ)
t =⇒ (τ)
0|t|ττ

φ

x : τ | φ

Addr

e : τ | φ1
(τ ′)

τ ′τ 0|ptr|τ ′τ ′
φ

&e : τ ′ | φ1 ∧ φ
Deref

e : τ | φ1
t = ∗e

t =⇒ (τ ′)
ττ ′ 0|t|τ ′τ ′

φ

∗e : τ ′ | φ1 ∧ φ

Malloc

mallocl : τ

t =⇒ (τ)
(τ) (τ ′)

τ ′τ 0|ptr|τ ′τ ′ 0|t|ττ

φ

(t∗)mallocl(e) : τ
′ | φ Dir-Sel

e : τ | φ1
t = e
o = tf

t.f =⇒ (τf )
oo+ |t.f|ττf 0|t.f|τfτf

φ

e.f : τf | φ1 ∧ φ

Cast

e : τ1 | φ1 (t∗)l : τ ′2
t =⇒ (τ ′2)
τ1τ

′
1 τ2τ

′
2

0|ptr|τ2τ2 0|t|τ ′2τ ′2
|t|τ ′1τ ′2

φ

(t∗)le : τ2 | φ1 ∧ φ
Arith-Op

e1 : τ1 | φ1 e2 : τ2 | φ2
t = e1 opb e2 t =⇒ (τ)
τ1τ τ2τ 0|t|ττ (τ)

φ

e1 opb e2 : τ | φ1 ∧ φ2 ∧ φ

Fig. 11. Constraint generation rules.

the points-to range of a pointer. In the rule, τ1 and τ2 represent the operand and
result pointer, respectively. τ ′1 and τ ′2 represent their points-to contents. Similar
to malloc, each cast t∗ has a unique identifier l and is labeled with a unique cell
variable τ ′2 that represents the points-to content of the result. The constraint
cast(s, τ ′1, τ

′
2) specifies that both τ ′1 and τ ′2 are within the same source containers

with the same offsets. In particular, the size of τ ′2 must be consistent with |t|
(the size of the type t).

5.3 Constraint Resolution

We next explain the constraint resolution step that computes a CFPGG from the
generated constraint φ such that G |= φ. The procedure must be able to reason
about containment between cells, a transitive relation. Inspired by a procedure
for the reachability in function graphs [15], we propose a rule-based procedure
for this purpose.

The procedure is defined by a set of inference rules that infer new constraints
from given constraints. The rules are shown in Figure 12. They are derived
directly from the semantics of the constraints and the consistency properties of
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CFPGs. Some of the rules make use of the following syntactic shorthand:

overlap(τ, τ1, i1, j1, τ2, i2, j2) ≡ τ ↪→i1,j1 τ1 ∧ τ ↪→i2,j2 τ2 ∧ i1 ≤ i2 ∧ i2 < j1

We omit the rules for reasoning about equality and inequality constraints, as
they are straightforward. We also omit the rules for detecting conflicts. The
only possible conflicts are inconsistent equality constraints such as i = > and
inconsistent inequality constraints such as i < >.

Our procedure maintains a context of constraints currently asserted to be
true. The initial context is the set of constraints collected in the first phase.
At each step, the rewrite rules are applied on the current context. For each
rule, if the antecedent formulas are matched with formulas in the context, the
consequent formula is added back to the context. The rules are applied until
a conflict-free saturated context is obtained. The rule Split branches on dis-
junctions. Note that the rules do not generate new disjunctions. All disjunctions
come from the constraints of the form i � η and i v η in the initial context. Each
disjunction in the initial context has at least one satisfiable branch. Our proce-
dure uses a greedy heuristic that first chooses for each disjunction the branch
that preserves more information and then backtracks on a conflict to choose the
other branch. For example, for a disjunct i v η, we first try i = η before we
choose η = >. Once a conflict-free saturated context has been derived, we con-
struct the CFPG using the equivalence classes of cell variables induced by the
derived equality constraints as cells of the graph. The other components can be
constructed directly from the constraints.

Termination. To see that the procedure terminates, note that none of the
rules introduce new cell variables τ . Moreover, the only rules that can increase
the offsets i, j in containment constraints τ1 ↪→i,j τ2 are Cast and Trans. The
application of these rules can be restricted in such a way that the offsets in the
generated constraints do not exceed the maximal byte size of any of the types in
the input program. With this restriction, the rules will only generated a bounded
number of containment constraints.

Soundness. The soundness proof of the analysis is split into three steps. First,
we prove that the CFPG resulting from the constraint resolution indeed satisfies
the original constraints that are generated from the program. The proof shows
that the inference rules are all consequences of the semantics of the constraints
and the consistency properties of CFPGs. The second step defines an abstract
semantics of programs in terms of abstract stores. These abstract stores only
keep track of the partition of the byte-level memory into alias groups according
to the computed CFPG. We then prove that the computed CFPG is a safe in-
ductive invariant of the abstract semantics. The safety of the abstract semantics
is defined in such a way that it guarantees that the computed CFPG describes
a valid partition of the reachable program states into alias groups. Finally, we
prove that the abstract semantics simulates the concrete byte-level semantics of
programs. The details of the soundness proof are omitted due to space restric-
tions.
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Size1
τ1 ↪→i,j τ2 size (τ1)=k

j ≤ k Size2
τ1 ↪→i,j τ2 size (τ2)=k

j − i = k

Refl
size (τ) = i

τ ↪→0,i τ
Trans

τ1 ↪→i1,j1 τ2 τ2 ↪→i2,j2 τ3

τ1 ↪→i1+i2,i1+j2 τ3

AntiSym
τ1 ↪→i1,j1 τ2 τ2 ↪→i2,j2 τ1

τ1 = τ2

Collapse1
τ1 ↪→i,j τ2 scalar (τ1)

τ1 = τ2
Linear

τ ↪→i1,j1 τ1 τ ↪→i2,j2 τ2
i1 ≤ i2 < j2 ≤ j1
τ1 ↪→i2−i1,j2−i1 τ2

Collapse2
(τ) ττ1 τ ′ ↪→i,j τ1

τ ′ = τ1
Cast

cast(k, τ1, τ2) source (τ)
τ ↪→i,j τ1

τ ↪→i,i+k τ2

Scalar
size (τ) = >
scalar (τ)

Overlap
scalar (τ1) scalar (τ2) overlap(τ, τ1, i1, j1, τ2, i2, j2)

τ1 = τ2

Points
ττ1 ττ2

τ1 = τ2
PtrEq

τ1τ2 τ1τ

τ2τ
Split

φ1 ∨ φ2
φ1 φ2

Fig. 12. Constraint resolution rules

6 Experiments

To assess the impact of different memory models in a verification setting, we
implemented both the flat memory model and the partitioned memory model in
the Cascade verification framework [29], a competitive6 C verification tool that
uses bounded model checking and SMT solving. For the partitioned memory
model, a points-to analysis is run as a preprocessing step, and the resulting
points-to graph is used to: (i) determine the element size of the memory arrays;
(ii) select which memory array to use for each read or write (as well as for each
memory safety check); and (iii) add disjointness assumptions where needed (for
distinct locations assigned to the same memory array). We implemented several
points-to analyses, including Steensgaard’s original and field-sensitive analyses,
the data structure analysis (DSA), and our cell-based points-to analysis.

Benchmarks. For our experiments, we used a subset of the SVCOMP’16
benchmarks [4], specifically the Heap Data Structures category (consisting of
two sub-categories HeapReach and HeapMemSafety) as these contained many
programs with heap-allocated data structures. For HeapReach, we checked for
reachability of the ERROR label in the code. For HeapMemSafety, we checked for
invalid memory dereferences, invalid memory frees, and memory leaks.

6 Cascade placed 3rd in the Heap Data Structures category of SV-COMP 2016 [4].
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Configuration. Like other bounded model checkers, Cascade relies on func-
tion inlining and loop unrolling. It takes as parameters a function-inline depth d
and a loop-unroll bound b. It then repeatedly runs its analysis, inlining all func-
tions up to depth d, and using a set of successively larger unrolls until the bound
b is reached. There are four possible results: unknown indicates that no result
could be determined (for our experiments this happens only when the depth of
function calls exceeds d); unsafe indicates that a violation was discovered; safe
indicates that no violations exist within the given loop unroll bound ; and timeout
indicates the analysis could not be completed within the time limit provided. For
the reachability benchmarks, we set d = 6 and b = 1024; for the memory safety
benchmarks, we set d = 8 and b = 200 (these values were empirically determined
to work well for SV-COMP). Note that Cascade may report safe even if a bug
exists, if this bug requires executing a loop more times than is permitted by the
unroll limit (the same is true of other tools relying on bounded model checking,
like CBMC and LLBMC). For other undiscovered bugs, it reports unknown or
timeout.

HeapReach(81) HeapMemSafety(190)
False(25) True(56) False(83) True(107)

#solved time(s) ptsTo(s) #solved time(s) ptsTo(s) #solved time(s) ptsTo(s) #solved time(s) ptsTo(s)

Flat 19 112.8 - 29 228.7 - 50 357.3 - 38 567.5 -

St-fi 19 96.4 0.06 33 168.3 0.08 54 306.2 0.04 39 548.0 0.03

St-fs 19 92.8 0.14 33 168.5 0.17 58 274.8 0.05 42 527.4 0.05

DSA-local 19 94.6 0.09 33 168.1 0.11 54 305.2 0.07 39 550.4 0.07

CFS 19 69.4 0.11 33 168.3 0.14 66 182 0.05 50 461.8 0.05

Table 1. Comparison of various memory models in Cascade. Experiments were per-
formed on an Intel Core i7 (3.7GHz) with 8GB RAM. The timeout was 850 seconds.
“#solved” is the number of benchmarks correctly solved within the given limits. In the
columns labeled “False”, a benchmark is solved if Cascade found a bug that violates
the specified property. In the columns labeled “True”, a benchmark is solved if Cascade
completed its analysis up to the maximum unroll and inlining limits without finding a
bug. “time” is the average time spent on the benchmarks (solved and unsolved) in each
category. “ptsTo” is the average time spent on the points-to analysis in each category.
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Fig. 13. Scatter plots showing a benchmark-by-benchmark comparison of various mem-
ory models over all the 271 benchmarks. The timeout (TO) was set to 850 seconds.

Table 1 reports results for the flat model (Flat) and partitioned models us-
ing the original (field-insensitive) Steensgaard analysis (St-fi), the field-sensitive
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Steensgaard analysis (St-fs), the context-insensitive DSA (DSA-local),7 and our
cell-based field-sensitive points-to analysis (CFS). More detail is shown in the
scatter plots in Fig. 13. These results show that the baseline partitioned model
(St-fi) already improves significantly over the flat model. Of the partitioned
models, the cell-based model (CFS) is nearly uniformly superior to the others.

To compare the precision of the different points-to analyses, we also computed
the number of alias groups computed by each algorithm. Over the 190 bench-
marks in HeapMemSafety, CFS always computes more or the same number of
alias groups than the other analyses (it is better than DSA-local on 10 bench-
marks, St-fs on 67 benchmarks, and St-fi on 165 benchmarks). The same is true
of the 81 benchmarks in HeapReach, (better than DSA-local on 2 benchmarks,
St-fs on 28 benchmarks and St-fi on 52 benchmarks). The precision advantage
of CFS over DSA-local is somewhat limited because field aliasing does not occur
too frequently in these programs.

The other advantage of CFS is that it tracks the access size of objects in each
alias group. The only other analysis that does this is St-fs, and as a result, St-
fs solves more benchmarks than DSA-local, even though the alias information
computed by DSA-local is much more precise. This shows the advantage of
tracking size information for memory modeling applications.

7 Related Work

Several memory models have been proposed as alternatives to the flat model.
Cohen et al. [8] simulate a typed memory model over untyped C memory by
adding additional disjointness axioms. Their approach introduces quantified ax-
ioms which can sometimes be challenging for SMT solvers. Böhme et al. [5]
propose a variant of Cohen’s memory model. CCured [21] separates pointers by
their usage (not alias information) and skips bounds checking for “safe” pointers.
Quantified disjointness axioms are also introduced. Rakamarić et al. [25] propose
a variant of the Burstall model that employs type unification to cope with type-
unsafe behaviors. However, in the presence of type casting, the model can easily
degrade into the flat model. Havoc [9, 16] refines the Burstall model with field-
sensitivity that is only applicable to field-safe code fragments. Lal et al. [17] split
memory in order to reason about the bitvector operations and integer operations
separately. Frama-C [11] develops various models at different abstraction levels.
However, no attempt is made to further partition the memory.

For points-to analyses in general, we refer the reader to the survey by Hind [14].
Yong et al. [30] propose a framework for a spectrum of analyses from com-
plete field-insensitivity through various levels of field-sensitivity, but none of
these analyses support field-sensitive analysis of heap data structures. Pearce
et al. [22, 23] extends field-sensivity on heap data structures with an inclusion-

7 We used a context-insensitive version of DSA to make a fair comparison because
the other analyses are also context-insensitive. Context sensitivity could be added
to any of them, improving the results.
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based approach, and Balatsouras et al. [2] further improve the precision. How-
ever, none of them are precise enough to analyze field-aliasing.

8 Conclusion

In this paper, we introduced partitioned memory models and showed how to use
various points-to analyses to generate coarser or finer partitions. A key contribu-
tion was a new cell-based points-to analysis algorithm, which improves on earlier
field-sensitive points-to analyses, more precisely modeling heap data structures
and type-unsafe operations in the C language.

In SV-COMP 2016, Cascade won the bronze medal in the Heap Data Struc-
tures category using the cell-based partitioned memory model We conclude that
the cell-based partitioned memory model is a promising approach for obtaining
both scalability and precision when modeling memory.
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