VERMEER: A Tool for Tracing and Explaining

Faulty C Programs

*New York University
TSRI International

Daniel Schwartz-Narbonne*, Chanseok Oh*, Martin Schif’, and Thomas Wies*

Abstract—We present VERMEER, a new automated debugging
tool for C. VERMEER combines two functionalities: (1) a dynamic
tracer that produces a linearized trace from a faulty C program
and a given test input; and (2) a static analyzer that explains
why the trace fails. The tool works in phases that simplify the
input program to a linear trace, which is then analyzed using
an automated theorem prover to produce the explanation. The
output of each phase is a valid C program. VERMEER is able
to produce useful explanations of non trivial traces for real C
programs within a few seconds.

The tool demo can be found at http://youtu.be/ESIKHNJ VerU.

I. INTRODUCTION

Although sophisticated tools have emerged in the past years
that automate many tasks in the software development process,
debugging still remains a time consuming and predominantly
manual activity. To improve automated debugging support, we
present VERMEER, a tool that automatically traces individual
faulty executions of C programs and produces an explanation
of the faulty behavior. The tool is organized in several analysis
passes each of which produces an executable C program. This
maximizes the ease of interaction with the programmer and
yields high interoperability with other analysis tools.

We explain the key functionality provided by VERMEER
through an example. A programmer faced with a bug has
two basic questions: what happened, and why? Consider the
following C code:

1 int a = 100, b=2;

2 while(a > 0){

3 a = abs(—1 *x (a—1));

4 b++;

5

6 assert(b < 4);

Our tool VERMEER helps programmers answer the question
of “what happened” by providing them with a C file which
represents the exact trace of instructions executed by the
program. In fact, the tool provides several views on this trace
at different levels of abstraction.

The first view is simply the linear trace of the executed
instructions where calls to library functions are kept as explicit
calls. The linear trace for the above program is:

tmp5 = (a) — (1);

tmp6 = (—1) * (tmp5);

abs (tmp6);

(b) + (1); // Assigned: 4
1700 more lines

assert(b < 4LL);

1
2
3
4 a
5b
6
7

Currently, VERMEER requires a program specification in the
form of a violated assertion. Implicit bugs can be represented
by adding an assertion, e.g., that a pointer was non-null or an
array index was in-bounds.

The next view is a concrete trace where all calls of library
functions have been replaced by their effect on the program
state:!

tmpS = (a) — (1);

tmp6 (—=1) % (tmp5);

// Call: a = abs(tmp6);

if (tmp6 == —98){ a = 98; }
b= (b) + (1); // Assigned: 4
... 1700 more lines

assert(b < 4LL);

(el B e R

Notice how the call to abs has been replaced by a conditional
assignment that tracks the dependency on the concrete output
of abs on its concrete input.

The programmer still wonders: why did the trace fail? To
help answer this question, VERMEER implements an error ex-
planation algorithm. The generated explanation for the above
trace is

1 b = 2LL; //line: 1
2 /(<=0 (+Db((—2)))
3 b=>b+ 1LL; //line: 4
4 //(<=0 (+ Db (—3)))
5b=>b + ILL; //line: 4
6 //(<=0 (+ b (—4)))
7 assert(b < 4LL); //line: 6

The lines represent instructions, while the comments represent
error invariants [1], [2]. These are program assertions that are
(1) true at that program point (2) sufficient to guarantee that
the error will be reached. In this case, the explanation tells
us that after two executions of the loop, b > 4 becomes an
invariant for the remaining instructions of the trace. VERMEER
therefore decides that all remaining 1700 lines of the trace are
irrelevant for understanding the faulty behavior. That is, the
explanation tells us that the original program failed because
we executed the loop at least two times. Any execution with
two or more iterations of the loop will reach the error.

VERMERER is distributed under a BSD license. The source
code distribution and all benchmark programs are available on
the tool website [3].

I'VERMEER keeps track of the line numbers in the original program that
each instruction in the trace emanated from. We do not show this information
here for conciseness.

This work was supported in part by NSF grant CCS-1350574.

http://youtu.be/E5lKHNJVerU

SMT Solver

Trace

Cilly Analysis Framework

Linearizer Concretizer

Analyzer
Buggy Linear Concrete Error
Program Trace Trace Explanation

Fig. 1. VERMEER architecture

II. ARCHITECTURE

VERMERER is structured as a series of analysis passes, each
of which takes a C program as input, and outputs an executable
C program, as shown in Figure 1. Since each pass performs
a simple transformation, they are easy to test and debug.
In addition, the “linear” and “concrete” traces form useful
abstractions for interfacing with other verification tools.
Linearizer. The first pass takes the original faulty C program,
and uses a custom CILLY [4] analysis plugin to produce an
annotated executable. When this new program is executed,
it emits a loop-free, branch-free C program which contains
every instruction executed by the original program (it also
inlines all function calls for which the original source code
was available). We refer to the output of this process as a
“linear trace”.

Concretizer. The linear trace can then be processed by a
second custom CILLY analysis plugin to produce a second an-
notated executable which, when executed, emits a C program
in which all interactions with the environment are represented
by their concrete effect on local state. In particular, all external
function calls including 1O are represented by a combination
of their return value and side effects and all heap memory is
transformed into local variables. We refer to the output of this
process as a “concrete trace”.

Trace Analyzer. The trace analyzer inputs a concrete trace,
and applies our fault abstraction algorithm described in [1],
[2]. This algorithm uses a combination of static slicing and
an SMT solver to generate an annotated trace which contains
only the statements necessary for the fault along with an
explanation for why those statements mattered.

III. IMPLEMENTATION
A. Logging format

Input. VERMEER is capable of handling almost all C con-
structs, including memory allocation, function pointers, struc-
tures, arrays, library functions and IO. Operation with side-
effects such as copying structures and IO are handled by using
wrapper functions, which we have been adding to VERMEER
on an as-needed basis when we encounter a benchmark that
requires them. Floating point values are difficult to represent
exactly, and the trace may suffer from round-off-error if
floating point is used. Inline assembly could be handled using

the techniques from [5]. Support for concurrency is ongoing
work.

Output. Traces generated by VERMEER are valid C programs.
VERMEER traces can be compiled and executed using standard
compilers. They can be used as input to any C analysis tool.
As an added benefit, since VERMEER traces are standard C
programs, they are human readable.

B. Linearizer

The basic design of the linearizer and concretizer is simple:
we use a CILLY C program analysis plugin (719 lines of
OCAML code) to create an annotated program in which every
statement is preceded by a call to a logging function which
records the program location and program statement to a log.
Currently, this function directly prints C instructions as strings
to a file, but it would be possible to use a binary encoding if
required.

Normalizing the AST. One challenge for analyzing C
code is that a single C line of code may contain sev-
eral logical operations, which can make it hard to ana-
lyze. (e.g. consider for (1=0; j>=0&&1<=5; i++, j++) or
ali]l->b = c[j]->d). We take advantage of the “sim-
plify” option in CILLY to transform the program into simple
three-address code before processing it. This also reduces
the work of further analysis passes, because it ensures that
operations in the trace will appear in a canonical form.
Inlining functions. VERMEER inlines function calls whenever
possible. Since different functions may have local variables
with conflicting names, we prefix each variable with the func-
tion name. We handle recursive function calls by maintaining
a “scope index” which counts the current function stack depth.
The variable x used in function £ with stack depth 3 would
therefore be £___3__ x. This encoding has an added benefit
of making the current call context explicit in the trace.
Post-processing. If the program under test has a crash, then
the log will end at the statement that triggered the crash, which
may not constitute a valid C program. We use a PERL script
to post-process the trace into a valid program.

C. Concretizer

Like the linearizer, the concretizer is a CILLY plugin (793
OCAML LoC) which compiles a linear trace into a program
which, when run, will emit a concrete trace.

Concrete memory accesses. One of the biggest challenges
for static analysis is tracking heap memory accesses. Because
we are dealing with a simple linear trace, we can determine
at runtime the location of every memory access, and replace a
heap memory access to location 0x204 8 with the correspond-
ing operation to local variable mem_0x2048. For efficiency,
we currently assume that the program was type-safe, and do
not support type-unsafe operations such as bit-casting.

Concrete function calls. Calls to functions that cannot be
inlined, such as library functions, are represented by recording
their effect into the trace. For side-effect-free calls, this simply
means recording the function’s return value. VERMEER has
a mechanism for wrapping functions with side-effects so that

TABLE I
SIZE AND EXECUTION TIME OF TRACES.

Prog. Execution Time (ms) Linear Tr. Size | Conc. Tr. Size # Instructions (# Original Lines)

Program LoC | Prog. Linear Conc. LoC KB LoC KB Sliced Expl. Fast Abs. Full Abs.
simple 13 48 46 51 413 17 441 24 506 (203) 203 (3) 4 (3) 503)
tcas 137 43 47 50 342 12 367 17 9 (5) 6 (4) 6 (4) 6 (4)
schedule2 301 48 53 58 6917 335 7076 389 389 (228) 24 (4) 24 (4) 24 (4)
replace 513 40 53 51 4329 187 3454 190 269 (184) 48 (25) 48 (25) 48 (25)
gzip 4956 40 46 47 2903 152 3305 169 353 (152) 82 (31) 74 (30) 74 (30)
sed 9293 44 54 46 6930 348 3054 167 116 (57) 11 (8) 11 (8) 11 (8)
grep 9521 46 108 135 | 36162 2162 | 40389 2479 | 3988 (1451) 727 (710) 39 (22) 40 (23)
MiniSat 1100 48 114 118 | 49793 2568 | 38057 2474 | 4511 (2100) 128 (75) 126 (73) 126 (73)

they will emit their side-effects onto the trace. These wrappers
have been written on an as-needed basis and currently cover
a sufficient portion of stdlib to enable our benchmarks.

In order to capture the functional dependence of calls on
their output, VERMEER guards its concrete function represen-
tation inside a conditional which represents the known inputs
to the function, as shown in the concrete trace in § L.

D. Trace Analyzer

The trace analyzer consists of three separate sub-phases.

Slicing. First, we reduce the concrete trace using a simple data-
flow aware (but data-value insensitive) static slicing algorithm,
implemented as an OCAML plugin to CILLY (228 LoC).
Next, we convert the concrete trace to SSA form (207 lines
of OCAML code) in order to enable the data-value sensitive
analysis sub-phases.
Explanation. Next, we use an SMT solver to compute the
unsat core of the SSA trace. This reduces the trace to the
relevant statements. The reduced trace is then passed as
another SMT query, which computes Craig interpolants to
obtain the error invariants that explain the causes of the fault.
Abstraction. Finally, we use the computed error invariants to
abstract the trace to a more compact error explanation. The
abstraction eliminates those statements in the reduced trace
that have no effect modulo the computed error invariants.
For example, in the trace that we considered in § I, it is
this step that eliminates the 1700 instructions that come
from the redundant loop iterations. We have implemented two
versions of this algorithm. The first version, which we call fast
abstraction, simply propagates the error invariants from the
previous step across the trace to identify redundant statements.
This is the original algorithm described in [1]. The second
algorithm, which we call full abstraction, computes new in-
terpolants after each successful propagation. This ensures that
the error invariants in the resulting explanation are inductive
with respect to the remaining non-redundant statements. Full
abstraction typically produces explanations that are easier to
understand. However, this analysis is also more costly because
it involves repeated calls to the interpolating SMT solver.
Interpolation involves proof-producing SMT queries, which
are slower than regular non proof-producing queries.

In our implementation, we are using the SMT solver
SMTINTERPOL for all interpolation queries and Z3 for all
remaining queries. However, it would be easy to replace these

by other solvers and we are planning to add support for more
solvers in the future. Currently, we present invarients in SMT-
LIB format. Work to convert invariants to simplified C is
ongoing.

IV. EVALUATION

Benchmarks. We evaluated VERMEER using a set of real
world benchmarks drawn from the Software-artifact Infrastruc-
ture Repository (SIR) [6]. SIR benchmarks come pre-packaged
with the inputs necessary to trigger the bug. Since VERMEER
currently focuses on data-flow analysis, we preferentially
chose examples which had data-flow related bugs. In addition,
we have added two new benchmarks. MINISAT is a SAT solver
written in C [7], which we seeded with a fault and the input
required to reach the bug. We have also included the “simple”
example from our tool demo. The types of faults range from
memory access violations to semantic errors. All experiments
were run on an Intel Core i7-4770 CPU @ 3.40GHz with
16GB of RAM.

As described in § III-C, we concretized the environment
for our benchmark programs using wrappers for stdlib
functions. In addition, a few programs required some manual
modification to work in our tool. MINISAT and schedule2
use floating point, which is currently not supported by SMT-
INTERPOL, so we modified those programs to use a fixed point
representation. grep uses struct- and union-copying, which we
converted to field-wise copying. tcas, schedule2 and replace
were written for Solaris, and required minor modifications to
compile on Linux.

Results. Table I and Table II summarize the results of our
evaluation. The first column of Table I shows the size of the
programs in terms of the number of lines. The next three
columns show execution time of the faulty program, the binary
that generates its linearized trace, and the binary that generates
the concretized trace, respectively, all of which follow the
same execution path to reach the seeded fault. The next four
columns show the size of the intermediate error traces. The
final columns show how long each “analyzed” trace is. The
first set of numbers in each column represents the number
of canonical instructions that have been expanded from actual
code, while the number in parenthesis represents the number of
lines of code.? For example, we reduced an actual error trace

2Since one line of original C code typically expands to multiple instructions,
we count consecutive instructions with a same line number tag as one line.

TABLE 11
TIME SPENT IN EACH STEP OF THE TRACE ANALYSIS (SEC.)

Static SSA SMT Time (#SMT Calls)
Program Slicing | Conv. | Expl. Fast Abs. Full Abs.
simple 0.06 0.08 0.65 0.94 (206) 0.48 (38)
tcas 0.07 0.06 022 0.22(12) 0.28 (36)
schedule2 0.19 0.07 032 0.34 (31 0.69 (128)
replace 0.12 0.07 042 0.53 (88) 1.26 (314)
gzip 0.10 0.06 0.67 0.90 (148) 2.26 (498)
sed 0.09 0.06 022 0.26 (22) 0.36 (71)
grep 9.95 0.47 599 998 (1444) 171.60 (268)
MiniSat 5.15 0.54 1.34 1.79 (256) 3.95 (888)

of the faulty program grep (40,389 LoC) to a surprisingly
small sequence of 40 canonical instructions that concisely
explains the reason for the error, which maps back to 23
lines of original code. As discussed in § III-D, each of these
instructions is associated with an invariant that describes why
it led to the bug. Table II shows time required to run the
analyzer in seconds, broken down into three sequential phases:
simple static-slicing, SSA conversion, and the computation
of the abstract trace using SMT. We can see that both the
“explain” and “fast abstraction” algorithms are extremely fast,
completing in seconds (often less than a single second). As
expected “full abstraction” is somewhat slower, because it
makes more calls to the computation intensive interpolation
procedure. We are exploring a number of techniques including
the use of other SMT solvers, incremental solving, and trace
windowing to improve the performance of this analysis.

Our results show that VERMEER scales to work in real-
world benchmarks giving succinct explanations to errors
within seconds.

V. RELATED WORK AND CONCLUSION

Lately several automated debugging tools have emerged
that use theorem provers to generate fault explanations from
proofs of unsatisfiability. One of the first tools of this kind was
BUGASSIST [8], which uses a MAX-SAT solver to identify
a small subset of statements in a C that are likely candidates
for the root cause of an observed bug. Similar to VERMEER,
whose underlying algorithm is described in [1], [2], the root
cause candidates are computed from an unsatisfiable formula.
Our approach uses interpolation instead of MAX-SAT and
focuses on fault explanation rather than localization. The
explanations generated by VERMEER contain error invariants
that further highlight the relevant variables and the relation
between them. Error invariants also often yield more compact
explanations than a pure MAX-SAT analysis. BUGASSIST
does not use dynamic tracing to reduce and simplify the for-
mula, which limits its scalability. However, our dynamic tracer
could be combined with BUGASSIST. A hybrid approach that
combines our interpolation-based analysis with a MAX-SAT
analysis is described in [9].

Another related approach for explaining errors found by
static analysis tools is described in [10]. This approach uses
abduction, which can be considered the logical dual of inter-

polation. As in the case of BUGASSIST, it could benefit from
the dynamic tracing implemented in VERMEER.

Fault localization with theorem provers has been success-
fully applied in the hardware domain. For instance, [11] and
[12] use proofs to localize hardware design errors. VERMEER
targets software, which brings a different type of challenges.

There are other approaches that have successfully com-
bined static and dynamic analysis for fault localization and
explanation in different contexts. The authors of [13] use
unsat cores to improve the quality of a testing-based fault
localization. F3 [14] uses a combination of static and dynamic
analysis to localize faults by finding closely related passing
and failing test cases. Chandra et al. [15] propose a technique
called angelic debugging which identifies expressions that
are likely to cause an execution to fail. The advantage of
using VERMEER in comparison to these approaches is that
VERMEER only requires a single failing execution which
makes it easier and cheaper to use. However, taking into
account successful computations in the fault analysis can be
beneficial in certain cases.

In our future work, we will extend VERMEER with the
flow-sensitive fault localization technique described in [16], so
that our trace explanation algorithm can also track branching
conditions. Moreover, to further increase the scalability of the
tool, we will implement the windowing technique described
in [2]. This way, the SMT solver will only operate on a
bounded window of the trace at any time.

REFERENCES

[1] E. Ermis, M. Schéf, and T. Wies, “Error invariants,” in FM, 2012.

[2] C. Oh, M. Schif, D. Schwartz-Narbonne, and T. Wies, “Concolic fault
abstraction,” in SCAM, 2014.

[3] “Vermeer tool web page,” http://cs.nyu.edu/wies/software/vermeer.

[4] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer, “CIL: Intermedi-
ate language and tools for analysis and transformation of C programs,”
in CC, 2002.

[5] S. Maus, M. Moskal, and W. Schulte, “Vx86: x86 assembler simulated
in C powered by automated theorem proving,” in AMAST, 2008.

[6] H. Do, S. G. Elbaum, and G. Rothermel, “Supporting controlled exper-
imentation with testing techniques: An infrastructure and its potential
impact.” EMSE, 2005.

[7]1 N. Eén and N. Sorensson, “An extensible sat-solver,” in SAT, 2003.

[8] M. Jose and R. Majumdar, “Bug-Assist: Assisting fault localization in
ANSI-C programs,” in CAV, 2011.

[9]1 V. Murali, N. Sinha, E. Torlak, and S. Chandra, “What gives? a hybrid
algorithm for error trace explanation,” in VSTTE, 2014.

[10] I. Dillig, T. Dillig, and A. Aiken, “Automated error diagnosis using
abductive inference,” in PLDI, 2012.

[11] I Beer, S. Ben-David, H. Chockler, A. Orni, and R. Trefler, “Explaining
counterexamples using causality,” in CAV, 2009.

[12] A. Suelflow, G. Fey, R. Bloem, and R. Drechsler, “Using unsatisfiable
cores to debug multiple design errors,” in GLSVLSI, 2008.

[13] D. Gopinath, R. N. Zaeem, and S. Khurshid, “Improving the effective-
ness of spectra-based fault localization using specifications,” in ASE,
2012.

[14] W. Jin and A. Orso, “F3: Fault localization for field failures,” in ISSTA,
2013.

[15] S. Chandra, E. Torlak, S. Barman, and R. Bodik, “Angelic debugging,”
in ICSE, 2011.

[16] J. Christ, E. Ermis, M. Schif, and T. Wies, “Flow-sensitive fault
localization,” in VM CAI, 2013.

http://cs.nyu.edu/wies/software/vermeer

