
Structural Counter Abstraction

Kshitij Bansal1, Eric Koskinen1?, Thomas Wies1, and Damien Zufferey2??

1 New York University
2 IST Austria

Abstract. Depth-Bounded Systems form an expressive class of well-structured
transition systems. They can model a wide range of concurrent infinite-state sys-
tems including those with dynamic thread creation, dynamically changing com-
munication topology, and complex shared heap structures. We present the first
method to automatically prove fair termination of depth-bounded systems. Our
method uses a numerical abstraction of the system, which we obtain by system-
atically augmenting an over-approximation of the system’s reachable states with
a finite set of counters. This numerical abstraction can be analyzed with existing
termination provers. What makes our approach unique is the way in which it ex-
ploits the well-structuredness of the analyzed system. We have implemented our
work in a prototype tool and used it to automatically prove liveness properties of
complex concurrent systems, including nonblocking algorithms such as Treiber’s
stack and several distributed processes. Many of these examples are beyond the
scope of termination analyses that are based on traditional counter abstractions.

1 Introduction

Graph transformation systems [8] are a well-studied formalism for describing concur-
rent computations. A depth-bounded system [16, 25] is a graph transformation system
for which there exists a bound on the length of all simple (i.e. acyclic) paths in all
reachable graphs. Depth-bounded systems are also well-structured transition systems
(WSTS) [9]. This makes them an attractive target for automated analysis because there
are generic algorithms for deciding a number of verification problems for WSTS [1].

Depth-bounded systems are also among the most expressive classes of WSTS, sub-
suming e.g. Petri nets and their monotonic extensions [17]. They can model a wide
range of concurrent systems including those with dynamic thread creation, dynamically
changing communication topology, and complex shared heap data structures. Many
concurrent systems are depth-bounded. For instance, Actor-style message passing sys-
tems often fall into this class. Other systems have natural depth-bounded abstractions
that preserve important properties. For example, consider the lock-free stack due to
Treiber [24] (see Figure 1), which uses atomic compare-and-swap instructions to im-
plement nonblocking stack operations. This algorithm can be abstracted to a depth-
bounded system by ignoring the order of the elements in the stack. This abstraction

? Supported in part by the CMACS NSF Expeditions in Computing award 0926166.
?? Supported in part by the European Research Council (ERC) Advanced Investigator Grant

QUAREM and by the Austrian Science Fund (FWF) project S11402-N23.

preserves the termination/progress behavior of the algorithm. Similar depth-bounded
abstractions can be obtained for a wide variety of concurrent algorithms.

In this paper, we present the first method to automatically prove fair termination of
depth-bounded systems. We focus on a notion of weak fairness that is consistent with
the finite delay property for Petri nets [4]. However, our technique also extends to other
fairness conditions. Many liveness properties of practical interest (including progress
guarantees: wait-, lock-, and obstruction-freedom) are reducible to termination under
weak fairness. The problem is difficult; it subsumes the structural termination problem
for transfer nets (i.e. termination for all possible input markings), which is undecid-
able [15]. Despite this difficulty, we show that one can build on existing verification
techniques for WSTS to obtain an approximate analysis for this problem that is both
practical and sufficiently precise to prove fair termination of complex systems.

The key technical contribution of this paper is a method that automatically con-
structs a precise numerical abstraction of a depth-bounded system from a precomputed
inductive invariant of the system. The inductive invariant is assumed to be given as
a finite set of nested graphs in which nested subgraphs can be unfolded arbitrarily of-
ten. Thus, each nested graph is a symbolic representation of the (infinite) set of concrete
graphs obtained by such unfoldings. We associate a counter with each of the nested sub-
graphs. Each counter tracks how often the associated subgraph occurs in a represented
concrete graph. From these augmented nested graphs we then compute a numerical
transition system that simulates the depth-bounded system. This so-called structural
counter abstraction can then be analyzed using existing termination provers. The num-
ber and meaning of counters in the numerical abstraction is not fixed a priori but, in-
stead, depends on the structure of the reachable configuration graphs (described by the
inductive invariant). Our method thus provides a more precise alternative to traditional
counter abstractions [2, 6, 20] for concurrent systems.

The benefit of our approach is that it can utilize existing reachability analyses for
depth-bounded systems to obtain the inductive invariant [26], and existing termination
analyses for numerical programs [5, 21]. We have implemented our method in a proto-
type tool and applied it to prove liveness properties of various concurrent systems, in-
cluding nonblocking algorithms such as Treiber’s stack, as well as distributed processes.
These systems are beyond the scope of traditional counter abstraction techniques.

Contributions. We are the first to present an automatic technique for proving fair ter-
mination of depth-bounded systems. Our technique enables the automated verification
of liveness properties for a large class of concurrent infinite-state systems. What makes
our approach unique is the way in which it exploits the well-structuredness of the an-
alyzed system. Our algorithmic technique of computing a numerical abstraction from
an inductive invariant, which we introduce in this paper, promises interesting applica-
tions beyond depth-bounded systems and liveness. For instance, the same technique
can be used to strengthen a given inductive invariant of a depth-bounded system with
numerical constraints, enabling proofs of complex safety properties.

2

struct node {
struct node *next;
value t data;

};

struct stack {
struct node *Top;

};
struct stack *S;

void push(value t v) {
struct node *t, *x;
x = alloc();
x→data = v;
do { t = S→Top; x→next = t; }
while (¬CAS(&S→Top,t,x));

}

void init() {
S = alloc();
S→Top = NULL;

}

value t pop() {
struct node *t, *x;
do {
t = S→Top;
if (t == NULL) return EMPTY;
x = t→next;

} while (¬CAS(&S→Top,t,x));
return t→data;

}

stack

spawn
stack

spawn

pc1

node

spawn

nwaps

stack

nwaps
node

nwaps

pc1

node

stack

pc2

nwaps nwaps

node

node

stack

pc2

node

node

stack

nwaps nwaps

node

node

stack

pc2

node

stack

pc1

node

node node

x

Top

Top

Top Top

x

t

x

Top Top

spawn

node

stack

Top S

S

SS

S

St t

Initial
Graph

Nwaps

Spawn

Prepare Succeed

Fail

(i) (ii)

(iii) (iv)

(v)

Fig. 1. Source code of Treiber’s stack [24] on the left and its abstraction as a depth-bounded
graph transformation system on the right.

2 Overview

2.1 Motivating Example

Consider Treiber’s stack [24], a non-blocking algorithm, given in the C-like code in
Fig. 1. The algorithm implements a stack with a simple linked-list. The two operations,
push and pop use the compare-and-swap (CAS) instruction to atomically modify a
location in memory. CAS(l,v,v’) atomically examines the value at location l and,
if it is equivalent to v, sets l to value v’. In this section, we will describe how we are
able to prove lock-freedom of this algorithm via a reduction to fair termination of a
depth-bounded system.

We can represent Treiber’s stack algorithm as a depth-bounded system, by abstract-
ing over the values and order of the elements in the stack. A depth-bounded system is
a transition system whose states are graphs such that there is a bound on the length of
all simple paths in all reachable graphs of the system. In the depth-bounded abstraction
of Treiber’s stack, the graphs represent the state of the heap, i.e., the linked list imple-
menting the stack, and thread objects describing the local states of all clients currently

3

executing push and pop operations. The abstraction is obtained from the concrete tran-
sition system of Treiber’s stack by ignoring the values of next pointers connecting the
vertices in the linked list of the stack. In this abstraction, there may still be unboundedly
many elements in the stack as well as unboundedly many clients operating on the stack.
However, since the list vertices are no longer connected, they can no longer form simple
paths of arbitrary length in the heap graph. At this level of abstraction, push and pop
become indistinguishable. Both operations have the same control-flow structure: they
iteratively read the top of the stack and attempt to modify it until the CAS operation
succeeds. The actual modification of the stack is non-deterministic in both operations.

Depth-bounded abstractions of programs can be computed automatically from the
program’s source code using shape analysis techniques. These techniques are orthog-
onal to the contribution of this paper. In Fig. 1 we give the graph rewriting system for
the depth-bounded abstraction of Treiber’s stack. The initial state is a graph consisting
of the vertex spawn, indicating that clients can be spawned, and the stack and its Top
element which is some node. There are five rewrite rules. (i) The Spawn rule replaces
a stack vertex with an identical stack vertex that is connected to a new vertex pc1 rep-
resenting a client in an initial thread state before the CAS (pc1 refers to its owning stack
via edge S). The dotted line indicates how the left-hand-side of the rule is replaced by
the right-hand-side: the stack vertex on the left is replaced with the stack vertex on the
right. (ii) Spawning may cease when the Nwaps rule is applied. Here, the spawn vertex
is replaced with a nwaps vertex. The effect is that both the Spawn and Nwaps rules are
disabled, but the remaining rules now become enabled. (iii) In the Prepare rule, a client
reads the stack’s Top pointer and prepares a new element (pointed to by x) to be pushed
or popped onto the stack. There are then two cases that correspond to whether or not
the CAS operation succeeds (depending on whether the local pointer t agrees with Top).
(iv) In the Succeed case, the stack is updated to point to the new element and the old
element is disregarded. This is a generalization that encompasses both push and pop.
(v) Alternatively, the CAS may fail, as given by the Fail case. The stack is unchanged
and the client forgets what it read and retries.

We can prove that Treiber’s stack is lock-free by showing that its depth-bounded ab-
straction always terminates modulo a weak fairness constraint. The fairness constraint
is that the Nwaps rule cannot be continuously enabled without being applied, i.e., a fair
run of the system will only spawn finitely many clients. It does not matter whether we
allow process spawning only in an initial phase (as in our model), or at any time.

The key contribution of this paper is a technique that automatically constructs a pre-
cise numerical abstraction of a depth-bounded system from a given inductive invariant
of the system. We refer to this numerical abstraction as the structural counter abstrac-
tion. The structural counter abstraction then enables us to prove weakly fair termination
of the system. Our approach utilizes existing reachability analyses for well-structured
transition systems to obtain the inductive invariant, and existing termination analyses
for numerical programs to prove termination of the structural counter abstraction. In the
remainder of this section, we explain the construction of the counter abstraction through
the example of Treiber’s stack.

4

2.2 Constructing the Structural Counter Abstraction

Nested graphs. Above we saw that graph rewrite rules transform a subcomponent of a
concrete graph into another concrete graph. However, we will need to work with (po-
tentially infinitely many) instances of graph subcomponents. So we instead work with
nested graphs (formal definitions provided in Section 5) in which subcomponents are
given counters that indicate an upper bound on how many times they may be duplicated.
For Treiber’s stack, consider this abstract graph on the left hand side:

stack
pc1

node
n

(n = m = 2 and l = 3)
Nested graph

pc2
l

stack
pc1

node

node

A concrete unfolding

pc2

pc1node node
pc2

pc2

Top

Top

x x

x

x

S
S

S

S
S
S

S

m

The set of concrete graphs represented by this nested graph are those in which the dotted
subcomponents are repeated some number of times but at most as many times as de-
termined by the associated counter. For instance, the left dotted subgraph is repeated at
most n times. A component may itself contain nested sub-components. An example of
an unfolded concrete graph is given on the right hand side. Notice that the pc2 vertices
occur at different frequencies per node vertex. Also note that counters always refer to
the total number of copies of their component. This representation can be thought of as
a more precise alternative to counter abstractions [2, 6, 20], in that we associate coun-
ters with nested graph components rather than merely program locations. We say that a
nested graph Ĝ1 is covered by nested graph Ĝ2 if the set of concrete graphs obtainable
from unfoldings of Ĝ2 is contained within the set of concrete graphs obtainable from
unfoldings of Ĝ1. Determining whether Ĝ2 covers Ĝ1 is decidable and, as we will see,
helps ensure that the structural counter abstraction can be effectively computed.

Obtaining the structural counter abstraction. We begin with a nested graph repre-
sentation of the inductive invariant. For Treiber’s stack the invariant is Ĝ1 and Ĝ2 in
Fig. 2. This invariant (obtained, e.g., via [26]) is a finite set of nested graphs and is an
over-approximation of the reachable states of the system. Ĝ1 describes states in which
spawning may still occur (indicated with a spawn vertex) and Ĝ2 describes states in
which spawning has ceased (indicated with a nwaps vertex) and arbitrarily many clients
have performed Prepare, Suceed or Fail.

We begin to construct the structural counter abstraction by associating a counter
variable with each subcomponent of each nested graph in the inductive invariant. For
example in Fig. 2, we have established counter variables a, b, c, d with components of
Ĝ1 and additional counter variables e, f, g, h in Ĝ2. In our generation of the structural
counter abstraction, we leverage the fact that the inductive invariant is closed under
application of rewrite rules. That is, whenever we apply a rewrite rule to a nested graph
Ĝ in the inductive invariant, we obtain Ĥ that is already covered by some other nested
graph Ĝ′ in the invariant.

5

Prepare

pc1

stack

node

G2

pc2

node

node

Top

x

t

t

S

S

Spawn

f

g
h

nwaps
e

a

b

c

pc2

node
x

S

pc1

stack

node

Top

spawn
d

a

b
c

S

pc1

stack

node pc2

node

node

Top

x

t

t

S

S

f

g
h

nwaps
e

a

b

c

pc2

node
x

S

pc2

i

S

node
x

t

Nwaps

Succeed

Fail

⟨

G1

⟨

H4

⟨

H5

⟨

H3

⟨

H6

⟨

H7
⟨

Fig. 2. Structural counter abstraction for Treiber’s stack. Numerical transition constraints are
omitted for readability. Here the inductive invariant is given by nested graphs bG1 and bG2.

To construct the abstraction, we apply each rewrite rule, one at a time, for every
possible match in one of the nested graphs in the invariant. For example, in Fig. 2 we
can apply the Prepare rule as follows. We first unfold one instance of the pc1 vertex a in
Ĝ2, obtaining a separate pc1 vertex to which we apply the Prepare rule. This produces
a new nested graph Ĥ3 that extends Ĝ2 with a new subgraph. We add a new counter
variable i for this new subgraph in Ĥ3. Notice that, because the inductive invariant is
maximal, Ĥ3 is covered by the existing graph Ĝ2 (hence the dotted edge from Ĥ3 to
Ĝ2). It is covered because the isomorphic subgraphs with associated counters i and h in
Ĥ3 can both be represented by the subgraph with associated counter h in Ĥ3. From the
point of view of the concrete graph transformation system, we can think of this covering
edge as an ε-transition: every subsequent application of a rewrite rule to Ĥ3 can also
be applied to Ĝ2. The structural counter abstraction is a numerical transition system
that reflects the corresponding changes to the counter values when rewrite and covering
edges between nested graphs are taken. There are several other possible instances where
rules can be applied to this inductive invariant. (These involve graphs Ĥ4, Ĥ5, Ĥ6, and
Ĥ7 which have been omitted for lack of space.) For example, one can apply the Spawn
rule in Ĝ1 and obtain Ĥ4 which has two pc1 subgraphs. This new graph Ĥ4 is, again,
covered by Ĝ1 and the two pc1 subgraphs can be merged into the one pc1 subgraph in
Ĝ1.

Structural counter abstraction. The structural counter abstraction is represented as a
simple control-flow graph program N = (Locs, s0,Vars, ∆). Here, Locs refers to
the control locations. There is one location per nested graph in the inductive invariant,
respectively, per nested graph obtained by application of a rewriting rule. The variables
Vars are the structural counters in the nested graphs, and ∆ is a set of commands that
change the counter values according to the rewriting and covering steps. s0 is the initial
state. An excerpt of the structural counter abstraction for Treiber’s stack that captures

6

parts of Fig. 2 is as follows:

N ≡ ({`1, `2, `3, `4, `5, `6, `7}, s0, {a, b, c, . . . }, {(`2, δ23, `3), (`3, δ32, `2), ...}) where

s0 ≡ (`1, {b 7→ 1, c 7→ 1, d 7→ 1, 7→ 0})
δ23 ≡ a′ = a− 1 ∧ i′ = i+ 1 ∧ Id|{a,i} δ32 ≡ h′ = h+ i ∧ i′ = 0 ∧ Id|{h,i}

Id|S is the identity mapping on the variables, excluding those in S. The transition
constraint δ23 captures the application of the Prepare rule on Ĝ2 yielding Ĥ3. The
transition constraint δ32 captures the covering transition from Ĥ3 back to Ĝ2. The initial
state s0 encodes the initial graph of the system which consists of one spawn, one stack,
and one node vertex. The fairness constraints on the original system can be translated
to fairness constraints on the structural counter abstraction in a straightforward manner.
The structural counter abstraction we produce is then fit to be analyzed by an existing
termination analysis tool such as Terminator [5] or ARMC [21].

Prototype. In Section 6 we describe our prototype tool that automates all steps required
to prove fair termination of depth-bounded systems: generation of the inductive invari-
ant, construction of the structural counter abstraction, and the final termination proof.
It is able to prove fair termination of the Treiber stack model in less than 10 seconds. A
simple counter abstraction that distinguishes only between processes at different con-
trol locations would yield a system with fair infinite traces. It is crucial to distinguish
between the processes at location pc2 that may still succeed and those that are bound to
fail. This is achieved by our more fine-grained structural counter abstraction.

3 Background

Posets and wqos. A quasi-ordering ≤ is a reflexive and transitive relation ≤ on a set
X . In the following X(≤) is a quasi-ordered set. The downward closure of Y ⊆ X is
↓Y = {x ∈ X | ∃y ∈ Y. x ≤ y }, Y is downward-closed if Y = ↓Y . An upper bound
x ∈ X of a set Y ⊆ X is such that for all y ∈ Y , y ≤ x. A nonempty set D ⊆ X
is directed if any two elements in D have a common upper bound in D. A set I ⊆ X
is an ideal of X if I is downward-closed and directed. A quasi-ordering ≤ on a set X
is a well-quasi-ordering (wqo) if any infinite sequence x0, x1, x2, . . . of elements from
X contains an increasing pair xi ≤ xj with i < j. We extend the ordering ≤ to an
ordering ≤ on subsets of X as expected: for Y1, Y2 ⊆ X , we have Y1 ≤ Y2 iff for all
y1 ∈ Y1 there exists y2 ∈ Y2 such that y1 ≤ y2.

(Well-Structured) Labeled Transition Systems. A (labeled) transition system is a tuple
T = (S, s0,Act ,−→) where S is a set of states, s0 ∈ S an initial state, Act a set of
action labels, and −→ ⊆ S × Act × S is a transition relation. We define s a−→ s′

iff (s, a, s′) ∈ −→. For A ⊆ Act , we define s A−→ s′ iff s a−→ s′ for some a ∈ A.
We further define the post operator for an action a as posta : P(S) → P(S) with
posta(X) = {x′ ∈ S | ∃x ∈ X.x a−→ x′ } and extend it to postT by postT (X) =⋃
a∈Act posta(X). The reachability set of a transition system T , denoted Reach(T),

is defined by Reach(T) = lfp⊆(λX.{s0} ∪ postT (X)). A set X ⊆ S is called an

7

invariant of T if Reach(T) ⊆ X , and X is called inductive if postT (X) ⊆ X . A
well-structured transition system (WSTS) is a tuple T = (S, s0,Act ,→,≤) where
(S, s0,Act ,→) is a transition system and ≤ ⊆ S × S a wqo that is monotonic with
respect to→, i.e., for all s1, s2, t1, a such that s1 ≤ t1 and s1

a−→ s2, there exists t2
such that t1

a−→ t2 and s2 ≤ t2. The covering set of a well-structured transition system
T , denoted Cover(T), is defined by Cover(T) = ↓Reach(T).

Graphs. We use a standard notation for (directed) graphs, denoted as tuples of the form
(V,E), with E ⊆ V × V . We define (vertex) labeled graphs over a set of labels VL as
graphs with labels for each vertex and denote them as (V,E, ν) where ν : V → VL is
the vertex-labeling function. For the rest of the paper we fix VL, a finite set of labels
and we denote by Graphs the set of all labeled graphs with labels VL. Also, unless
explicitly stated otherwise, whenever we say graph, we refer to a labeled graph. A
partial graph homomorphism h from a graph G = (V,E) to G′ = (V ′, E′) writ-
ten h : G → G′ is a partial mapping h : V ⇀ V ′ such that (v, w) ∈ E implies
(h(v), h(w)) ∈ E′. If h is total, it is simply called morphism. If it is bijective and its
inverse is also a homomorphism, then it is called isomorphism. Two graphs G and G′

for which an isomorphism exists are called isomorphic, which we denote by G ∼= G′.
For labeled graphs, we additionally require that (partial) homomorphisms respect the
vertex labeling, i.e. ν′(h(v)) = ν(v), for all nodes v ∈ domh. A graph G′ = (V ′, E′)
is a subgraph of a graphG = (V,E), writtenG′ ⊆ G, if V ′ ⊆ V andE′ ⊆ E. For a set
V ′ ⊆ V of vertices of a graph G = (V,E), we denote by G[V ′] = (V ′, E ∩ V ′ × V ′)
the subgraph induced by V ′. We further denote by � the quasi-ordering induced by
subgraph isomorphisms, i.e., G � H iff G is isomorphic to a subgraph of H . We write
G ∼= H if G and H are isomorphic.

Graph Transformation Systems. We use an adaptation of the standard notion of graph
transformation systems with the single pushout approach [8] to labeled directed graphs.
Let h : G0 ⇀ G1 and g : G0 ⇀ G2 be two partial graph morphisms. The pushout of h
and g consists of a graph G3 and two graph morphisms g′ : G1 ⇀ G3, h′ : G2 ⇀ G3

such that g′ ◦h = h′ ◦g and for every pair of morphisms g′′ : G1 ⇀ G′3 and h′′ : G2 ⇀
G′3 there exists a unique morphism f : G3 ⇀ G′3 with f ◦ g′ = g′′ and f ◦ h′ = h′′. It
is known that pushouts are guaranteed to exist, that they are unique up to isomorphism
and that they can be effectively constructed.

A rewriting rule is a partial morphism r : GL ⇀ GR, where GL is called left-
hand side and GR is called right-hand side. A match of r is a total injective morphism
m : GL → G. Given a rule r and a match m : GL → G, a rewriting step is a
pushout r′ : G ⇀ H , m′ : GR → H for r and m. We denote such a rewriting step
by G r−→ H . Note that the condition that matches be injective can be dropped leading
to a slightly more general but also more involved notion of graph rewriting. Our results
carry over to this more general notion. However, injective matches are more natural for
the application domains that we consider here. A graph transformation system (GTS)
R is a tuple (R,G0), where R is a set of rewriting rules and G0 an initial graph. A GTS
R = (R,G0) induces a transition system T (R) = (Graphs, G0, R,

R−→) where R is
a finite set of rewriting rules, and R−→ is the union of all relations r−→, for r ∈ R. The
subgraph ordering � is monotonic with respect to graph rewriting.

8

Lemma 1. LetR = (R,G0) be a GTS, then � is monotonic with respect to R−→.

4 Weakly Fair Termination of Depth-Bounded Systems

In this section, we formally define the class of systems that we consider in this paper
and the type of questions that we answer about these systems.

The depth of a graph G is the length of the longest simple path in the undirected
version of G, obtained by taking the symmetric closure of the edges. For k ∈ N, we
denote by G≤k the set of all graphs with depth at most k. We say that a set of graphs
G is depth-bounded if G ⊆ G≤k for some k ∈ N. A depth-bounded system (DBS) is
a GTS R = (R,G0), whose reachable configuration graphs are depth-bounded, i.e.,
Reach(T (R)) ⊆ G≤k, for some k ∈ N. We call k a bound of the system. From [25,
Proposition 12] it follows that � is a wqo on depth-bounded sets of graphs.

Lemma 2. For any k ∈ N, (G≤k,�) is a wqo.

Thus, Lemmas 1 and 2 imply that depth-bounded GTSs induce WSTSs.

Theorem 3. LetR = (R,G0) be a DBS, then (Cover(R), G0, R, R−→,�) is a WSTS.

Let T = (S, s0,Act ,→) be a transition system. A finite trace π of T is a sequence
s0 a0 s1 a1 . . . an−1 sn, with si ∈ S and ai ∈ Act such that si

ai−→ si+1, for all 0 ≤
i < n; we define infinite traces s0 a0 s1 a1 . . . correspondingly. We say that an action
a ∈ Act is enabled in a state s, if there exists a state s′ such that s a−→ s′. Let F =
{A0, . . . , Am} be a set of subsets of Act . An infinite trace s0 a0 s1 a1 . . . is weakly fair
with respect to F if for every Aj , 0 ≤ j ≤ m, there are infinitely many i such that
ai ∈ Aj or there are infinitely many i such that no action in Aj is enabled in si.

Definition 4. Given a transition system T and a finite set F of sets of actions of T , the
weakly fair non-termination problem asks whether there exists an infinite trace π of T
such that π is weakly fair with respect to F . We refer to the complementary problem as
the weakly fair termination problem (WFT).

Theorem 5. Weakly fair termination is undecidable for depth-bounded systems.

The proof of Theorem 5 goes by reduction of the structural termination problem for
transfer nets to WFT of transfer nets. The former problem is known to be undecid-
able [15]. The latter problem can in turn be reduced to WFT of depth-bounded sys-
tems. The first reduction works by extending a given transfer net with a net compo-
nent that generates all possible input markings of the input net. An auxiliary transition
non-deterministically terminates the generator and starts the input net with the current
marking. A fairness constraint containing the single auxiliary transition ensures that this
transition is eventually fired in all fair traces.

9

5 Structural Counter Abstraction

We now see the formal treatment of how one obtains the structural abstraction of a given
depth-bounded system and how it is used to give approximate answers to the weakly
fair termination problem. For the remainder of this section, let R be a depth-bounded
system. We systematically construct the structural counter abstraction ofR from an in-
ductive invariant of R. However, we are not interested in arbitrary inductive invariants
but in those that are downward-closed with respect to graph embedding. Since graph
embedding is a wqo on depth-bounded graphs, such downward-closed sets are finite
unions of ideals of the embedding order [26]. Each ideal can itself be finitely repre-
sented and we can compute symbolically the effect of transition on this representation.
This enables us to compute a form of closure on the inductive invariant that yields the
structural counter abstraction. We start by formalizing this representation of ideals.

Nested graphs. We represent downward-closed depth-bounded sets of graphs as finite
sets of nested graphs. Formally, a nested graph Ĝ is a tuple (V,E, ν, l) where (V,E, ν)
is a labeled graph and l : V → N maps each vertex to its nesting level. We abuse
notation and denote the labeled graph of a nested graph Ĝ by G. We extend the notion
of homomorphism to nested graphs as expected, i.e., homomorphisms on nested graphs
also preserve the nesting levels of vertices.

Meaning of nested graphs. Intuitively, a nested graph Ĝ represents the set of concrete
graphs that can be obtained by recursively unfolding the nested subgraphs of Ĝ arbi-
trarily often. In the following, we make these notions formal.

We define a one-step unfolding relation on nested graphs Ĝ = (V,E, ν, l) and Ĥ =
(V ′, E′, ν′, l′), denoted Ĝ Ĥ , as follows. For i ≥ 1, denote all vertices at nesting
level i or higher by V≥i = { v ∈ V | l(v) ≥ i }. Unfolding involves duplicating the
subgraph induced by V≥i and reducing the nesting level of all vertices in the copy of V≥i
by one. Formally, we have Ĝ Ĥ iff for some i ≥ 1 there exists a partition U,W1,W2

of V ′ and a homomorphism h : H → G such that H[U ∪W1] ∼= G ∼= H[U ∪W2],
H[W1] ∼= G[V≥i] ∼= H[W2] under (natural restrictions of) h, W1 ×W2 ∩ E′ = ∅, for
all v′ ∈ V ′ \W2, l′(v′) = l(h(v′)), and for all v′ ∈ W2, l′(v′) = l(h(v′)) − 1. When
required, we refer to the underlying homomorphism by saying Ĝ Ĥ under h.

We then define the concretization γ(Ĝ) of a nested graph Ĝ as the downward closure
(with respect to the embedding order) of the set of all unfoldings of Ĝ: γ(Ĝ) = ↓{H |
Ĝ ∗ Ĥ }. We extend γ to sets of nested graphs Ĝ as expected: γ(Ĝ) =

⋃ bG∈bG γ(Ĝ).

Inclusion of Nested Graphs. We next show that inclusion on nested graphs is decidable.
Let Ĝ = (V,E, ν, l) and Ĥ = (V ′, E′, ν′, l′) be nested graphs. Define the relation v
on nested graphs as Ĝ v Ĥ iff γ(Ĝ) ⊆ γ(Ĥ). An inclusion mapping for Ĝ and Ĥ
is a homomorphism ĥ : (V,E, ν) → (V ′, E′, ν′) satisfying the following additional
properties: (i) for all v ∈ V , l(v) ≤ l′(ĥ(v)); (ii) ĥ is injective with respect to level 0
vertices in V ′: for all v, w ∈ V , v′ ∈ V ′, ĥ(v) = ĥ(w) = v′ and l′(v′) = 0 implies
v = w; (iii) for all distinct u, v, w ∈ V such that ĥ(u) = ĥ(v), and u and v are both
neighbors of w, l(u) > l(w) and l(v) > l(w).

10

Theorem 6. Let Ĝ and Ĥ be nested graphs. Then Ĝ v Ĥ iff there exists an inclusion
mapping ĥ : Ĝ→ Ĥ .

To see that the problem is in NP, note that each of the conditions for inclusion mapping
can be checked in polynomial time. NP-hardness follows from the fact that the problem
subsumes the subgraph isomorphism problem.

Nested graph rewriting. We lift application of rewrite rules to nested graphs by using
inclusion mappings as the notion of a match. Intuitively, inclusion mappings allow us
to apply the rewrite rule to an unfolding of the graph that contains the left-hand-side of
the rule as a subgraph. Formally, we extend the notion of pushout to nested graphs in
a natural way by using the homomorphisms defined on nested graphs. For a rewriting
rule r : GL → GR, naturally lift the notion and define r̂ : ĜL → ĜR. A match of r̂ is
an inclusion mapping m̂ : ĜL → Ĝ.

Lemma 7. Given a rule r̂ : ĜL → ĜR and a match m̂ : ĜL → Ĝ, there exists a
nested graph Ĝ′ and an injective inclusion mapping ĥ : ĜL → Ĝ′ such that Ĝ ∗ Ĝ′.
Moreover, Ĝ′ and ĥ can be constructed in polynomial time.

Let Ĝ′ be the nested graph and ĥ : ĜL → Ĝ′ the injective inclusion mapping, as
described in Lemma 7. Then there exists a pushout r̂′ : Ĝ′ ⇀ Ĥ , ĥ′ : ĜR → Ĥ for r̂
and ĥ. This pushout defines a rewriting step of nested graphs Ĝ br−→ Ĥ .

Constructing the structural counter abstraction. In the following, we assume that Î is
a finite set of nested graphs such that γ(Î) is a downward-closed inductive invariant of
R. From Î we then construct the structural counter abstraction. The precision of this
abstraction depends on the precision of Î. The most precise downward-closed inductive
invariant ofR is the covering set Cover(T (R)). Unfortunately, this set is in general not
computable for depth-bounded systems3, even though the covering problem4 is decid-
able [25]. However, we can employ existing algorithms [26] that compute downward-
closed inductive approximations of the covering set. In practice, these algorithms often
yield precisely Cover(T (R)). This is confirmed by our experiments in Section 6. In
fact, we did not encounter a significant precision loss in any of our examples.

Let G0 be the initial graph of R and let Ĝ0 be the nested graph obtained by equip-
ping G0 with a nesting level function mapping all nodes to 0. Further, let R be the
set of rewriting rules of R. We define a set of rewriting edges ER as follows: ER =
{ (Ĝ, r, Ĥ) | Ĝ ∈ Î, r ∈ R, Ĥ ∈ Ĝ, Ĝ br−→ Ĥ }. That is, ER describes the set of
one step rule applications on the nested graphs in the inductive invariant. The set ER
is finite up to isomorphism of nested graphs. Next, define the set Ĵ = {Ĝ0} ∪ { Ĥ |
(Ĝ, r, Ĥ) ∈ ER }. From the fact that Î is an inductive invariant it follows that, for all
Ĥ ∈ Ĵ there exists Ĝ ∈ Î such that Ĥ v Ĝ. Fix one such Ĝ for each Ĥ ∈ Ĵ and
let EC be the set of all pairs (Ĥ, Ĝ). We call the elements of EC covering edges. Let
E = ER ∪ EC . In Fig 2, we saw this construction for the example of Treiber’s stack
starting with an inductive invariant. The solid edges between nested graphs correspond

3 This follows from the undecidability of place-boundedness of transfer nets [7].
4 The covering problem for DBS asks whether for given aR and graph G, G ∈ Cover(T (R)).

11

to rewrite edges and the dashed ones to covering edges. At the end of Section 2, we also
saw an excerpt of the counter abstraction, next we describe how this is done in general.

The abstraction is a tuple N = (Locs, s0,Vars, ∆) where Locs = { ` bG | Ĝ ∈
Î ∪ J } is a set of control locations, Vars = {xv | v ∈ V (Ĝ), Ĝ ∈ I ∪ J } is a set of
counter variables , one for each vertex of a nested graph in I∪J , and∆ = { δe | e ∈ E }
is a set of commands, one for each edge in E . The command δe associated with an edge
e = (Ĝ, Ĥ) is of the form (` bG, ρe, ` bH) where ρe is a transition constraint over primed
and unprimed versions of the variables in Vars . The initial state ofN is s0 = (`cG0

, η0)
where η0 is a function mapping counters to natural numbers and defined as η0(xv) = 1
if v ∈ V (Ĝ0), and 0 otherwise. Further, let σR : ∆ ⇀ R be a partial mapping defined
as σR(δe) = r if e is a rewriting edge for rule r.

The definition of the transition constraint δe for an edge e ∈ E depends on whether
e is a rewriting or a covering edge. We first consider the case that e is a rewriting edge
(Ĝ, r, Ĥ). In order to perform a rewrite (which only transforms level-0 vertices) we
need to unfold the graph Ĝ. As mentioned in Lemma 7, this can be done efficiently giv-
ing us Ĝ ∗ K. Each unfolding step gives a homomorphism, which can be composed
together to give h : K → Ĝ. Further, from the pushout we get a partial homomorphism
r′ : K ⇀ Ĥ . Let V be the vertices of Ĝ, U the vertices of K, and W the vertices of
Ĥ . Further, let U0 be the level-0 vertices of K and define U0 = U \ U0. Similarly, let
W0 be the level-0 vertices of Ĥ . Then, the transition constraint ρe for e is given by the
conjunction of the following constraints:

xv =
∑

u∈h−1(v)∩U0

x′r′(u) +
∣∣h−1(v) ∩ U0

∣∣ , for all v ∈ V (1)

x′w = 1, for all w ∈W0 (2)
y′ = 0, for all y ∈ Vars\{xw | w ∈W } (3)

During unfolding of Ĝ to Ĥ , if some vertex v with count xv is duplicated, then con-
straint (1) ensures that all counts for the duplicates sum up to xv . Level-0 vertices get
a special treatment, since they may be transformed by the rewrite rule. Similarly, (2)
takes care of level-0 vertices in the rewritten graph. The constraint (3) encodes that only
counters of vertices associated with the successor location have non-zero values. More
details for constraints (1) and (2) can be found in the proof of Lemma 9 in Appendix A.

For covering edges e = (Ĥ, Ĝ), we use the inclusion mapping ĥ : Ĥ → Ĝ between
the two nested graphs to define the transition constraint δe. Let W be the vertices of Ĝ,
W0 the level-0 vertices of Ĝ, and V the vertices of Ĥ . The inclusion mapping encodes
which vertices v ∈ V are collapsed to a single vertex w ∈W , yielding the constraint

x′w =
∑

v∈bh−1(w)

xv, for all w ∈W (4)

Then δe is the conjunction of constraint (4) and constraints (2) and (3), which are the
same as in the case of a rewriting edge.

Finally, the fairness constraints FR of R can be translated to fairness constraints
FN of N using the partial function σR as follows: FN = {σ−1

R (Ri) | Ri ∈ FR }.

12

The numerical abstraction induces a transition system T (N) = (S, s0, ∆,
∆−→)

with states S = Locs × NVars , i.e., a program location along with an evaluation of
the counters. The transition relation ∆−→ is as expected. The details of the following
soundness theorem may be found in Appendix A.

Theorem 8 (Soundness). If (T (R),FR) has a weakly fair infinite trace, then so does
(T (N),FN).

6 Evaluation

We implemented a prototype of our algorithm as an extension to the PICASSO [19, 26]
tool. PICASSO takes as input a depth-bounded systems and computes a so called ab-
stract coverability tree (ACT). The nodes of the ACT are nested graphs and its con-
struction is similar to the Karp-Miller tree for Petri nets. The maximal nodes in the
ACT form a downward-closed inductive invariant, Î, of the input system. From this
invariant we generate a structural counter abstraction, N , that is optimized and then
analyzed with the ARMC [21] termination prover.

A naive implementation of the method described in Section 5 produced structural
counter abstractions that were too big for current termination provers. For instance, for
Treiber’s stack, having one variable for each vertex of each nested graph in the inductive
invariant and those obtained by applying rewrite rules led to an abstraction with over
170 variables and 40 transitions. We therefore optimized the generation of the abstrac-
tion to get a smaller counter program with the same termination properties. When we
generate the constraints for a transition, we decompose the transition into three steps:
unfolding, morphism, and covering. These steps lead to many intermediate locations
and transitions. We eliminate the intermediate steps by using the quantifier elimination
procedure for linear integer arithmetic in PRINCESS [23]. We collect the constraints
generated for each step and quantify away the variables at the intermediate locations.
The resulting constraint describes a single transition with the same source and target lo-
cations as the original three-step transition, using only the variables at those locations.
Furthermore, we observed that in many places constant values are assigned to the vari-
ables because they represent nodes on nesting level 0. We propagate the constant values
using a combination of lightweight abstract interpretation and constraint propagation.
We use an abstract domain that maps the variables to N ∪⊥. A variable v is mapped to
a value n in N when we can deduce that v is always equal to n, otherwise v is mapped
to ⊥. From the abstract fixed point we extract variable/value pairs and eliminate the
variables by replacing them with their associated values. Lastly, instead of using one
variable per node and graph, we reuse the variables across different graphs. The renam-
ing is done by finding a minimal coloring of a graph where the nodes are variables and
there is an edge between two nodes if the corresponding variables are used at the same
location. For Treiber’s stack, we reduced the abstraction to 6 variables and 4 transitions.

Transition predicates. We observed that ARMC finds easily the predicates that in-
volve one or two variables, but not the predicates requiring more variables. Fortunately,
ARMC can take transition predicates as part of its input. We manually give hints to PI-
CASSO in the form of variables names, usually corresponding to control-states. Those

13

Example #loc #v #t bI N ARMC Total

Split/merge 4 3 9 1.5 6.8 0.1 8.4
Work stealing, 3 processors 4 4 20 1.7 13.1 0.2 15.0
Work stealing, parameterized 2 3 4 1.5 5.6 0.1 6.2
Compute server job queue 2 5 4 1.6 6.1 0.1 7.8
Chat room 5 34 80 9.8 61.3 5 min 6 min
Map reduce 6 10 15 2.0 8.8 0.2 11.0
Map reduce with failure 6 15 21 2.3 11.1 0.9 14.3
Treiber’s stack (coarse-grained) 2 6 4 1.9 7.2 0.2 9.3
Treiber’s stack (fine-grained) 3 14 13 2.7 14.2 1.2 17.1
Herlihy/Wing queue 3 16 25 3.8 24.9 6.5 34.2
Michael/Scott queue (dequeue only) 4 7 23 2.8 13.0 0.6 16.4
Michael/Scott queue (enqueue only) 7 15 53 3.8 43.7 7.6 55.1
Michael/Scott queue 9 31 224 25.0 265.0 3 wks 3 wks

Table 1. Experimental results. The columns show the number of locations, variables, and transi-
tions in the counter abstraction, and the running times, in seconds, for computing the inductive
invariant, constructing the abstraction, and for proving termination.

names are turned into transition predicates by summing the variables. For example, in
the numerical abstraction of Treiber’s stack we specified a simple predicate indicating
that the sum of all the process counters was either unchanged or decreasing.

Results. Table 1 summarizes the results of our experiments. Our implementation is par-
allelized and ran on a server using 26 cores. Memory consumption was not an issue. We
examined a collection of depth-bounded transition systems, including distributed pro-
cesses and concurrent algorithms. The examples and the tool can be downloaded from
the PICASSO web site [19]. We applied our method to prove global progress properties
of those systems. Fairness is used to limit the number of clients, requests, and failures.
Details about the encoding of fairness constraints can be found in Appendix B. Our
experiments show that, by generating the structural counter abstraction from an induc-
tive invariant, one can quickly prove termination of complex systems. The abstraction
is concise, but maintains the necessary information in order to prove termination.

The split/merge example is a parallel computation where a master sends jobs to a
pool of workers. We also proved termination of (non-)parameterized versions of a work
stealing algorithm. From [12] we considered systems obtained from Scala implementa-
tions of a chat room and a map reduce algorithm (with and without failure). As shared
memory examples, we considered the model of Treiber’s stack [24] described in Sec-
tion 2 as well as a more fine-grained variant with push and pop modeled independently.
We analyzed a model of the Herlihy/Wing concurrent queue [13] which requires an
additional fairness constraint to ensure that dequeue operations cannot execute without
enqueue operations ever taking steps. This is needed because the dequeue operation
retries if the queue is empty. Finally, we also applied our analysis to the Michael/Scott
queue [18] where the order between the elements is abstracted. This example results
in an abstraction that is currently very large for the termination prover (ARMC proved

14

termination after running for 3 weeks). We therefore also show the running times for
simpler models where enqueue and dequeue operations are considered in isolation.

7 Related Work

Depth-bounded systems (DBS) were first introduced by Meyer in [16] as a fragment of
the π-calculus. In his paper, he showed that DBS are well-structured and that termina-
tion (without fairness constraints) is decidable. Termination without fairness has only
limited practical applications because the initial state of the system is fixed. With a fixed
initial state one cannot model systems with an infinite set of reachable states without
losing termination, since we only consider finitely branching systems.

Numerical abstractions for the analysis of concurrent systems have been previously
explored e.g. in [2, 6, 20]. Our work is a more precise alternative to these approaches.
Rather than using a fixed number of counters (one for each program location) that count
how many threads are at each program location in a given state, we use a reachability
analysis to introduce counters that also take into account data dependencies between
individual threads. The number of counters is not a priori fixed but depends on the
structure of the reachable configurations. The additional precision obtained with our ab-
straction allows us to prove termination for complex systems where traditional counter
abstractions are insufficient.

The idea of using reachability analyses to obtain numerical abstractions of pro-
grams whose states can be described by graphs is by itself not new. In particular, such
techniques have been studied for proving safety and liveness properties of heap manip-
ulating programs [3, 11, 22]. Our technique differs substantially from these approaches
in the way the numerical abstraction is computed. Specifically, our technique is based
on ideal abstractions [26] for computing over-approximations of the covering sets of
WSTS and it exploits the monotonicity of the analyzed system, i.e., that the behavior
observable from a given graph is subsumed by the behavior observable from any larger
graph. Finally, the abstract domain of nested graphs can model unbounded recursive
unfolding structures that naturally occur in complex concurrent systems and that are
difficult to capture using traditional shape analysis domains.

Joshi and König study graph transformation systems that are well-structured with
respect to the graph minor ordering [14]. Our approach targets a different application
domain. We consider rewriting rules with injective matching. Systems with this seman-
tics are not monotonic with respect to graph minors and therefore not well-structured
under this ordering. On the other hand, the graph minor ordering is a wqo for arbitrary
graphs, while the subgraph ordering is a wqo only for graphs bounded in the length of
their simple paths. The two approaches thus consider orthogonal classes of WSTS.

An application of our results is proving nonblocking properties of concurrent algo-
rithms. Others have considered approaches directly targeted on this goal. Gotsman et
al. [10] describe a thread-modular proof technique. While their work enables thread-
local reasoning, it is only suitable in instances where there are simple environmental
invariants (i.e. other threads do not execute certain actions infinitely often).

15

8 Conclusion

We have shown a novel technique for proving fair termination of algorithms described
as depth-bounded systems. Despite the fact that this problem is undecidable, we showed
that one can build on existing verification techniques to obtain an approximate analysis
that is both practical and sufficiently precise to prove fair termination of complex con-
current systems such as Treiber’s stack. We have shown that our method is sound, and
demonstrated viability with a prototype implementation.

References

1. P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theorems for
infinite-state systems. In LICS, pages 313–321, 1996.

2. G. Basler, M. Mazzucchi, T. Wahl, and D. Kroening. Symbolic counter abstraction for con-
current software. In CAV, volume 5643 of LNCS, pages 64–78. Springer, 2009.

3. J. Berdine, B. Cook, D. Distefano, and P. W. O’Hearn. Automatic termination proofs for
programs with shape-shifting heaps. In CAV, pages 386–400. Springer, 2006.

4. H. Carstensen. Decidability questions for fairness in petri nets. In STACS, volume 247 of
LNCS, pages 396–407. Springer, 1987.

5. B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems code. In PLDI,
2006.

6. G. Delzanno, J.-F. Raskin, and L. V. Begin. Towards the Automated Verification of Multi-
threaded Java Programs. In TACAS, volume 2280, pages 173–187. Springer, 2002.

7. C. Dufourd, A. Finkel, and P. Schnoebelen. Reset nets between decidability and undecid-
ability. In ICALP, volume 1443 of LNCS, pages 103–115. Springer, 1998.

8. H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and A. Corradini. Handbook
of graph grammars and computing by graph transformation. pages 247–312. World Scientific
Publishing Co., Inc., 1997.

9. A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere! Theor. Com-
put. Sci., 256(1-2):63–92, 2001.

10. A. Gotsman, B. Cook, M. J. Parkinson, and V. Vafeiadis. Proving that non-blocking algo-
rithms don’t block. In POPL. ACM, 2009.

11. S. Gulwani, T. Lev-Ami, and M. Sagiv. A combination framework for tracking partition
sizes. In POPL, pages 239–251. ACM, 2009.

12. P. Haller and F. Sommers. Actors in Scala. Artima, January 2012.
13. M. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects.

ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.
14. S. Joshi and B. König. Applying the graph minor theorem to the verification of graph trans-

formation systems. In CAV, volume 5123 of LNCS, pages 214–226. Springer, 2008.
15. R. Mayr. Undecidable problems in unreliable computations. Theor. Comput. Sci., 297(1-

3):337–354, 2003.
16. R. Meyer. On boundedness in depth in the π-calculus. In Fifth Ifip International Conference

On Theoretical Computer Science–Tcs 2008, pages 477–489. Springer, 2008.
17. R. Meyer and R. Gorrieri. On the relationship between pi-calculus and finite place/transition

petri nets. In CONCUR, pages 463–480, 2009.
18. M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking and blocking

concurrent queue algorithms. In PODC, 1996.
19. Picasso. http://pub.ist.ac.at/˜zufferey/picasso/termination.

16

http://pub.ist.ac.at/~zufferey/picasso/termination

20. A. Pnueli, J. Xu, and L. D. Zuck. Liveness with (0, 1, infty)-counter abstraction. In CAV,
volume 2404 of LNCS, pages 107–122. Springer, 2002.

21. A. Podelski and A. Rybalchenko. ARMC: the logical choice for software model checking
with abstraction refinement. In PADL, 2007.

22. A. Podelski, A. Rybalchenko, and T. Wies. Heap assumptions on demand. In CAV, volume
5123 of LNCS, pages 314–327. Springer, 2008.

23. P. Rümmer. A constraint sequent calculus for first-order logic with linear integer arithmetic.
In LPAR, volume 5330 of LNCS, pages 274–289. Springer, 2008.

24. R. Treiber. Systems programming: Coping with parallelism. International Business Machines
Incorporated, Thomas J. Watson Research Center, 1986.

25. T. Wies, D. Zufferey, and T. A. Henzinger. Forward analysis of depth-bounded processes. In
FOSSACS, pages 94–108, 2010.

26. D. Zufferey, T. Wies, and T. A. Henzinger. Ideal abstractions for well-structured transition
systems. In VMCAI, pages 445–460, 2012.

17

A Details of Soundness Argument

Let s = (` bG, η) and s′ = (` bH , η′) be states in S. Define (Ĝ, η) (Ĥ, η′) iff Ĝ Ĥ

under h, η(v) =
∑
w∈h−1(v) η

′(w) and η′(w) = 1 if w is a level-0 vertex. Let π(Ĝ)

denote the concrete subgraph induced by the level-0 vertices. Formally, if Ĝ = (V,E, l)
then the projection, π(Ĝ) is the concrete graph induced by vertices { v ∈ V | l(v) =
0 } The concretization function γ can be generalized to states of T (N) as γ(s) =
↓{π(H) | (Ĝ, η) ∗ (Ĥ, η′) }.

Define s v s′ iff γ(s) ⊆ γ(s′). An inclusion mapping, h : s → s′ will in addition
need to respect counters: for all v in V (Ĥ) it holds that

∑
w∈h−1(v) η

′(w) ≤ η(xv).
We have extended the notion with the aim that the inclusion mapping corresponds tov.
(generalization of Theorem 6).

Properties of transition system T (N). We state some important properties of the tran-
sitions in the numerical abstraction. Define postr(s) as

⋃
δ postδ(s) where the union is

taken over δ ∈ σ−1
R (r). The following proposition says that nested rewriting is sound

with respect to the numerical abstraction, i.e., all states reached after applying a rewrite
in the concrete are captured in the nested rewrite:

Proposition 9. For all r ∈ R, γ(postr(s)) = ↓postr(γ(s)).

Proof (Sketch). Let s = (l bG, η) be the state and G′ ∈ γ(s) to which some rewrite rule
can be applied. Let r : GL ⇀ GR be the rule and m : GL → G′ the match, giving us a
pushout r′ : G′ ⇀ H ′ and m′ : GR → H ′. Then, we need to show that we indeed have
a transition s δ−→ s′ with σ(δ) = r and G′ ∈ γ(s′).

Since, G′ ∈ γ(s), we have an inclusion mapping, say î : G′ → (Ĥ, η). Then, it is
easy to see that the inclusion map m̂ = î ◦ m is an nested match m̂ : GL → Ĝ. By
construction, we have actions corresponding to all possible rules and matches. Thus,
we are guaranteed to have a transition δ corresponding to m̂ and r at s with σ(δ) = r.
All that is left to show is that H ′ ∈ γ(s′) where s′ = (l bH , η′).

In order to do so, we elaborate on constraints (1)-(2). They can be thought of as
composition of two set of constraints – one for unfolding so that the rewrite rule can
be applied to level-0 nodes and another for rewrite itself. Recalling notation we used to
construct the constraints, letK be the completely unfolded graph under homomorphism
h; V , W and U vertices of Ĝ, Ĥ and K; and by V0, W0 and U0 we denote the level-
0 nodes of each graph. The rewrite homomorphism itself we denote by r̂′. Then, if
we imagine having variables xu for vertices u ∈ U in the intermediate graph, the
constraints can be thought of as composition of two set of constraints, (5) for unfolding
and (6) for rewrite:

xv =
∑

u∈h−1(v)

x′u ∧ x′u = 1 for u ∈ U0 (5)

x′br′(u)
= xu for u /∈ U0 ∧ x′w = 1 for w ∈W0 (6)

The unfolding constraints can itself be thought of as composition of constraints of
individual unfolding steps. For a single unfolding step the constraint simply corresponds

18

to the definition, enforcing η(v) =
∑
w∈h−1(v) η

′(w). It follows from the definition of

γ that if G′ ∈ γ((Ĝ, η)) then there exists η′′ such that G′ ∈ γ((K, η′′)).
The rewrite rule itself affects only the part of the graph at level 0. The first part of

the conjunction in (6) ensures all counters for non-level-0 nodes are preserved (r̂′ is
a bijection on these nodes), and the second constraint ensures that all counters for the
transformed subgraph are 1. Since the multiplicities are preserved on the untransformed
part, (Ĥ, η′) can be unfolded to get H ′ as a subgraph in the same way as K could be
unfolded to get G′ as a subgraph. Together with the observation about unfolding, this
shows G′ ∈ γ(s′). ut

The next lemma says that the other set of transitions in T (N), ones that correspond
to covering edges, do not lose any concerete states.

Lemma 10. Let s δe−→ s′ for a covering edge e. Then, γ(s) ⊆ γ(s′).

Proof (Sketch). Let s = (l bG, η), s′ = (l bH , η′), then the way constraint (4) is constructed
we get an inclusion mapping h : Ĝ → Ĥ . The constraint (4) also respect condition
on cardinalities for the generalized notion of inclusion mapping, giving us inclusion
mapping h : s → s′. If G′ ∈ γ(s), then there exists an inclusion mapping i : G′ →
(Ĝ, η). It is easy to check that the composition h ◦ i : G′ → s′ is also an inclusion
mapping, showing G′ ∈ γ(s′). ut

The next lemma relates the transitions of the numerical abstraction with the transi-
tions in the original system, both for covering and rewriting edges in the ACT.

Lemma 11. For all states s ∈ S, either ∃δ ∈ ∆ \ dom(σR) such that s δ−→ s′, or
∀r ∈ R, γ(postr(s)) = ↓postr(γ(s)).

Proof. This lemma follows from the fact that the numerical abstraction is constructed
from the bipartite graph (Î, Ĵ , E) where for nested graph in Î we have an edge cor-
responding to all rewrite rules (for which the correspondence between abstract and
concrete was established in Proposition 9), and for each nested graph in Ĵ we have
a covering edge. ut

Stuttering simulation. Let T = (S, s0,Act , Act−→) and T ′ = (S′, s′0,Act ′, Act′−→) be two
transition systems. Further, let σ : Act ′ ⇀ Act be a partial map between the actions of
the two systems and ≤ ⊆ S × S′. Define A′ε = Act ′ \ dom(σ). Given s ≤ s′1, define

a stuttering step with respect to (≤, σ) as a transition s′1
A′ε−→ s′2 such that s ≤ s′2. We

say (≤, σ) is a stuttering simulation if for all s1, s2 ∈ S, a ∈ Act with s1
a−→ s2

and all s′1 ∈ S′ with s1 ≤ s′1, there exist a′, t′, s′2 such that s′1
A′ε−→∗ t′ is a series of

stuttering steps, and t′ a′−→ s′2 with σ(a′) = a and s2 ≤ s′2. In our case, we have two
transition system T (R) = (Graphs , G0, R,

R−→) and T (N) = (S, s0, ∆,
∆−→). Define

≤R as G ≤R s if and only if G ∈ γ(s) and let σR : ∆ ⇀ R be as before. Define
∆ε = ∆\dom(σR). Observe that the transitions in∆ε are exactly those corresponding
to covering edges.

19

Claim. (1) If G1 ≤R s1 and s1
δε−→ s2 with δε ∈ ∆ε, then G1 ≤R s2. In other words,

every transition corresponding to a covering edge is a stuttering step with respect to
(≤R, σR).

Proof. This is a straightforward corollary of Lemma 10 and the definition of ≤R. ut

Claim. (2) Let G1 ≤R s1 and G1
r−→ G2. Further, assume that postr(γ(s1)) ⊆

γ(postr(s1)). Then, there exists s2 ∈ S and δ ∈ dom(σR) such that σR(δ) = r,
s1

δ−→ s2 and G2 ≤R s2.

Proof. Since G1 ∈ γ(s1) and G1
r−→ G2 we get that G2 ∈ postr(γ(s1)). From the

second assumption, we can in fact conclude G2 ∈ γ(postr(s1)). In other words, there
exists δ ∈ dom(σR) with σR(δ) = r and G2 ∈ γ(postδ(s1)), from which the claim
follows. ut

Theorem 12, which captures the main property of our reduction, follows from Lemma
11 and the two claims above.

Theorem 12. The pair (≤R, σR), where ≤R is defined as G ≤R s if and only if
G ∈ γ(s), is a stuttering simulation for T (R) and T (N).

Proof (of Theorem 12). Let G1 ≤R s1 and G1
r−→ G2. Then, according to Lemma 11,

s1 has to be such that we meet the assumptions of one of the two claims. If the second
claim, we are done – we get s2 such that s1

δ−→ s2 with σ(δ) = r and G2 ≤ s2. If not,
we can repeatedly apply the first claim getting a series of stuttering steps to a state to
which second claim can be applied – showing (≤R, σR) is a stuttering simulation. ut

Theorem 8 follows as a corollary of the above theorem.

B Fairness constraints in PICASSO

Strong fairness. PICASSO and ARMC do not directly support weak-fairness. However,
we can encode strong fairness constraints in the structural counter abstraction with fair-
ness counters. These counters are either decremented by one or incremented by an
arbitrary finite amount in the relevant transitions. For example, let t1 and t2 be two
transitions and (t1, t2) a Streett fairness condition. The Streett condition tell us that if
t1 occurs infinitely often, then t2 must also occur infinitely often. This can be encoded
in the following way. Let v a fresh variable in the structural counter abstraction. In t1
we add the constraint v′ = v − 1 and in t2 we add v′ ≥ 0. This principle generalizes to
Rabin and (co-)Büchi fairness conditions.

Furthermore, we have extended PICASSO to support such fairness constraints, ex-
pressed in the input graph rewriting rules. The graph rewriting operation corresponding
v′ ≥ 0 cannot be expressed by the formalism presented in Section 3. For this purpose
we extend the graph rewriting rules to allow nodes of non-zero nesting level on the
right-hand-side of rewriting rules. This single modification in the parser was enough to
express strong fairness constraints.

20

When weak and strong fairness meet. The main difference between strong an weak
fairness is that in addition to transition firing, weak fairness also considers whether a
transition is enabled. This cannot currently be expressed in PICASSO. Fortunately, the
weak-fairness condition that we use are also expressible as strong fairness condition.
The key insight is that we can statically know when a transition is enabled. For instance,
the transition that spawns client is always enabled until the “Spawn to Nwaps” transition
fires. We can rephrase this condition as a co-Büchi condition saying that the spawning
of client does not occur infinitely often. For the experimental evaluation we use the
co-Büchi condition.

21

	Structural Counter Abstraction

