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Abstract. Separation logic (SL) has gained widespread popularity because of
its ability to succinctly express complex invariants of a program’s heap con-
figurations. Several specialized provers have been developed for decidable SL
fragments. However, these provers cannot be easily extended or combined with
solvers for other theories that are important in program verification, e.g., linear
arithmetic. In this paper, we present a reduction of decidable SL fragments to a
decidable first-order theory that fits well into the satisfiability modulo theories
(SMT) framework. We show how to use this reduction to automate satisfiability,
entailment, frame inference, and abduction problems for separation logic using
SMT solvers. Our approach provides a simple method of integrating separation
logic into existing verification tools that provide SMT backends, and an elegant
way of combining SL fragments with other decidable first-order theories. We im-
plemented this approach in a verification tool and applied it to heap-manipulating
programs whose verification involves reasoning in theory combinations.

1 Introduction

Separation logic (SL) [25] is an extension of Hoare logic [20] for proving the cor-
rectness of heap-manipulating programs. Its great asset lies in its assertion language,
which can succinctly express how data structures are laid out in memory. This language
has two characteristic features: it provides 1) a spatial conjunction operator that decom-
poses the heap into disjoint regions, each of which can be reasoned about independently
(this enables an elegant treatment of pointer aliasing); and 2) inductive spatial predi-
cates that describe the shape of unbounded linked data structures such as lists, trees, etc.
SL assertions give rise to the so-called frame rule, a Hoare-logic proof rule that enables
compositional verification of heap-manipulating programs.

The frame rule makes separation logic attractive for developers of program verifi-
cation tools [6, 8, 19, 21, 36]. However, the logic also poses a challenge to automation:
it is a non-classical logic that requires specialized symbolic execution engines for en-
coding the behavior of programs, and specialized theorem provers for discharging the
generated proof obligations. Existing SL-based tools therefore implement their own
tailor-made theorem provers. This brings its own challenges.

First, extending existing verification tools that rely on specifications written in clas-
sical first-order logic with SL support is a significant effort. The tailor-made SL provers
cannot be easily integrated with the theorem provers used by such tools. Second, the
analysis of real-world programs involves more than just reasoning about heap struc-
tures. For instance, the combination of linked data structures and pointer arithmetic is
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pervasive in low-level system code [14, 19]. Other examples include the dynamic rein-
terpretation of memory (e.g., treating a memory region both as a linked structure and
as an array of bit-vectors) and dependencies on data stored in linked structures (e.g.,
sortedness constraints). To deal with such programs, existing SL tools make simplify-
ing and (deliberately) unsound assumptions about the underlying memory model, rely
on interactive help from the user, or implement incomplete extensions to allow some
limited support for reasoning about other theories.

The integration of a separation logic prover into an SMT solver can address these
challenges. Modern SMT solvers such as CVC4 [3] and Z3 [16] already implement de-
cision procedures for many theories that are relevant in program verification, e.g., linear
arithmetic, arrays, and bit-vectors. They also implement generic mechanisms for com-
bining these theories, treating the theory solvers as independent components. These
mechanisms provide guarantees about completeness and decidability. A reduction of
separation logic to first-order logic enables such complete combinations with other the-
ories. Finally, SMT solvers are already an integral part in the tool chain of many existing
verification tools. These tools could directly benefit from an integrated SL prover.

So far, a seamless integration of a separation logic prover and an SMT solver has
not yet been realized. This paper represents a step towards achieving this goal.

We propose a technique for SMT-based reasoning about separation logic asser-
tions. Our technique relies on a translation of SL formulas into a decidable fragment
of first-order logic, which we refer to as the logic of graph reachability and stratified
sets (GRASS). Formulas in this logic express properties of the structure of graphs, such
as whether nodes in the graph are inter-reachable, as well as properties of sets of nodes.
These sets are used to give a natural encoding of the semantics of spatial conjunction,
while graph reachability enables reasoning about inductive spatial predicates without
relying on induction, which is not well supported by first-order theorem provers.

We show how to use the translation to check satisfiability and entailment of SL for-
mulas. The latter enables automated verification of programs with SL specifications.
In particular, it can leverage existing infrastructure for verification condition genera-
tion provided by tools such as Boogie [2]. Using a characterization of partial models
of GRASS formulas, we further demonstrate how our technique can solve frame in-
ference and abduction problems, which are key to efficient inter-procedural analysis of
heap-manipulating programs [11]. Finally, we prove that our translation enables theory
combination of separation logic within the Nelson-Oppen combination framework [24].

To demonstrate the feasibility of our approach we have implemented the decision
procedure for GRASS using an SMT solver. Based on this implementation we built a
prototype tool for inter-procedural analysis of heap-manipulating programs. We suc-
cessfully used this tool to automatically verify procedures manipulating list-like data
structures against specifications expressed in separation logic. Our examples include
benchmarks such as sorting algorithms whose verification relies on the combination of
heap and arithmetic reasoning.

Related Work. Several decidable fragments of separation logic have been studied in
the literature. Most prominent is the fragment of linked lists introduced in [5], which
is now used in extended forms by many SL-based tools. The original paper describes
a decision procedure for satisfiability and entailment for the fragment of linked lists.
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More recently, these problems were shown to be decidable in polynomial time [15]
using a graph-based algorithm.

Translations of separation logic into first-order logic have been previously stud-
ied in [12] and [9]. The result in [12] does not consider inductive predicates, which are
needed for expressing properties of recursive data structures such as lists, trees, etc. The
approach in [9] considers inductive predicates but does not target a decidable fragment.
Neither of these approaches considers frame inference, abduction, or theory combi-
nation. In [27], Perez and Rybalchenko showed that significant performance improve-
ments can be obtained by incorporating first-order theorem proving techniques into SL
provers. More recently and concurrently to us, they have also considered the problem
of theory combination [28]. The authors of [10] describe another hybrid approach in
which an SL decision procedure for entailment is extended to enable reasoning about
quantified constraints on data. However, [10] does not address theory combination in
general. Also, neither [27] nor [10] consider frame inference or abduction.

Alternatives to separation logic that enable compositional reasoning about heap-
manipulating programs but rely on classical logic include (implicit) dynamic frames [22,
31] and region logic [1, 30]. The connection between separation logic and implicit dy-
namic frames has been studied in [26]. Our reduction of separation logic to first-order
logic is in part inspired by region logic, which also uses sets to partition the memory
into disjoint regions. A crucial difference from our approach is that region logic has no
inbuilt support for recursive data structures.

We build on previous results on SMT-based decision procedures for theories of
reachability in graphs [23, 33, 34] and decision procedures for theories of stratified
sets [37]. Our logic GRASS combines these two theories and extends them with set
comprehensions that define sets of nodes in terms of properties expressed in the logic.
This extension is essential to enable a succinct encoding of spatial conjunctions.

2 Preliminaries

We present our approach in many-sorted first-order logic with equality, which is the
theoretical foundation of modern SMT solvers. We follow standard notation and con-
ventions for syntax and semantics of first-order logic as defined, e.g., in [29].
Many-sorted first-order logic. A signatureΣ is a tuple pS,Ω,Πq, where S is a count-
able set of sorts, Ω is a countable set of function symbols, and Π is a countable set of
predicate symbols. Each function and predicate symbol has an associated sort, which is
a tuple of sorts in S. A function symbol whose sort is a single sort in S is called con-
stant. For two signaturesΣ1 andΣ2 we writeΣ1YΣ2 for the signature that is obtained
by taking the point-wise union ofΣ1 andΣ2. We say thatΣ1 andΣ2 are disjoint if they
do not share any function or predicate symbols. We write Σ1 � Σ2 if Σ1 YΣ2 � Σ2.
A Σ-term is built as usual from the function symbols in Ω and variables taken from a
set X that is disjoint from S, Ω, and Π . Each variable x P X has an associated sort in
S. We also assume the standard notions of Σ-atom, Σ-literal, and Σ-formula.
Interpretations and structures. In the following, letΣ � pS,Ω,Πq be a signature. A
partial Σ-interpretationA over variables X is a function that maps each sort s P S to a
non-empty set sA and each function symbol f P Ω of sort s1�� � ��sn Ñ t to a partial
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function fA : sA1 �� � ��s
A
n á tA. Similarly, every predicate p P Π of sort s1�� � ��sn

is interpreted as a relation pA � sA1 � � � � � sAn . Finally, A interprets every variable
x P X of associated sort s P S by some element xA P sA. A partial interpretation A is
called total interpretation or simply interpretation if it interprets all function symbols
by total functions. We denote by A|Σ1,X 1 the Σ1-interpretation over X 1 that is obtained
by restrictingA to a signatureΣ1 � Σ and a set of variables X 1 � X 1. We further write
A|Σ for A|Σ,H. A (partial) Σ-structure is a (partial) Σ-interpretation over an empty
set of variables. For a partial Σ-interpretation A and σ P S Y Ω YΠ Y X , we denote
by Arσ ÞÑ vs the interpretation that is like A but interprets σ as v.

Given a Σ-interpretation A, the evaluation tA of a Σ-term t in A is defined in-
ductively over the structure of t, as usual. Similarly, the evaluation of a Σ-formula in
A is obtained from the interpretation of terms in the usual way. In particular, we use
the standard interpretations for equality, propositional connectives, and quantifiers. A
quantified variable of sort s ranges over all elements of sA. For a formula F we denote
by FA P t0, 1u its truth value in A. A formula F is satisfied in A, written A |ù F , if
FA � 1. In this case, we also callA a model of F . We say that F is satisfiable, if F has
a model. For two Σ-formulas F and G, we say F entails G, written F |ù G, if A |ù F
implies A |ù G for all Σ-interpretations A.

Theories and theory combinations. AΣ-theory is a class ofΣ-structures. Given aΣ-
theory T , a T -interpretation is a Σ-interpretation A such that A|Σ P T . A Σ-formula
is called T -satisfiable, if it is satisfiable in some T -interpretation. The quantifier-free
satisfiability problem of T is to decide for every quantifier-free Σ-formula whether it is
T -satisfiable or not.

Let Σ be a signature with sorts S and S1 � S. A Σ-theory is called stably infinite
with respect to S1, if each T -satisfiable quantifier-free Σ-formula is satisfiable in a
T -interpretation A such that sA has infinite cardinality, for all s P S1.

Let Ti be a Σi-theory, for i � 1, 2, and let Σ � Σ1 Y Σ2. The combination of T1

and T2 is the Σ-theory T1 ` T2 � tA | A|Σ1 P T1 and A|Σ2 P A2 u. We call T1 ` T2

the disjoint combination of T1 and T2 if Σ1 and Σ2 are disjoint.

3 Logic of Graph Reachability and Stratified Sets

In this section we formally introduce the logic of graph reachability and stratified sets
(GRASS), which is the target for our reduction of separation logic. Formulas in the logic
are interpreted in (function) graphs and can express properties of the graph structure as
well as properties of sets of nodes in the graph that are defined in terms of properties of
the graph structure.

Syntax of GRASS. Throughout the rest of this paper we assume that X is a countably
infinite set of variables of sorts node and set. We use the lower-case symbols x, y P X
for variables of sort node and upper-case symbols X,Y P X for variables of sort set.

The syntax of GRASS is defined in Figure 1. A GRASS formula is a propositional
combination of atoms. There are two types of atoms. Atoms of type A are either equal-

ities between terms of type T and reachability predicates of the form t1
hzt3
ÝÝÝÑ t2.

The terms of type T represent nodes in the graph. They have associated sort node and
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T ::� x | hpT q A ::� T � T | T
hzT
ÝÝÑ T R ::� A |  R | R^R | R_R

S ::� X | H | SzS | S X S | S Y S | tx.Ru x does not occur below h in R
B ::� S � S | T P S F ::� A | B |  F | F ^ F | F _ F

Fig. 1. Logic of graph reachability and stratified sets (GRASS)

are constructed from variables and application of the function symbol h, which rep-
resents the (functional) edge relation of the graph. Intuitively, a reachability predicate

t1
hzt3
ÝÝÝÑ t2 is true if there exists a path in the graph that connects t1 and t2 without go-

ing through t3. Atoms of type B are equalities between terms of type S, which have an
associated sort set, and membership tests. Terms of type S represent stratified sets [37],
i.e., their elements are interpreted – here, as nodes in the graph. S-terms include set
comprehensions of the form tx.Ru, where R is a Boolean combination of atoms of
type A. We require that the term hpxq does not occur in R. This side condition is im-
portant to ensure the decidability of the logic.

We use syntactic short-hands for implication, bi-implication, etc. We further write

t1
h
ÝÑ t2 as an abbreviation for t1

hzt2
ÝÝÝÑ t2 and we use short-hands for the universal set

U , which stands for tx. x � xu, subset inclusion S1 � S2, which stands for S1 Y S2 �
S2, and set enumerations tt1, . . . , tnu, which stand for tx. x � t1_� � �_x � tnuwhere
x does not occur in t1, . . . , tn. Finally, we write X�YZZ for X�YYZ^YXZ�H.

Example 1. Consider the formula F � Y � tx. x
h
ÝÑ yu ^ Z � tx. x

h
ÝÑ zu ^ U �

YZZ. This formula describes all function graphs that consist of two disjoint connected
components, one in which all nodes reach y, and one in which all nodes reach z.

Semantics of GRASS. We define the semantics of GRASS with respect to a specific
theory TGS. The theory TGS is the disjoint combination of a theory of reachability in
function graphs TG and a theory of stratified sets TS.

We first define the theory TG. The structures in TG are over the signature ΣG �
pSG, ΩG, ΠGq with sorts SG � tnodeu, function symbols ΩG � thu, and predicate

symbols ΠH � t
hz
ÝÑu. The sort of h is node Ñ node and the sort of

hz
ÝÑ is node �

node � node. The structures in TG are defined as follows. For a binary relation r over
a set S (respectively, a unary function from S to S), we denote by r� the reflexive
transitive closure of r. A structure A over signature ΣG is in TG iff the following
conditions are satisfied. First, the interpretation of the edge function h in A is con-
strained as follows: for all u P nodeA, the sets t v P nodeA | pu, vq P phAq� u and
t v P nodeA | pv, uq P phAq� u are finite. Second, the interpretation of the reachability
predicate is defined in terms of hA as follows. For all u, v, w P nodeA

u
hzw
ÝÝÑA v ðñ pu, vq P t pu1, h

Apu1qq | u1 P nodeA ^ u1 � w u�

Note that uÑA v iff pu, vq P phAq�.
Next, we define the theory of stratified sets TS [37]. The structures in TS are over

the signature ΣS � pSS, ΩS, ΠSq with sorts SS � tnode, setu, function symbols ΩS �
tH,X,Y, zu, and predicate symbols ΠS � tPu. The symbol H is a constant of sort
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x, y P X Σ ::� x � y | x � y | x ÞÑ y | lspx, yq | Σ �Σ H ::� Σ |  H | H ^H

Fig. 2. SLLB: separation logic of linked lists

set and the function symbols X, Y, and z all have sort set � set Ñ set. The predicate
symbol P has sort node � set. A structure A is in TS iff A interprets the sort set as the
set of all subsets of nodeA and the symbols in ΩS and ΠS are interpreted as expected.

Now define ΣGS � ΣG Y ΣS and TGS � TG ` TS. We call the structures in TGS

heap structures, referring to their use later on in the paper. Likewise, we call a ΣGS-
interpretation whose reduct is a heap structure a heap interpretation. We denote by
TGS,X the set of all heap interpretations.

We next define the semantics of GRASS formulas. Let A be a heap interpretation.
The evaluation of terms of type T and formulas of type R in A are defined as in first-
order logic. Using these definitions we define the evaluation of a set comprehensions
tx.Ru in A as follows: tx.RuA � tu P nodeA | RArx ÞÑus � 1 u.

The definition of the evaluation function is then extended by structural induction
to terms of type S and formulas of type F , as expected. The notions of satisfiability
and entailment are defined as for first-order logic, except that we restrict ourselves to
heap interpretations, respectively, heap structures. We denote byA |ùGS F that GRASS
formula F is satisfied by heap interpretation A.

The satisfiability problem of GRASS asks whether a given GRASS formula F is sat-
isfiable. This problem is decidable. The decision procedure can be implemented within
an SMT solver using a Nelson-Oppen combination of solvers for TG and TS. We de-
scribe this procedure in Appendix A. The following theorem only states its existence.

Theorem 2. The satisfiability problem of GRASS is NP-complete.

4 Separation Logic of Linked Lists

We consider separation logic formulas that are given by propositional combinations
of formulas in separation logic of linked lists [5] (SLL). We refer to our fragment of
separation logic simply as SLLB. The syntax of the formulas in this fragment are given
in Figure 2. That is, a formula is a propositional combination of spatial formulas Σ.
A spatial formula is an equality or disequality of variables (of sort node), a points-to
predicate x ÞÑ y, a list segment predicate lspx, yq, or a spatial conjunction Σ1 � Σ2

of spatial formulas. We denote by H the set of all these formulas. We use syntactic
sugar for disjunctions. We further write emp for x � x, false for x � x, and true for
 px � xq, where x P X is some fixed variable.

The standard semantics of separation logic formulas is given with respect to a vari-
able assignment (referred to as stack) and a partial function on memory addresses to
values (referred to as the heap). In order to be able to easily relate formulas in SLLB
and GRASS, we define the semantics of SLLB formulas in terms of heap interpretations
A. Our semantics is consistent with the standard semantics (except for one minor devia-
tion that we explain below). The interpretation of the edge function hA plays the role of
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A, X |ùSL x � y iff xA � yA and XA � H

A, X |ùSL x � y iff xA � yA and XA � H

A, X |ùSL x ÞÑ y iff hApxAq � yA and XA � txAu

A, X |ùSL H1 �H2 iff DU1, U2. U1YU2 � XA and U1XU2 � H and

ArX ÞÑ U1s, X |ùSL H1 and ArX ÞÑ U2s, X |ùSL H2

A, X |ùSL lspx, yq iff Dn ¥ 0. A, X |ùSL lsnpx, yq

A, X |ùSL ls0px, yq iff xA � yA and XA � H

A, X |ùSL lsn�1px, yq iff Du P nodeA. Arz ÞÑ us, X |ùSL x ÞÑ z � lsnpz, yq

and xA � yA and z � x and z � y

A, X |ùSL H1 ^H2 iff A, X |ùSL H1 and A, X |ùSL H2

A, X |ùSL  H iff not A, X |ùSL H

Fig. 3. Semantics of SLLB in terms of heap interpretations

the heap in the standard semantics and the variable assignment inA plays the role of the
stack. Since a heap structure A interprets h by a total function and the standard inter-
pretation of separation logic is with respect to a heap that is a partial function, we must
explicitly say which subset of nodeA we use to interpret a separation logic formula.
For this purpose, we use a set variable X P X whose interpretation in A determines
this subset. We call XA the footprint of the interpreted formula. The set variable X is
a parameter of the semantics. The satisfaction relation is denoted by judgments of the
form A, X |ùSL H , as defined in Figure 3.

If A, X |ùSL H holds, we say that H is satisfied by A with respect to X , re-
spectively, that A is a model of H with respect to X . Entailment between two SLLB
formulas H1 and H2 (written H1 |ùSL H2) is then defined as expected.

The satisfiability problem for SLLB asks whether a given SLLB formula H is sat-
isfiable in some heap interpretation A with respect to some set variable X . It follows
from results in [15], that this problem is NP-complete.

Unlike the standard semantics of separation logic, our semantics is precise [13].
That is, the footprint of a spatial formula is uniquely defined in each model. In par-
ticular, (dis)equalities constrain the heap to be empty. For example, the formula x �
y ^ lspx, yq is unsatisfiable because x � y implies both that the heap is empty and that
lspx, yq is a non-empty list segment. On the other hand, the formula x � y � lspx, yq
is satisfiable and describes all heaps containing non-empty list segments from x to y,
which is the meaning of x � y^ lspx, yq in the standard semantics. The deviation from
the standard semantics is therefore of little practical consequence and is in fact adopted
by some separation logic tools. Our approach also works for the standard semantics of
(dis)equalities, but the correctness proofs are more involved. We can further adapt our
approach to handle other imprecise formulas such as formulas with disjunctions and
conjunctions below spatial conjunction. The only problematic generalization that can-
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strY px � yq � px � y, Y � Hq strY px ÞÑ yq � phpxq � y, Y � txuq

strY px � yq � px � y, Y � Hq strY plspx, yqq � px
h
ÝÑ y, Y � Btwnpx, yqq

strY pΣ1 �Σ2q � let Y1, Y2 P X fresh and pF1, G1q � trY1pΣ1q and pF2, G2q � trY2pΣ2q

in pF1 ^ F2 ^ Y1XY2�H, Y �Y1YY2 ^G1 ^G2q

trXpΣq � let Y P X fresh and pF,Gq � strY pΣq in pF ^X�Y, Gq

trXp Hq � let pF,Gq � trXpHq in p F, Gq

trXpH1^H2q � let pF1, G1q � trXpH1q and pF2, G2q � trXpH2q

in pF1 ^ F2, G1 ^G2q

TrXpHq � let pF,Gq � trXpHq in F ^G

Fig. 4. Translation of SLLB to GRASS

not be easily handled is to admit negation below spatial conjunction. To our knowledge,
no (automated) SL tool supports such formulas because of the increased complexity.

5 Reduction of SLLB to GRASS

In the following, we present our reduction approach for automated reasoning about
SLLB formulas. We show that every SLLB formula can be reduced in linear time to
an equisatisfiable GRASS formula. By using our decision procedure for GRASS, this
reduction yields an SMT-based decision procedure for the satisfiability and entailment
problem of SLLB. Furthermore, it enables theory combination of SLLB with signature
disjoint theories within the Nelson-Oppen combination framework.
Translating SLLB to GRASS. We start with the translation function Tr that maps
SLLB formulas to GRASS formulas. It is shown in Figure 4. The function is param-
eterized by a set variable X , which holds the footprint of the translated formula. The
translation is defined using two auxiliary functions str and tr .

The function str maps a set variable Y and a spatial formula Σ to a pair of GRASS
formulas pF,Gq. The formula F captures the structure of Σ, while the formula G de-
fines auxiliary set variables that are used to link Y to the footprint of Σ. The function
str is defined recursively on the structure of Σ. Note that it closely follows the seman-
tics of spatial formulas. In particular, to define the footprint Y of a spatial conjunction
Σ1 �Σ2, the function str introduces two fresh set variables to capture the footprints of
Σ1 andΣ2, respectively, and then defines Y as the disjoint union of these two sets. Also,
note that we do not need induction to translate list segments. Instead, the structure and
footprint of a list segment are translated directly using reachability predicates. Here, we

write Btwnpx, yq as a short-hand for the set comprehension tz.x
hzy
ÝÝÑ z ^ z � yu.

The function tr translates Boolean combinations of spatial conjunctions. At the leaf
level, tr introduces fresh set variables Y to translate the meaning of spatial formulas Σ
and asserts X � Y in the structural constraint. The constraints G defining the auxiliary
set variables are propagated to the top level where the function Tr conjoins them with
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the structural constraint F of the entire formula. The following lemma implies that the
translation yields an equisatisfiable formula.

Lemma 3. Let H be an SLLB formula, X P X , and A a heap interpretation. Then
A satisfies H with respect to X iff there exist subsets U1, . . . , Un of nodeA such that
ArY1 ÞÑ U1, . . . , Yn ÞÑ Uns |ùGS TrXpHq, where Y1, . . . , Yn are the fresh set vari-
ables introduced in the translation TrXpHq.

Note that the auxiliary set variables Yi that are introduced for the translation of
spatial conjunctions are implicitly existentially quantified. Hence, when a spatial con-
junction appears below an odd number of negations, these existential quantifiers should
become universal quantifiers. One might therefore wonder why the propagation of con-
straints G to the top level of the formula is still correct, since all set variables remain
existentially quantified. It is here where the precise semantics of spatial formulas helps.
Each constraint G is a conjunction of equalities defining the sets Yi as finite unions of
set comprehensions. Therefore, these constraints are satisfiable in any given heap inter-
pretation. In fact, for each constraint G and heap interpretation A, there exists exactly
one assignment of the Yi to Ui � nodeA that makes G true in A. Hence, the formulas
DY1, . . . , Yn. F ^G and @Y1, . . . , Yn. Gñ F are equivalent.

For two SLLB formulas H1 and H2, we have that H1 entails H2 iff H1 ^  H2 is
unsatisfiable. It follows from Lemma 3 that our translation yields a decision procedure
for satisfiability and entailment of SLLB formulas.

Theorem 4. The satisfiability and entailment problems of SLLB are reducible in linear
time to the satisfiability problem of GRASS.

Example 5. Consider the two separation logic formulas H1 � x � z �x ÞÑ y � lspy, zq,
and H2 � lspx, zq. Both formulas describe heaps consisting of an acyclic list segment
from x to z. In the case of H1, the segment is non-empty, while H2 also allows the
empty segment, i.e., H1 |ùSL H2. Let X P X be a set variable. Then TrXpH1q is

x � z ^ hpxq � y ^ y
h
ÝÑ z ^ Y2XY3 � H^ Y4XY5 � H^X � Y1 ^

Y1�Y2YY3 ^ Y2�H^ Y3�Y4YY5 ^ Y4�txu ^ Y5�Btwnpy, zq

which can be simplified to x � z ^ hpxq
h
ÝÑ z ^ X � txuZBtwnphpxq, zq. We

further have TrXp H2q �  px
h
ÝÑ z ^ X � Y6q ^ Y6 � Btwnpx, zq. To see why

TrXpH1q ^ TrXp H2q is unsatisfiable, note that hpxq h
ÝÑ z implies x h

ÝÑ z and
Btwnpx, zq � txuYBtwnphpxq, zq.

Combining SLLB with other theories. We next show that the theory TGS behaves
well with respect to theory combination. For instance, we can combine it with a theory
of integer arithmetic for interpreting memory addresses. We can then use this theory
to reason about SL fragments in which we allow address arithmetic. Similar combi-
nations enable reasoning about fragments that can express properties about data. To
implement these theory combinations, we can leverage the Nelson-Oppen combination
framework [24] provided in SMT solvers.
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Formally, let Σnode be a signature that is disjoint from ΣGS and that contains at
least the sort node. Let further Tnode be a decidable Σnode-theory that is stably infinite
with respect to sort node. For example, Tnode may be the theory of linear arithmetic,
interpreting the sort node as integers. Define Σ � Σnode YΣGS and T � Tnode ` TGS.

We show that our reduction of SLLB to GRASS allows us to decide satisfiabil-
ity of conjunctions H ^ G of SLLB formulas H with quantifier-free Σnode-formulas
G. Such conjunctions are interpreted in Σ-interpretations, as expected. Given such
a conjunction H ^ G, the decision procedure checks T -satisfiability of the formula
reducepTrXpHqq^G, where X P X does not appear in G. This check is implemented
using a Nelson-Oppen combination of the decision procedure for TGS and the decision
procedure for Tnode. To show the completeness of this combination procedure, let TSL

be the ΣGS-theory defined as follows:

TSL � tA|ΣGS
| DH P H,A P TGS,X , X P X . A, X |ùSL H u

We call TSL the theory of SLLB. Completeness then follows from the following theorem.

Theorem 6. The theory TSL is stably infinite with respect to sort node.

Theorem 6 follows from the fact that the theory of the fragment of GRASS that
is defined by the translation function Tr is stably infinite with respect to sort node.
Incidentally, this is not true for the full theory of GRASS. For example, the GRASS
formula tx. x � yu � U has only models where the interpretation of sort node has
cardinality 1. Theory combination for the full theory of GRASS is still possible using a
more complex combination procedure that requires GRASS to be extended with linear
cardinality constraints [35].

6 Extensions

In this section, we describe several extensions of GRASS to support symbolic execution
of programs on GRASS formulas and more expressive separation logic fragments.

Arrays. One advantage of our approach is that it enables the use of separation logic
in existing verification tools that already provide backends to SMT solvers, without
requiring symbolic execution engines for separation logic. However, we then need a
form of symbolic execution for GRASS formulas that is supported by existing tools.
In particular, the logic must be able to express the effect of heap updates concisely.
We can do this by extending GRASS with a theory of arrays to represent mutable data
structure fields. That is, we model fields as arrays whose indices and elements are of
sort node. For this purpose, we extend the signature ΣGS with an additional sort field,
and additional function symbols sel : field � node Ñ node and upd : field � node �
node Ñ node to model field reads and writes. Also, the reachability predicate will now

be of the form 


z

ÝÝÑ 
 : field � node � node � node, taking a field as additional

parameter. It follows from results in [33] that the quantifier-free satisfiability problem
for this extension remains decidable in NP. In Appendix B, we show how to use this
extension to decide validity of verification conditions with SL assertions.
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Beyond singly-linked lists. To support SL fragments with inductive predicates for
more diverse data structures, we consider several non-disjoint extensions of GRASS and
then extend the translation function for the additional inductive predicates appropriately.
For example, suppose we consider heap structures for list nodes consisting of two fields:
a pointer n to the next node in the list and a data field d storing an integer value. Now
suppose we want to extend the SLLB with an inductive predicate slspx, yq representing
a heap region consisting of a list segment from x to y, whose data values are sorted.
Automated reasoning about formulas with such a predicate is more difficult to achieve
using conventional SL provers because the predicate relates the memory layout with
constraints on the stored data. We can easily support such a predicate in our approach
by relying on the capabilities of the underlying SMT solver. To extend our translation
from Section 5 to the sorted list predicate it suffices to define:

strY pslspx, yqq � px
n
ÝÑ y ^ @z, w P Y. z

n
ÝÑ w ñ dpzq¤dpwq, Y �Btwnpx, yqq

Under mild assumptions, it follows from results in [23] that the quantified constraint
expressing the sortedness property is a local theory extension [32] and remains in a
decidable fragment. This allows us to reduce reasoning about sorted lists to reasoning
in a disjoint combination of TGS with the theory of free function symbols (for the data
field) and the theory of linear arithmetic. Similar reductions can be given for predicates
encoding data structures with more complex linking patterns, such as doubly-linked
lists, lists with head pointers, nested lists, etc. For example, the translation for the usual
doubly-linked list predicate dllspx, a, y, bq over forward pointer field n and backward
pointer field p (see, e.g. [4]) is as follows:

strY pdllspx, a, y, bqq � px
n
ÝÑ y ^ px�y ^ a�b_ ppxq�a^ npbq�y ^ b P Y q ^

@z P Y. npzq P Y ñ ppnpzqq�z, Y �Btwnpx, yq q

The quantified constraint in the translation again constitutes a local theory extension that
remains decidable and can be handled efficiently. One can also provide translations for
inductive predicates describing tree data structures by using an appropriate first-order
theory for reachability in trees, such as the one presented in [34].

7 Frame Inference and Abduction

Many operations in SL-based program analyses, including the application of the frame
rule, involve more general forms of entailment tests referred to as frame inference [7,18]
and abduction [11]. The frame inference problem is to compute for a pair of SLLB
formulas pH,Gq, a formula F such that H |ùSL G � F holds, if such F exists. We call
F the frame and we denote such frame inference problems byH |ùSL G�F?. Likewise,
the abduction problem is to find an anti-frame F for pH,Gq such that H � F |ùSL G.
We denote abduction problems by H � F? |ùSL G. In the following, we explain how to
solve frame inference and abduction problems using our decision procedure for GRASS
in combination with a model-generating SMT solver.
Inverse translation. Our technique for frame inference and abduction uses a char-
acterization of a GRASS formula F in terms of a finite set of partial interpretations
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PModXpF q that we obtain from the models of F , where X is some set variable occur-
ring in F . We use this set of partial models to define an inverse translation function that
maps F to an SLLB formula Tr�1

X pF q. The purpose of the set variableX is to carve out
a specific partial substructures of each model of F that is then captured by Tr�1

X pF q.
We start by defining PModXpF q. Let F be a GRASS formula and letX P X be a set

variable. Let further N � X be the set of all free variables of sort node in F and define
V � N Y tXu. For A P TGS,X , define NA � txA | x P N u. Further, define AF,X
as the partial ΣGS-interpretation for variables V that is obtained from A by defining
nodeAF,X � NA and restricting the interpretation of all symbols ΩGSYΠGSYV inA
to NA. We then define PModXpF q � tAF,X | A |ùGS F u.

To simplify the presentation, we restrict ourselves to a specific class of GRASS for-
mulas: we say that F is X-closed, if for all B P PModXpF q and u P XB, hBpuq is
defined or there exists some v P nodeB such that v � u and uÑB v. In the following,
we assume that F is X-closed. The inverse translation can be generalized to arbitrary
GRASS formulas. However, this requires the introduction of additional Skolem con-
stants (respectively, explicit existential quantifiers in SLLB).

Let B P PModpF q. Define a partial function succB : nodeB á nodeB as follows.
For all u P nodeB, let succBpuq � v, where v P nodeB is the unique node such that

v � u and for all w P nodeB, if w � u and u ÑB w, then u
hzw
ÝÝÑB v, if such a node

v exists. Otherwise, succBpuq is undefined. For every u P nodeB, let xu P N such that
xBu � u. Now define a spatial conjunction tr�1

X pBq of SLLB atoms as follows. First, for
all distinct x, y P N , if xB � yB, then tr�1

X pBq contains the spatial conjunct x � y,
otherwise it contains x � y. Second, for every u P XB, tr�1

X pBq contains a spatial
conjunctΣu defined as follows: if hBpuq � v for some v P NA, thenΣu � pxu ÞÑ xvq;
otherwise, Σu � lspxu, xvq where v is such that succBpuq � v.

Note that the set PModpF q is finite up to isomorphism. If it is empty, we define
Tr�1

X pF q � false. Otherwise, let B1, . . . ,Bn be representatives of all isomorphism
classes of PModpF q. Then define Tr�1

X pF q � tr�1
X pB1q _ . . ._ tr�1

X pBnq.
The following lemma states the correctness of this inverse translation function.

Lemma 7. LetX P X andF be anX-closed GRASS formula. Then for allA P TGS,X :

1. if A |ùGS F , then A, X |ùSL Tr�1
X pF q, and

2. if A, X |ùSL Tr�1
X pF q, then AF,X P PModXpF q.

Note that we can compute PModXpF q by solving the All-SAT problem for F using
a model-generating SMT solver that implements the decision procedure for TGS. From
each modelA of F that is generated by the solver, we compute the partial modelAF,X .
This partial model then serves as a blocking clause for the solver to eliminate all models
of F from the search space that are mapped to the isomorphism class of AF,X . If we
apply this technique without further optimizations, then the computed set PModXpF q
(and hence the formula Tr�1

X pF q) will be (worst-case) exponential in the size of F .
This is because each partial model fixes an arrangement of equalities between the vari-
ables in N . The enumeration process can be improved by generalizing each computed
partial model before it is further processed, e.g., by dropping inequalities that are not
implied by F . Only the generalized partial models are then used as blocking clauses,
respectively, in the inverse translation function.
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B1 : x y,z , Z � H B2 : x , Z � tyuy z

Fig. 5. The set PModZpF q for formula F in Example 8

Example 8. Consider the GRASS formula

F � x � z ^ x
h
ÝÑ z ^ hpxq�y ^X�Btwnpx, zq ^ Y �txu ^ Z�XzY

The set X contains all nodes on the path from x to z, excluding z. The path exists
because of x h

ÝÑ z. Hence Z contains all nodes in X except for x itself. The set
PModZpF q consists of two isomorphism classes of partial models represented by B1

and B2 depicted in Figure 5. The solid edges denote the interpretation of h, the dashed
edges denote the partial function succBi for the nodes on which h is undefined. The
partial models show that F is Z-closed. We then have tr�1

Z pB1q � x�z � x�y � y�z
and tr�1

Z pB2q � x � z � x � y � y � z � lspy, zq. From this we obtain Tr�1
Z pF q �

tr�1
Z pB1q _ tr�1

Z pB2q � x�z � x�y � lspy, zq.

Solving frame inference and abduction problems. We now show how we use the
inverse translation function to solve frame inference problems. This technique can then
be easily adapted for abduction.

A formula H P H is called positive if it does not contain negations. For a positive
formula H , we always have that TrXpHq is X-closed. To ensure that we can use the
inverse translation function from the previous section, we therefore restrict ourselves to
frame inference problems in the positive fragment of SLLB.

Let H and G be two positive SLLB formulas and suppose that H |ùSL G � F? has
a solution. To compute a solution, define the GRASS formula

FrameZpH,Gq � TrXpHq ^ TrY pGq ^ Z�XzY

where X,Y, Z P X are distinct set variables. Note that, the set variable Z describes the
footprint of the frame. Moreover, the formula FrameZpH,Gq is Z-closed. Hence, the
SLLB formula Tr�1

Z pFrameZpH,Gqq is a valid frame for pH,Gq.

Theorem 9. For all positive SLLB formulas H and G, and Z P X , if H |ùSL G � F?
has a solution, then H |ùSL G � Tr�1

Z pFrameZpH,Gqq. Moreover, if H |ùSL G � F
1

for some F 1, then Tr�1
Z pFrameZpH,Gqq |ùSL F

1.

It remains to check whether H |ùSL G � F? has a solution. For this purpose, define
the GRASS formula

NoFramepH,Gq � TrXpHq ^ Trf Xp Gq

where X P X and Trf is like Tr , except that the constraints X � Y in the case for
trXpΣq are replaced by Y � X .

Theorem 10. For all positive SLLB formulas H and G, the instance H |ùSL G �F? of
the frame inference problem has a solution iff NoFramepH,Gq is unsatisfiable.
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We check unsatisfiability of NoFramepH,Gq using our decision procedure for
GRASS. If the check succeeds, we compute the solution according to Theorem 9. In
order to adapt this technique for solving abduction problems H �F? |ùSL G, it suffices
to replace Z � XzY in FrameZpH,Gq by Z � Y zX , and the constraints Y � X in
NoFramepH,Gq by X � Y .

8 Implementation and Experiments

We have implemented our decision procedure for GRASS together with the translation
of SLLB in a prototype prover. We have further developed a verification tool called
GRASShopper that builds on top of this prover4. Currently we use Z3 [16] as the un-
derlying SMT solver because our implementation relies on Z3’s model-based quantifier
instantiation mechanism (MBQI).

To decide satisfiability of a GRASS formula F , we proceed as described in Ap-
pendix A and generate an equisatisfiable ΣGS-formula G, which we then check for
TGS-satisfiability. We have not yet implemented a dedicated solver for the theory of
graph reachability TG. Instead, we use the finite first-order axiomatizations of this the-
ory that are described in [23, 33]. To decide satisfiability of G, we conjoin the theory
axioms withG and then partially instantiate quantified variables in the resulting formula
with ground terms occurring in G. We only instantiate variables that occur below func-
tion symbols in the axioms of TG. This keeps the size of the formulas that are given to
the SMT solver reasonably small. The partial instantiation is guaranteed to be complete
because TG is a local theory [32]. Details about this result can also be found in [33].
The partially instantiated axioms are in the EPR fragment of first-order logic (aka the
Bernays-Schönfinkel-Ramsey class). The EPR fragment can be decided quite efficiently
using Z3’s MBQI mechanism. Stratified sets can be encoded directly in Z3 using com-
binatory array logic [17]. However, according to the Z3 developers, the array theory
does currently not behave well with MBQI. We therefore also partially instantiate the
axioms of stratified sets to remain in the EPR fragment.

Our tool GRASShopper uses the prover to verify list-manipulating programs writ-
ten in a simple imperative language. The programs are expected to be annotated with
procedure contracts and loop invariants expressed in separation logic. Each procedure
is verified in isolation. To handle loops and procedure calls efficiently, the tool imple-
ments a frame rule that avoids explicit inference of frames. Instead, we encode frames
implicitly in the formula that is given to the SMT solver. More details about this im-
plementation can be found in Appendix B. Currently, GRASShopper supports singly,
doubly-linked, and sorted list predicates. We are planing to add support for user-defined
predicates in the future. Since our prover yields a decision procedure for checking the
generated verification conditions, we use the SMT solver to produce counterexamples
for faulty programs, which our tool can then visualize.

We have applied our prototype to verify partial correctness specifications (includ-
ing absence of run-time errors) of typical list-manipulating programs, including sorting
algorithms. The considered programs contain loops and (recursive) procedure calls.

4 The tool is available at http://cs.nyu.edu/wies/software/grasshopper.
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program sl dl rec sl sls program sl dl rec sl sls
# t # t # t # t # t # t # t # t

concat 4 0.1 5 1.3 6 0.6 5 0.2 insert 6 0.2 5 1.5 5 0.2 6 0.4
copy 4 0.2 4 3.9 6 0.8 7 3.5 reverse 4 0.1 4 0.5 6 0.2 4 0.2
filter 7 0.6 5 1.1 8 0.4 5 1.1 remove 8 0.2 8 0.8 7 0.2 7 0.5
free 5 0.1 5 0.3 4 0.1 5 0.1 traverse 4 0.1 5 0.3 3 0.1 4 0.2
insertion sort 10 0.7 double all 7 2.2
merge sort 25 6.8 pairwise sum 10 20

Table 1. Experimental results for the verification of list-manipulating programs. The columns
marked “sl” refer to singly-linked list versions of the benchmarks, the “dl” columns to doubly-
linked lists, and the “rec sl” columns to recursive implementations with singly-linked lists. Fi-
nally, the columns “sls” refer to sorted singly-linked lists. The columns “#” give the number of
queries to the SMT solver and the “t” columns refer to the total running time in seconds.

Some of the programs consist of multiple procedures. Table 1 shows the results of the
experiments. For example, the program “pairwise sum” takes two sorted lists as input
and creates a new list whose entries are the pairwise sums of the entries in the input
lists. We then show that the resulting list is again sorted. For the sorting algorithms,
we proved that the output list is sorted but we did not check that it is a permutation of
the input list. To verify the programs manipulating doubly-linked and sorted lists we
used a Nelson-Oppen combination of TGS with the theory of equality and uninterpreted
function symbols, and the theory of linear arithmetic.

9 Conclusions

We presented a reduction of decidable separation logic fragments to a decidable first-
order logic fragment called GRASS. Our reduction enables the seamless integration of
an SL prover into an SMT solver, which has promising applications in program verifi-
cation. We demonstrated the feasibility of our approach using a prototype implemen-
tation. Future directions include the development of dedicated theory solvers for graph
reachability and stratified sets, which underlie the decision procedure for GRASS.
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A Deciding Satisfiability of GRASS

In the following, we present the decision procedure for the satisfiability problem of
GRASS. The decision procedure works by reduction to the quantifier-free satisfiability
problem of TGS. The latter is decidable and can be implemented in an SMT solver. To
show this, we need the following property.

Lemma 11. The theories TG and TS are stably infinite with respect to sort node.

Since disjoint combinations of stably infinite theories are stably infinite, we immedi-
ately obtain:

Corollary 12. The theory TGS is stably infinite with respect to sort node.

The theory TG is not first-order definable because of the finiteness constraints on the
edge relation h and the fact that reachability predicates are defined in terms of transitive
closure of relations. However, there exists a finite set of first-order axioms whose finite
models are all in TG. This axiomatization is the key to solving the quantifier-free satis-
fiability problem of TG, which is NP-complete. A corresponding decision procedure is
presented, e.g., in [33]. From results in [37] and Lemma 11 it then follows that TGS is
decidable using a standard Nelson-Oppen combination of the decision procedures for
TG and TS. The decision procedure obtained in this way remains in NP.

Theorem 13. The quantifier-free satisfiability problem of TGS is NP-complete.

We now describe the decision procedure for GRASS. Let reduce be the function
that maps a GRASS formula F to a quantifier-free first-order formula G as follows:

1. Eliminate all disequalities between set expressions in F by transforming F into
negation normal form and then exhaustively applying the following rewrite rule:

S1 � S2 ; x P S1zS2 Y S2zS1 where x P X fresh

Let F1 be the resulting GRASS formula.
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2. Eliminate all set comprehensions in F1 by exhaustively applying the following
rewrite rule:

Crtx.Rus ; CrXs ^ p@x. x P X ô Rq where X P X fresh

Let F2 be the resulting ΣGS-formula.
3. Instantiate all universal quantifiers in F2 as follows. Let t1, . . . , tn be the terms of

sort node appearing in F2 that do not contain quantified variables. Then exhaus-
tively apply the following rewrite rule to F2:

p@x. x P X ô Rq ; pt1 P X ô Rrt1{xsq ^ . . .^ ptn P X ô Rrtn{xsq

Let G be the resulting quantifier-free ΣGS-formula.

Lemma 14. For all GRASS formulasF ,F is satisfiable iff reducepF q is TGS-satisfiable.

Lemma 14 implies that satisfiability of a GRASS formula F can be decided by
checking TGS-satisfiability of its reduction reducepF q. The size of the formula reducepF q
is at most quadratic in the size of F . Together with Theorem 13 we then obtain Theo-
rem 2.

Example 15. Consider the GRASS formula

F � tx. x
h
ÝÑ yu � U ^ y h

ÝÑ z ^ pw
h
ÝÑ zq

This formula is unsatisfiable, which we prove with our decision procedure. After step 2
of the reduction, we obtain the first-order formula:

F2 � S � U ^ y
h
ÝÑ z^ pw

h
ÝÑ zq^ p@x. x P S ô x

h
ÝÑ yq^ p@x. x P U ô x � xq

Instantiating the quantifiers in step 3 yields the quantifier-free formula

G � S � U ^ y
h
ÝÑ z ^ pw

h
ÝÑ zq ^

py P S ô y
h
ÝÑ yq ^ pz P S ô z

h
ÝÑ yq ^ pw P S ô w

h
ÝÑ yq ^

py P U ô y � yq ^ pz P U ô z � zq ^ pw P U ô w � wq

To see that this formula is unsatisfiable in TGS, we simplifyG to the equivalent formula:

G1 � S � U ^ y
h
ÝÑ z ^ pw

h
ÝÑ zq ^ y P U ^ z P U ^ w P U ^

py P S ô y
h
ÝÑ yq ^ pz P S ô z

h
ÝÑ yq ^ pw P S ô w

h
ÝÑ yq

Note that S � U ^w P U implies w P S, which in turn implies w h
ÝÑ y. Together with

y
h
ÝÑ z and transitivity ofÑ this implies w h

ÝÑ z, which gives the contradiction.

B Verifying Heap-Manipulating Programs

The main use case of decision procedures for fragments of separation logic is to auto-
mate the verification of heap-manipulating programs against SL specifications. In this
section, we introduce a simple imperative language of list-manipulating programs and
then explain how we automate the verification of such programs using the techniques
developed in this paper.
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B.1 List-Manipulating Guarded Commands

We define a language of guarded commands as shown in Fig. 6. Note that while loops
are annotated with loop invariants expressed in SLLB. As expected, a loop invariant
only needs to describe the footprint of the loop, i.e., those nodes in the heap that are
accessed by the loop.

x, y P X E ::� x | nil heap expressions

I P H G ::� E � E | E � E Boolean expressions

C ::� x :� E variable assignment

| x :� rys heap lookup

| rxs :� E heap update

| newpxq allocation

| disposepxq deallocation

| assumepGq guard

| C C sequential composition

| C 8C non-deterministic choice

| tIu whilepGq C while loop with invariant

Fig. 6. Syntax of list-manipulating guarded commands

We give an operational semantics of a command C in terms of a transition rela-
tion C

; on states. States are heap interpretations. In addition, we have the special error
state fail, which indicates a failed computation. We consider a dedicated set variable
Alloc whose interpretation represents the set of all currently allocated heap nodes. All
program states interpret the constant nil as an unallocated node. The transition relation
is then the smallest relation satisfying the following conditions: we have A C

; B if
A � B � fail, or A is a heap interpretation and the following conditions hold, depend-
ing on the structure of P :

1. (C � x :� E) B � Arx ÞÑ EAs;
2. (C � x :� rys) B � Arx ÞÑ hApyAqs if yA P AllocA, and otherwise B � fail;
3. (C � rxs :� E) B � Arh ÞÑ hArxA ÞÑ EAs if xA P AllocA, and otherwise
B � fail;

4. (C � newpxq)B � ArAlloc ÞÑ AllocAYtuu, x ÞÑ us for some u P nodeAzpAllocAY
tnilAuq;

5. (C � disposepxq) B � ArAlloc ÞÑ AllocAztxAus if xA P AllocA, and otherwise
B � fail;

6. (C � assumepGq) B � A and A |ù G;

7. (C � C1 C2) A C1
; �

C2
; B; and

8. (C � C1 8C2) A C1
; B or A C2

; B.
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9. (C � tIu whilepGq C 1) A |ù  G and A � B, or A |ù G, A C1

; A1, and A1 C; B.

We consider Hoare triples of the form tP uCtQu, where C is a guarded com-
mand and P,Q are SLLB formulas. We focus on partial correctness, i.e., a Hoare triple
tP uCtQu is valid iff for all normal program states A, if A,Alloc |ùSL P and A C

; B
for some B, then B � fail and B,Alloc |ùSL Q. We say that a Hoare triple is condition-
ally valid if there exists a Hoare proof of its validity that uses the annotated invariants
in the command C.

Example 16. The following Hoare triple consists of a guarded command that computes
the in-place reversal of a singly-linked list pointed to by x.

tlspx, nilqu
y :� nil
tlspx, nilq � lspy, nilqu
whilepx � nilq

t :� x
x :� rxs
rts :� y
y :� t

tlspy, nilqu

The precondition specifies that x points to an acyclic singly-linked list. The postcondi-
tion specifies that, after termination of the command, the resulting heap consists only
of a singly acyclic list segment pointed to by y.

B.2 Checking Conditional Validity of Hoare Triples

To automatically check the conditional validity of a Hoare triple tP uCtQu, we generate
a verification condition expressed in GRASS. This verification condition is unsatisfiable
iff the Hoare triple is conditionally valid.

Loop-free commands. We start by showing that it is possible to compute verification
conditions in the form of symbolic weakest preconditions using the machinery that is
provided by tools such as Boogie [2]. For this purpose, we restrict ourselves to loop-
free guarded commands. Let F be a GRASS formula and let C be a loop-free guarded
command, the symbolic weakest precondition wppC,F q of F and C describes the set
of all program states A such that for all program states B, if A C

; B, then B � fail and
B |ù F . It is defined recursively on the structure of C as shown in Figure 7. Note that
we use the extension of GRASS with arrays, to handle pointer updates concisely.

The following theorem states that we can use symbolic weakest preconditions to
decide the validity of Hoare triples with loop-free guarded commands.

Theorem 17. A Hoare triple tP uCtQu is valid iff the GRASS formula  Allocpnilq ^
TrAllocpP q ^  wppC, TrAllocp Qqq is unsatisfiable.
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wppx :� E,F q � F rE{xs

wppx :� rys, F q � y P Alloc^ F rselph,Eq{xs

wpprxs :� E,F q � x P Alloc^ F rupdph, x,Eq{hs

wppnewpxq, F q � x1 R Alloc^ x1�nil ñ F rx1{x, pAllocY tx1uq{Allocs

where x1 P X fresh

wppdisposepxq, F q � x P Alloc^ F rpAllocztxuq{Allocs

wppassumepGq, F q � Gñ F

wppC1 C2, F q � wppC1,wppC2, F qq

wppC1 8C2, F q � wppC1, F q ^ wppC2, F q

Fig. 7. Symbolic weakest preconditions of GRASS formulas for loop-free guarded commands

The general case. To decide conditional validity of general Hoare triples, we use a form
of symbolic forward execution with a special encoding of frame axioms that does not
rely on frame inference. Our tool GRASShopper uses a straightforward generalization
of this approach for a language that also supports procedures.

Given a Hoare triple tP uCtQu we define a function VC that computes the verifica-
tion condition for tP uCtQu. This function is shown in Fig. 8. The function VC is de-
fined in terms of the auxiliary function vc. The function vc takes a guarded commandC,
a precondition F , and variable substitution σ as input. It returns a tuple pF 1, σ1,VCCq
where F 1 is the strongest postcondition of F with respect to C, σ is a variable sub-
stitution, and VCC is a verification condition that encodes checks for memory safety
and inductiveness of all loop invariants in C. The function vc introduces fresh Skolem
constants to represent the new values of updated variables. The input substitution σ pro-
vides the mapping of all variables to their most recent values in F . Similarly, the output
substitution σ1 provides the values of variables in the post states captured by F 1. We
denote by idX the identity function on X , which is the initial substitution given to vc.

The function vc is defined recursively on the structure of commands. The cases for
atomic commands, sequential composition, and non-deterministic choice are straight-
forward. We discuss the verification condition generation for loops in more detail.

The first step in vcptIu whilepGq C,F, σq is to compute the verification condition
VCC for the loop body C. This is done using a recursive call to the function VC . Note
that we use local reasoning to analyze the loop body, i.e., the recursive call considers
only the nodes described by the loop invariant I as allocated. The computed verifica-
tion condition is combined with the check that the invariant is implied by the current
state F , yielding the formula VC 1. Note that we use the translation function Trf from
Section 7 to check that I describes a subheap of F . The next step is to compute the new
substitution σ1 for the values of variables in the post states. Here modpCq denotes the
set of all variables that are modified by the loop body C.

The most tricky part is the computation of the post condition. Intuitively, we have
to identify the part in F that corresponds to I and then replace it by a new version of I
that now refers to the modified variables in σ1, keeping the frame that is not modified by
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VC ptP uCtQuq � let pP 1, σ,VCCq � vcpC, nil R Alloc^ TrAllocpP q, idX q

in VCC _ pP
1 ^ pTrAllocp Qqqσq

vcpx :� E,F, σq � px1 � Eσ ^ F, σrx ÞÑ x1s, falseq

vcpx :� rys, F, σq � ppx1 � selph, yqqσ ^ F, σrx ÞÑ x1s, F ^ py R Allocqσq

vcprxs :� E,F, σq � pph1 � updph, x,Eqqσ ^ F, σrh ÞÑ h1s, F ^ px R Allocqσq

vcpnewpxq, F, σq � let F 1 � F ^ px1 R Alloc^ x1�nil^ Alloc1�AllocYtx1uqσ

in pF 1, σrx ÞÑ x1,Alloc ÞÑ Alloc1s, falseq

vcpdisposepxq, F, σ, q � let F 1 � F ^ pAlloc1�Allocztxuqσ

in pF 1, σrAlloc ÞÑ Alloc1s, F ^ px R Allocqσq

vcpassumepGq, F, σq � pGσ ^ F, σ, falseq

vcpC1 C2, F, σq � let pF1, σ1,VC 1q � vcpC1, F, σq

pF2, σ2,VC 2q � vcpC2, F1, σ1q

in pF2, σ2,VC 1 _VC 2q

vcpC1 8C2, F, σq � let pF1, σ1,VC 1q � vcpC1, F, σq

pF2, σ2,VC 2q � vcpC2, F, σq

pF 1, σ1q � joinpσ, σ1, σ2, F1, F2q

in ppF 1, σ1, pVC 1 _VC 2qσ
1q

vcptIu whilepGq C,F, σq � let VCC � VC pC, tIu assumepGq C tIuq
VC 1 � VCC _ F ^ pTrf Allocp Iqqσ

σ1 � σrx ÞÑ x1 | x P modpCqs

F 1
1 � F ^ pTrXpIqqσ ^ p G^ TrX1pIqqσ1

F 1
2 � FRpX,X 1, σpAllocq, σ1pAllocq, σphq, σ1phqq

in pF 1
1 ^ F

1
2, σ

1,VC 1q

FRpX,X 1, A,A1, h, h1q � X � A^A1 � X 1 ZAzX ^ nil R A1 ^

@x. x P AzX ñ selph1, xq � selph, xq ^

@x y z. x
hzepX,hpxq
ÝÝÝÝÝÝÝÑ y ñ px

hzz
ÝÝÑ y ô x

h1zz
ÝÝÑ yq ^

@x y z. x P AzX ^ epX,hpxq � xñ px
hzz
ÝÝÑ y ô x

h1zz
ÝÝÑ yq

joinpσ, σ1, σ2, F1, F2q � let M1 � tx | σpxq � σ1pxq and σ2pxq � σpxq u

M2 � tx | σpxq � σ1pxq and σ1pxq � σ2pxq u

F 1
1 � F1 ^

©

xPM1

σ1pxq � σ2pxq

F 1
2 � F2 ^

©

xPM2

σ2pxq � σ1pxq

σ1 � σrx ÞÑ σ2pxq | x PM1srx ÞÑ σ1pxq | x PM2s

in pF 1
1 _ F

1
2, σ

1q

Fig. 8. Verification condition generation. All primed variables that are introduced in the function
vc are assumed to be fresh
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@x. x
h
ÝÑ epX,hpxq

@x. epX,hpxq P X _ epX,hpxq � x

@x y. x
h
ÝÑ y ^ y P X ñ epX,hpxq P X ^ x

hzy
ÝÝÑ epX,hpxq

Fig. 9. Axioms defining the entry point function

C intact. We could do this using our frame inference technique presented in Section 7.
However, we here present an alternative technique that encodes the frame implicitly in
the verification condition. Consider the formula F 1

1. It is the conjunction of F with two
formulas: (1) the invariant describing the footprint of the loop before the loop is entered,
and (2) the invariant describing the footprint of the loop after the loop has terminated.
The memory region of (1) is captured by the set variable X , and the memory region of
(2) by X 1. The constraint F 1

2 now relates X and X 1 and states that the frame, which is
described by AlloczX , does not change. We describe this formula in more detail.

The formula FRpX,X 1, A,A1, h, h1q consists of three parts. First, it states that ev-
erything in X is allocated when the loop is entered, and that the allocated objects after
termination of the loop are exactly those that are in the frame or in X 1. Second, the
first quantified constraint states that the heap graph does not change in the frame. In
principle, these two parts are already a precise formalization of the frame condition.
However, we need to eliminate the quantifier in the second part so that the SMT solver
can effectively deal with the resulting verification condition. We do so using the ground
instantiation techniques described in Section 8. However, once we eliminate the quan-
tifier using finite ground instantiation, we lose completeness because the nodes in the
frame can now change their relative reachability to each other. To alleviate this, we add
two additional quantified constraints specifying that the relative order of nodes in the
frame is preserved. For this purpose, we introduce the auxiliary function epX,h, which
we refer to as the entry point function. Given a node x, epX,hpxq denotes the first node
inX that is reachable along the path starting from x if such a node exists, and otherwise
it denotes x itself. This is formalized using the axioms in Fig. 9. The last two constraints
in FRpX,X 1, A,A1, h, h1q now specify that the order of nodes is preserved for the path
segments between any node x and its entry point into X , respectively, the full path if
no node in X is reachable from x.

The axioms defining the entry point function are conjoined with the final verifi-
cation condition. We then partially instantiate the quantified variables as described in
Section 8, yielding a formula in the EPR fragment that can be decided by the SMT
solver. The quantified constraints encoding the frame and the entry point function sat-
isfy locality conditions that ensure completeness of the instantiation.


