
Needles in a Haystack: Using PORT to Catch Bad Behaviors within
Application Recordings

Preston Moore1, Thomas Wies1, Marc Waldman2, Phyllis Frankl1, and Justin Cappos1

1New York University, 2Manhattan College

Keywords: Domain Specific Languages, Event Processing, Environmental Bugs

Abstract: Earlier work has proven that information extracted from recordings of an application’s activity can be tremen-
dously valuable. However, given the many requests that pass between applications and external entities, it has
been difficult to isolate the handful of patterns that indicate the potential for failure. In this paper we propose a
method that harnesses proven event processing techniques to find those problematic patterns. The key addition
is PORT, a new domain specific language which, when combined with its event stream recognition and trans-
formation engine, that enables users to extract patterns in system call recordings and other streams, and then
rewrite input activity on the fly. The former task can spot activity that indicates a bug, while the latter produces
a modified stream for use in more active testing. We tested PORT’s capabilities in several ways, starting with
recreating the mutators and checkers utilized by an earlier work called SEA to modify and replay the results of
system calls. Our re-implementations achieved the same efficacy using fewer lines of code. We also illustrated
PORT’s extensibility by adding support for detecting malicious USB commands within recorded traffic.

1 Introduction

‘‘Actions speak louder than words...” - Unknown
It is a well established principle that, in the wake

of an application failure, its actions during execution
can provide clues to the root cause. Such information
can not only help correct the cause of failure, but also
prevent its repetition through the creation of better test
methods. The challenge is how to identify and extract
this data from large and detailed sources like appli-
cation logs, system call traces, or application record-
ings. In other words, how does one accurately de-
scribe what activity is important and what you should
do when you find it?

In considering this question, we drew inspiration
from two sources. The first is a recent study that con-
firmed the value of monitoring and modifying an ap-
plication’s interactions with its environment (Moore
et al., 2019). Using a technique known as SEA (Sim-
ulating Environmental Anomalies), the study demon-
strated that when an application fails, the causal prop-
erties will be visible in the results of the system calls
it made. Further, the study affirmed these results
could be captured and simulated for testing against
other applications. The second source was the sig-
nificant amount of literature supporting the use of
event processing techniques over large streams of
data (Agrawal et al., 2008; Hirzel, 2012; Hirzel et al.,
2013; Dayarathna and Perera, 2018). We posited

that techniques currently used to identify problems in
manufacturing environments, or patterns in network
outages, could also be used to accurately recognize
target sequences in large application activity streams.

Building upon these successes, we introduce
a tool that utilizes event processing techniques to
identify behaviors that may cause applications to
fail. What makes this possible is PORT (Pattern
Observation, Recognition, and Transformation), a
new domain specific language we designed with the
goal of describing these behaviors in a briefer and
more easily understood manner than conventional
languages. The descriptions can be used to search
recordings of an application’s actions across a variety
of “activity representations.” That is, it can search ac-
tivities like system calls or remote procedure calls and
determine if an application either executed a desired
behavior or avoided an undesired one. Further, PORT
can specify a set of modifications to be made if a par-
ticular activity sequence is encountered. By combin-
ing passive monitoring and active activity modifica-
tion, PORT can aid in identifying bugs in a wide vari-
ety of programs that might be missed by other testing
strategies.

In order to illustrate PORT’s usefulness, we built
a prototype compiler for the language and carried
out a three part evaluation. The first part consisted
of using our prototype to re-implement the “anoma-
lies” described in the earlier work on the SEA tech-

nique (Moore et al., 2019). Side-by-side comparison
shows that our new descriptions are more concise,
readable, and maintainable than their original coun-
terparts. As an added benefit, by proving that PORT
can work on a wider variety of applications and activ-
ity formats, we can facilitate broader use of the SEA
technique, which has already proven effective as a bug
detector.

Next, we demonstrate the ease with which PORT
can be extended to other activity representations.
PORT has features, discussed in Section 4, that al-
lowed us to quickly add support for recorded streams
of USB traffic. This new capability enabled us to
test PORT’s usefulness in detecting and simulating
BADUSB-style attacks (Hak5, 2022).

Finally, we conduct a performance evaluation to
demonstrate how quickly PORT programs can pro-
cess recordings taken from real world network and
compression applications. Our results show that
PORT programs are able to process large recordings
in well under a second. We provide the scripts neces-
sary to reproduce our performance figures along with
our PORT implementation.

The main contributions in this work can be sum-
marized as follows:

• We create a new domain specific language, PORT,
that allows for concise descriptions of patterns
that may be found and transformed in an appli-
cation’s activity stream.

• We show how PORT improves upon earlier work,
such as that on the SEA technique, by offering a
concise, but powerful way to write anomalies.

• We demonstrate that PORT can be extended to
other activity representations by using it to detect
and simulate USB-based attacks and failures.

• We provide an open source implementation
of PORT available for immediate use at:
https://github.com/pkmoore/crashsimlang.

2 Background and Motivation

We did not take the decision to construct a large tool
like PORT lightly. In this section we describe why
making use of an existing tool could not meet our re-
quirements.

2.1 Our Motivating Example

The initial impetus for this work was sparked by the
Simulating Environmental Anomalies (SEA) tech-
nique developed by Moore et al. (Moore et al., 2019).

This effort centered on the key insight that problem-
atic environmental properties, known as anomalies,
are visible in the communications between the com-
ponents that make up an application. The researchers
found that, once captured, these anomalies could be
used to simulate and test an application as if it had
been encountered in the real world. Results of system
calls made during execution were recorded, modified,
and replayed to simulate whether or not the applica-
tion responded correctly to the anomaly. Using this
strategy, the authors were able to identify a number of
bugs in major applications.

As a concrete example of the above consider the
“Unusual File types” anomaly discussed in the SEA
paper’s evaluation. This anomaly may be problematic
when an application running under Linux attempts to
open and read data from a file on disk. Linux supports
several special file types that require special proce-
dures to write to and read from. The SEA technique
may simulate the presence of such a file by modifying
the return value of a stat call. PORT improves on the
original procedure for employing such an anomaly by
simplifying how a target pattern and its desired mod-
ifications are employed.

Our takeaway from this study was that an appli-
cation’s activity can be systematically mined to find
bugs. In this paper, we show one effective way to
extract this data is to treat application activity as a se-
quence of events. This enables us to use proven event
processing techniques. Yet, existing implementations
of such techniques lack important features necessary
for our goals. To apply SEA’s success to other activ-
ity types, such as calls to library functions and remote
procedure calls, we needed to develop a novel tool
that would be agnostic to the way an application’s ac-
tivity has been recorded. As such, it required its own
distinct language.

2.2 Why a New Domain Specific
Language?

In designing and implementing a new domain specific
language, we needed to meet some specific criteria.
For starters, the language had to be able to identify
specific patterns as they appear in a recording of ap-
plication activity. A simple model, such as a deter-
ministic finite automaton (i.e. a DFA or a FSA) en-
hanced to operate on complex structures, would ap-
pear to be sufficient. Unfortunately, the simple model
will not work. The open() call produces a file de-
scriptor that a subsequent read() call may match.
Yet, a standard DFA or FSA cannot match patterns
with this sort of dependency. Instead, we need a lan-
guage that can easily capture the internal contents of

events, like argument data, pointer addresses, and re-
turn values. This content can then be manipulated for
reuse in subsequent operations.

One possibility is to deploy more expressive au-
tomata models, such as register automata (Kaminski
and Francez, 1994) or session automata (Bollig et al.,
2014). As the SEA researchers found, the ability to
modify activity can create scenarios to ensure appli-
cation failures rather than waiting for them to occur.
Several feature-rich event processing languages and
libraries do have these capabilities, but modifying and
outputting incoming events is by no means a straight-
forward experience. In many cases, producing such
an output stream would require falling back on the
fully-featured nature of a host language (e.g. Java) –
a situation we hoped to avoid.

In the initial stages of PORT’s development,
we also evaluated several complex event processing
(CEP) languages that could provide some of the pat-
tern and predicate matching primitives that we wished
to incorporate. Sadly, these languages did not support
the features we require, or were too complex for the
easy to use system we wanted to offer. Typically, pro-
grams for these complex event processing engines are
written in the engine’s build or host language, such as
Java, Scala or Python. Such languages generally bring
with them a great deal of boilerplate code, that can
obscure or confuse the program’s meaning. Recent
studies have affirmed that excessive and complicated
code patterns can harm understanding and maintain-
ability (Gopstein et al., 2017). Further, it means that
the author, and future maintainers, of a program must
be fluent in this host language.

3 Language Overview

The PORT language allows its users to completely
describe a mutator, or a program that can recognize
a particular event stream and optionally produce a
modified version of that stream. As noted in Section
2, standard deterministic automata or transducers can
not accommodate these features. Therefore, we com-
pile a PORT program into an enhanced transducer that
can operate over complex data structures. The trans-
ducer consists of states, and a series of rules that gov-
ern when the current state should change. Based on
the event type and the parameters of an input stream
element, these rules also describe what modifications
should be made to the input stream.

The transducer rules consist of logical compar-
isons between an event’s parameter values, and the
values stored in the transducer’s registers or the liter-
als specified directly in a program’s code. Using event
processing techniques, PORT maps activity onto a
stream of events, which can be defined here as indi-

program ::= (typedef | eventdef)∗ action

typedef ::= type id{id: t @n (,id:t @n)∗};

eventdef ::= event id variant (| variant)∗;

variant ::= {id id: t @n (,id: t @n)∗}

action ::= pattern -> id (e) | not pattern

| action;action | action*

pattern ::= id (p) with b

p ∈ pexp ::= {id: p (,id: p)∗}

| regid | c

e ∈ vexp ::= regid | c | e+e | . . .

b ∈ bexp ::= true | false

| e == e | p and p | . . .

t ∈ texp ::= String | Number

| id | . . .

Figure 1: Grammar of PORT’s core language.

vidual interactions between a program and its envi-
ronment, e.g., a single library, system, or remote pro-
cedure call. Each event consists of a unique identifier
(e.g. the name of the function being called) and a list
of parameter values (e.g. the argument and return val-
ues of the called function).

Parameter values are drawn from a set of basic
data values, such as strings and numbers, as well as
user-definable record types. PORT also gives users
the option to ignore parameter values that are irrele-
vant for the particular task at hand. And, it can cre-
ate a single abstract event from several semantically
related, but different event identifiers. In this manner,
the transducer description can refer to just the abstract
events rather than individually specifying each event
it contains.

A PORT transducer processes an input event
stream as follows. Each item in an input sequence
is examined and the transducer’s internal state is up-
dated accordingly. Output is then produced based on
the rules described in the transducer’s program. In
this way, the transducer itself can be thought of as
a sequence of actions that may or may not be exe-
cuted based on the values in the input stream. The
state of the transducer keeps track of the next action
to be executed, as well as a valuation of a finite num-
ber of registers that hold data values. Whether or not
an action is executed depends on a combination of the
transducer state and the values of the current event.
Therefore, executing an action consists of reading the
next event from the input stream, which may update
some of the registers, and then writing the next event
in the output stream.

Figure 1 shows the grammar of PORT’s core lan-
guage. A program is split into two parts: the preamble
consisting of type and event definitions, and the body
of the program which consists of an action expression.
Preamble An abstract event consists of a name and a
record of named fields that hold data values of inter-
est. Consider the event definition:

event rd {read fdesc: Number@0}
| {recv fdesc: Number@0};

This definition maps the concrete events named read

and recv to the abstract event rd. The parameter val-

ues of the concrete events are abstracted to a record
consisting of a single field fdesc that holds a value of
type Number. The notation fdesc: Number@0 in each
variant indicates that the value of fdesc is the 0th pa-
rameter of the corresponding concrete event. Note
that all variants must map their parameters to the same
record type. If an event definition defines an abstract
event in terms of a single variant for which the con-
crete event name coincides with the name of the ab-
stract event, then the former can be omitted in the
variant.

Event definitions have three distinct functions.
First, they allow a PORT program to ignore irrelevant
parameter values in concrete events. Second, they
can map semantically-related concrete events to the
same abstract event, and lastly they permit any mod-
ifications of record fields to be mapped back to cor-
responding modifications of the underlying concrete
events.

The abstraction mechanism used for these param-
eter lists can also be applied to the values themselves.
For instance, the 1st parameter of an fstat system call
is a status buffer that consists of a list of values. Type
definitions can be used to abstract such compound val-
ues into records. The following PORT code defines an
abstract fstat event that tracks only the device iden-
tifier, inode number, and mode of the status buffer:

type SB {dev: String@0, ino: String@1,
mode: String@2};

event fstat {fdesc: Number@0, sbuf: SB@1};

Body The action expression in the body of a PORT
program describes how the input event stream is trans-
formed to the output event stream. An individual in-
put event is matched and transformed by an atomic
action of the form

id1(p) with b -> id2 (e)

This action matches the next (abstract) input event
against the pattern id1(p) subject to the constraint b.
The action is triggered if the name of the matched
event is id1 and its record satisfies the constraints im-
posed by p and b. The semantics of pattern matching
is similar to the way expressions are pattern matched
in functional programming languages. In particular, a
variable occurring in a pattern refers to a register of
the transducer. If the pattern matches the event, then
the register is assigned to the corresponding value.
For example, consider the pattern:

fstat({fdesc: fd2, sbuf: {dev:rdev, stino:
rino2}})

When matched against the event

fstat({fdesc: 4, sbuf: {dev:"st_dev=makedev(0,
4)", ino: 42, mode="S_IFCHR|0666"}})

the match would succeed and assign the value 4 to
register fd2, "st_dev=makedev(0, 4)" to register
rdev, and "S_IFCHR|0666" to register rino2.

The Boolean expression b is evaluated after the
initial match of id1(p) succeeds. If b evaluates to true

then the action takes effect. Otherwise, the match
fails and the registers are reset to their original values
before id1(p) was matched.

When an atomic action takes effect, the matched
input event is consumed and an output event is ap-
pended to the output stream. This output event is de-
scribed by id2 (e) in the output clause of the action. If
id2 = id1, then e can be a partial record expression,
describing only those parts of the input record that
should be modified by the action. Record fields that
are not specified by e are copied from the input event
to the output event. If the record types of the input
and output events differ, e must describe the output
record completely.

For example, consider the atomic action:

fstat({fdesc:rfd2, sbuf:{dev:rdev, ino:rino2}})
with rfd2 == rfd and rdev == "st_dev=makedev

(0, 4)" -> fstat({sbuf:{ino: rino}});

This action matches the fstat event given above,
assuming the register rfd has value 4 before the
match. Moreover, if the register rino has value
43 before the action is executed, then the action
produces the output event:

fstat({fdesc:4, sbuf:{dev:"st_dev=makedev(0,4)"
, ino: 43, mode="S_IFCHR|0666"}})

For convenience, we add a syntactic short-hand that
allows one to more compactly express common
pattern types. First, one often needs to express that
the value of a matched record field is equal to the
current value of a register. In the action above, the
field fdesc of the matched fstat event must be equal
to rfd for the match to succeed. This constraint can
be expressed more succinctly by replacing rfd2 with
?rfd in the pattern of the action. This ensures that the
matched value is equal to rfd without changing the
value of rfd. The equality rsd2 == rsd can then be
omitted from the with clause.

Next, the with clause can also be omitted alto-
gether from an atomic action, in which case b defaults
to true. Likewise, the output clause can be omitted
and the matched input event can simply be copied to
the output stream. Finally, if an action is replacing
only the value of a field, and the action is not depen-
dent on the old value, then the modified field value
can be specified directly in the pattern using the nota-
tion -> e. Here, the expression e determines the new
value to be stored in the field.

Using this syntactic short-hand, the action given

above can be expressed more compactly as:

fstat({fdesc: ?rfd, sbuf: {dev:"st_dev=makedev
(0, 4)", ino: -> rino}});

Sequencing, Implicit Repetition, and Negation
Atomic actions can be sequenced to form com-
pound action expressions that match and transform
sequences of events, action1;action2. PORT simpli-
fies the handling of unbounded event sequences by us-
ing implicit repetition semantics. If the next event in
the input stream is not matched by the current atomic
action in the action sequence, the event is simply
copied to the output stream. The transducer moves on
by attempting to match the next input event against
the current atomic action.

Sometimes, it is necessary to constrain this im-
plicit repetition by disallowing the appearance of
certain events in the input stream before an event
matched by the current atomic action is encountered.
This can be done by negated patterns, which take the
form not id(p) with b. If an event that matches the
pattern id(p) with b is encountered before the next
atomic action in the program takes effect, then the
transducer aborts.
Explicit Repetition PORT also supports explicit rep-
etition of actions, which is indicated using a Kleene
star, action*, similar to standard regular expression
syntax. The generated transducer accepts zero or
more repetitions of the specified sequence of events.
Output is only produced if a complete repetition of se-
quence is encountered. All previously discussed func-
tionality and behavior holds true for the sequence be-
ing repeated.

4 Architecture and Implementation

Our implementation of PORT consists of several re-
lated components that allow a program to analyze a
stream of application activity. In this section we dis-
cuss some of the decisions that went into their design
and operation.
The PORT Compiler The compiler is responsible
for constructing a transducer from a PORT program.
Compilation happens in two phases. In the first phase,
the program text is parsed into an abstract syntax tree
using an LALR parser. In the second, the contents of
the AST are used to construct the transducer, which
is then serialized to disk so that it may be stored and
reused.
The Internal Data Format We wanted to make
PORT flexible so the SEA technique could work with
many types of activity representations rather than just
system calls. Such flexibility would make it easier to
modify parameters in a format-agnostic fashion. This
required a method to cleanly separate the details of

how an application’s event activity is recorded from
the representation of this event stream as processed
by a transducer. Our solution is twofold. First, we
develop an intermediate data format (IDF) that stores
the key components, such as parameter and return val-
ues, for application activities like function and system
calls. This format supports primitive string and nu-
meric values as well as arbitrarily nested structures
in the form of records. The language and compiler
currently do not support unbounded arrays. How-
ever, extending PORT with arrays should be relatively
straightforward.

The actual activity stream of an application is con-
verted from its original representation into IDF and
back using a transformer module. The transformer
parses each activity entry, extracts the relevant data,
and assembles it into an IDF event record. Event
records comprise the input stream of the transducer,
while the output event stream is converted back by the
same transformer module into the original representa-
tion. We have implemented transformers for different
kinds of activity streams including system call, USB,
and RPC call sequences.
Executing a PORT Program The “Executor” mod-
ule implements the PORT run-time environment. This
module performs a number of tasks, including deseri-
alizing a stored mutator from disk, converting the se-
lected input stream to IDF, and running the transducer.
It also uses the appropriate transformer to translate
the output stream back to the original activity repre-
sentation, and reports whether the input sequence was
accepted or rejected by the transducer.

5 Evaluation

Once we had an implementation of PORT, we de-
signed a set of experiments to evaluate its effective-
ness in real world situations. Specifically, we aim to
answer the following questions:

• Can PORT express the anomalies used by SEA to
identify bugs?

• How easy is it to extend PORT to support activity
representations other than system calls?

• What problems can be addressed by employ-
ing PORT on non-system-call activity representa-
tions?

• Can PORT process input streams in a reasonable
amount of time?

5.1 Expressing SEA Anomalies

Given that this work is motivated in large part by
a desire to expand the utility of the SEA technique,

1 event Statbuf {mode: String@2};

2 event anystat {stat sb: Statbuf@1}

3 | {lstat sb: Statbuf@1}

4 | {fstat sb: Statbuf@1};

5 anystat({sb: {mode: -> "st_mode=S_IFBLK"}});

Figure 2: A PORT program that identifies a stat, lstat,
or fstat call and modifies the ST_MODE member of its
statbuf output parameter to contain the value "S_IFBLK".
This indicates that the file being examined is a block device
rather than a regular file.

our first experiment aims to reproduce the anomalies
described in (Moore et al., 2019). Specifically, we
test PORT’s ability to recreate the study’s unusual file
type mutator, and its cross-disk file move checkers,
which were used to identify the bulk of the bugs that
were found.

Creating the Unusual File type Mutator. For the
first part of this experiment, we used PORT to imple-
ment an “unusual file type” mutator. As illustrated
in Figure 2,this mutator takes an input trace that con-
tains a call to either stat(), fstat(), or lstat()
and modifies its result data structure so its ST_MODE
member will indicate an unusual file type. As can
be seen in Figure 2, this task can be expressed with
only a few lines of PORT code. In the figure, lines 1
through 4 define what stat(), fstat(), and lstat()
calls look like, and which parameter contains the re-
sult buffer. Line 6 generates an accepting state that,
when entered, produces an output system call with a
modified value in the return structure’s st_mode field.
The output can then be used to modify the results of
a running application’s system calls in order to carry
out the remaining steps of the SEA technique.

The original implementation of this mutator
in (Moore et al., 2019) consisted of 55 lines of Python
code, much of it error-prone state management code.
While this code was needed, it harmed readability and
maintainability. When compared to the original mu-
tator, it became apparent that there were several major
advantages to using PORT:

Minimal boilerplate code: Because PORT’s capa-
bilities are narrowly defined, it lacks the boilerplate
code associated with general purpose languages. No
code is needed for reading an input trace, managing
mutator state, and producing output. As a result, func-
tions can be generically implemented within PORT’s
core, eliminating the need for users to do so manually.

No code required to filter out uninteresting calls:
In PORT, there is no need to explicitly exclude system
calls outside of the desired set. Each statement defines
a new state with incoming and outgoing transitions
configured to ignore any system calls not dealt with

in the PORT program.
Easy to modify call contents: PORT’s operators

make it easy to change only those parameters of a
system call needed to produce output. This is a far
cry from the Python program, which relies on manual
and fragile string manipulation.

Supporting Cross-Disk Move Checkers. In the
second part of this experiment we tested whether
PORT can implement the “checkers” used in SEA
to determine if an application can correctly move a
file from one disk to another. This task is a com-
mon source of bugs in Linux applications. As the
Linux rename() system call does not support mov-
ing files from one disk to another, applications must
perform this complex operation themselves. Moore
et al. identified the steps required to correctly per-
form such a move by examining the source code of
the “mv” command. The team then implemented a
set of checkers to identify situations where an appli-
cation does not carry out one of these steps correctly.
In real world applications, these checkers were able
to identify bugs in many popular applications and li-
braries that offer file movement capabilities.

We evaluated each of the four checkers listed in
Moore et al.’s work and determined that PORT could
implement three of them. For example, we were able
to replace the “File Replaced During Copy” checker,
which consisted of 45 lines of difficult to read and
maintain Python code, with a clearer 7 line PORT pro-
gram. This exercise did expose one of PORT’s short-
comings. Specifically, we found that PORT cannot
currently implement the “Extended File Attributes”
checker, which ensures that an application preserves
all of a file’s extended attributes and re-applies them
after the move. PORT’s lack of a list data structure
made it difficult to create this checker as a list is re-
quired to capture the values getxattr() and ensure
they have all been applied with a corresponding call to
setxattr(). Though we are considering such a fea-
ture for future implementation, we do not currently
support it because such an extension could hurt pro-
gram clarity and make it harder to reason about muta-
tor behavior.

5.2 Extending PORT to Other Activity
Representations

A key feature of PORT is the ease with which sup-
port for new activity representations can be added. To
demonstrate this we implemented support for streams
of USB activity. This format was chosen because
of its ubiquity and its reliance on numerous parties
correctly implementing a standard protocol. Using

1 event usbhid { src: String@0, dst: String@1,
2 data: String@13, transfertype:

String@10 };
3 num1 <- "00:00:1e:00:00:00:00:00";
4 num2 <- "00:00:1f:00:00:00:00:00";
5 src <- "2.1.1";
6 dst <- "host";
7 usbhid({src: ?src, dst: ?dst, data: ?num1})

-> usbhid({data: ->num2});

Figure 3: A demonstration PORT program that matches
USB activity indicating the ’1’ key is being pressed and
transforming it to a new frame where the ’2’ key is being
pressed

PORT on streams of USB activity required imple-
menting an appropriate transformer and developing
some way to capture communications between USB
devices. For the latter, we used Wireshark because
of its excellent traffic capture and dissection capabil-
ities (Wireshark, 2022). For the former, implement-
ing such a transformer was a straightforward task tak-
ing only around three and a half. Together, these two
components allowed us to write PORT programs that
could both identify patterns and transform streams of
USB activity in minutes.

BADUSB As one test scenario, we settled upon
the recent type of USB-based attack known as
BADUSB (Hak5, 2022). These attacks utilize small
USB devices that resemble thumb drives. However,
rather than storing files, when plugged into a targeted
computer, these devices register themselves as hu-
man interface devices. They can then rapidly send
keystrokes to execute malicious commands before a
human is able to react. Our goal was to construct
PORT programs to recognize these attacks within a
recording of a machine’s USB traffic, and perform
SEA-style simulation by transforming an innocent
USB recording into one containing such an attack that
could then be replayed. The latter could be replayed
using a device similar to those used in actual attacks
in order to assess whether or not a computer’s defen-
sive measures (e.g. antivirus software or specialized
anti-BADUSB programs) are able detect the attacks.

The first PORT program we wrote detects a USB
device attempting to execute powershell in a mode
where its security policy is bypassed. This is a com-
mon starting point for BADUSB attacks that seek to
execute complex payloads, such as powershell scripts.
The program we wrote detects USB frames that con-
tain a sequence of “scan codes” in which a series of
keystrokes spell out “powershell -Exec bypass.” De-
tecting this string is critical because it explicitly dis-
ables security controls, a step that should only be
taken under special circumstances. We were able
to use this program to detect the target sequence in

streams of USB traffic recorded from a real computer
using a standard USB keyboard. An abbreviated ex-
ample program that performs this sort of operation is
shown in Figure 3.

A more advanced example of PORT’s capabilities
with USB streams involves simulating a BADUSB at-
tack. In a similar fashion to our detection program,
this program identifies USB human interface device
frames, and then transforms the scan codes they con-
tain to yield key presses that spell out “powershell -
Exec bypass.” An analogous operation is illustrated
in the latter half of Figure 3. In this way, the program
can use an innocent stream to create a malicious one
capable of driving a BADUSB attack. In doing so, a
user can determine how well a system’s defenses can
detect and prevent such a scenario.

Device ID Conflicts Our second test involved us-
ing SEA to simulate a USB device receiving an in-
appropriate “vendor ID” or “product ID” from its
manufacturer. Because these identifiers help deter-
mine which driver to load for a device, incorrect
settings can, at best, cause the device to not work
correctly (wrongid, 2014). In other cases, the mal-
function is problematic enough that kernel developers
block these devices from operation to prevent further
problems (barscanner, 2009). We used PORT to sim-
ulate a manufacturer that has reused device identifiers
across multiple devices. To do so, we wrote a PORT
program that monitors a stream of USB traffic for
USB device registrations. The first time it encounters
one, the program stores the vendorID and productID
field into registers. When subsequent registrations are
encountered, their identifiers are rewritten using these
stored values. As a consequence, the action produces
a new stream of USB activity in which many de-
vices share incorrect device identifiers. This record-
ing could then be used after the fashion of SEA to test
a system’s response to such a mis-configuration.

The above successes show that PORT is easily
capable of working with activity representations be-
yond system calls. We did, however, identify one
point of friction – keyboard scan codes are cumber-
some to work with. Future work could employ meta-
programming to smooth the rough edges of lower
level activity representations. This minor complica-
tion notwithstanding, our ability to recognize patterns
and transform USB streams demonstrates that PORT
is able to take the SEA technique from one domain
and use it successfully in another one.

5.3 PORT’s Performance

Our final experiment evaluates the time required for
our current implementation to identify specific pat-

Utility and Operation Exec. Time No. Syscalls
gzip compress file 0.110 17

gzip decompress file 0.107 35
rar compress file 0.112 109

rar decompress file 0.109 87
bzip decompress file 0.102 25

ncat server 0.103 43
socat server 0.108 71

http.server server 0.114 21
rsync client 0.132 274
ssh client 0.159 850
ftp client 0.160 891
scp client 0.135 490

telnet client 0.106 23
BADUSB 0.111 1116 lines

ID Conflict 0.117 18992 lines
Figure 4: Average time required to process the specified
recording based on 100 executions.

terns within real-world system call traces. To get a
realistic set of test traces we chose eight widely used
network applications and four popular compression
utilities that offered a sufficient level of complexity.

We recorded test traces using the following exper-
imental setup. Five of the applications are clients that
operate by connecting to an appropriate service. They
were recorded as they made this connection and com-
pleted a small request (e.g. transmitting or receiv-
ing a file). Three of the applications were servers,
and were recorded as they accepted a connection
from an appropriate client and serviced a small re-
quest. The compression utilities were recorded as
they compressed a file or decompressed an archive.
These recordings were made with strace and then
processed using a PORT program. For the network
applications the program identifies the sequence of
system calls that implement a client or server’s re-
quest handling loop. The compression utility record-
ings were processed using a separate program that
finds the read/write loop responsible for carrying out
a compression or decompression operation1. Table 4
shows the average time required to complete the spec-
ified operation based on one hundred executions, as
well as the number of system calls being processed in
the recording. This performance evaluation was run
on a laptop using a four core processor running at 3.4
ghz with 16 gigabytes of memory. Our PORT com-
piler comes with a script to reproduce these results
with one command.

The results in Table 4 show that PORT’s process-
ing time increases in line with the total number of sys-
tem calls in the recording. We anticipate that much of
this processing cost is associated with setting up the
Python execution environment and that a more op-

1Recordings are pre-processed to remove system calls
related to executable loading and process creation.

timized implementation could improve performance
gains in this area. Further, it is likely that PORT’s
performance is closely tied to disk throughput, and
that advancing the transducer as each system call is
evaluated adds little additional overhead.

5.4 Threats to Validity

While we conducted this evaluation as rigorously as
possible, there are a few areas where some ambigu-
ity may exist. First, in our work with USB activ-
ity, we limited ourselves to US English keyboards.
Other keyboard languages and designs may require
enhancements to our transformer or programs. Ad-
ditionally, our performance evaluation samples from
only a handful of programs that were selected by pop-
ularity rather than at random. There may be programs
that would diverge from the performance trend we re-
port above. Future work can determine how widely
this phenomena occurs and if any subsequent modifi-
cations are required.

6 Related Work

One of the ultimate goals of developing PORT was to
make it easier for developers to create tools capable
of conducting program-level testing. To design such
a language, we consulted previous work in process-
ing sequences of events, such as system calls, RPC
invocations or web-browser events. Below, we dis-
cuss some of the more significant work in these areas.

System Call Stream Processing Applications.
System call based intrusion detection systems fall
into two categories: misuse and anomaly detection.
The former search for known patterns of application-
specific system call sequences known as intrusion sig-
natures (García-Teodoro et al., 2009), while the lat-
ter assumes that any deviations from “normally ob-
served” system call sequences are malicious (Forrest
et al., 1996).

Forrest et al. (Forrest et al., 1996) proposed an
anomaly detection system that cataloga witnessed
patterns within a database. An application’s system
call stream is monitored and any deviation triggers a
predefined security policy.

Ko et al. (Ko et al., 1994) proposes converting
each system call in a stream to a standard audit-policy
record format that can be matched against program
policy. However, the audit-policy can only be applied
to one system call at a time, and does not support rules
to recognize specific chains of system calls. Another
alternative is Systrace (Provos, 2003), which uses an

associated policy language to describe any action pre-
scribed when a rule evaluates to true. Phoebe (Zhang
et al., 2020) identifies patterns of system call failures
during normal program execution to test the reliabil-
ity of an application when a failure occurs. The down-
side is that more elaborate fault-injection tests cannot
be generated from these sequences.

Remote procedure calls can also be abused for ma-
licious intent, so Giffin et al. (Giffin et al., 2002)
used push-down automata to model the possible valid
remote call streams that an application might gener-
ate. The application’s incoming stream is then vet-
ted to determine whether particular calls are valid and
therefore executable.

Lastly, there are some domain-specific options for
identifying problems in function calls. Christakis et
al. (Christakis et al., 2017) describe a language that
allows developers to intercept and modify Windows
applications’ dynamic link library function calls to
identify which ones should be intercepted by the run-
time.

It is likely that the previously cited FSA-based
programs can be improved by applying recent ad-
vances in inference modeling algorithms (Mariani
et al., 2017; Walkinshaw et al., 2013; Emam and
Miller, 2018; Beschastnikh et al., 2014). Yet, these
algorithms lack the conciseness and flexibility found
in PORT. PORT does not require training sets and is
expressive enough to specify both frequent and “nee-
dle in the haystack” event sequences with just a few
lines of code.

Event Stream Processing Languages and Algo-
rithms. PORT can be categorized as a stream pro-
cessing language, which means it is domain-specific
and designed for expressing streaming applications.
In this section we look at previous work in this area

Pattern matching over event streams is a paradigm
that looks for possible matches against a previously
defined set of rules. Collectively, these matches form
a pattern. Languages written for this purpose are sig-
nificantly richer than those used for regular expres-
sion matching (Agrawal et al., 2008), and typically
provide automatic support for naming, type check-
ing, filtering, aggregating, classifying and annotation
of incoming events. They also provide many bene-
fits over traditional stream-based text processing lan-
guages, such as sed (McMahon, 1979) and awk (Aho
et al., 1979).

Though PORT is a stream processing language,
it does not require all of the features typically in-
cluded in this sort of system (Dayarathna and Perera,
2018). Rather PORT seems to fit within the special
case known as complex event processing (CEP) Data

items in input streams of these systems are referred to
as raw events, while items in output streams are called
composite (or derived) events. A CEP system uses
patterns to inspect sequences of raw events and gen-
erate a composite event for each match (Hirzel et al.,
2013)

Queries and transforms written for CEP systems
are frequently compiled to a low-level general pur-
pose language (C, C++, etc.) to allow for fast process-
ing of the stream. During the compilation process,
automata are typically built to recognize the patterns
specified by the queries.

MatchRegex (Hirzel, 2012) is a CEP engine for
IBM’s Stream Processing Language. Predicates de-
fined on the individual events appearing in the stream
can be utilized in the regular expression-based pattern
matching engine. MatchRegex supports regular ex-
pression operators, such as “Kleene star” and “Kleene
plus” over patterns consisting of predicates (boolean
expressions).

GraphCE (Barquero et al., 2018) describes the im-
plementation of a CEP-like system on graph-based
data. The system uses Scala code for pattern descrip-
tion but recommends the development of a DSL for
use by data domain experts. David et al. cover meth-
ods for dynamically modifying the underlying CEP
query recognition model as the stream is being pro-
cessed (Dávid et al., 2018).

Though these CEP systems are capable of recog-
nizing the same stream patterns as PORT, they do not
incorporate the transformation primitives required by
the applications envisioned for PORT. CEP systems
are meant to be used solely to recognize additional
patterns. It is the combination and interplay of pat-
tern matching and transformation primitives that dis-
tinguishes PORT from CEP systems.

7 Conclusion

A great deal of value can be gained from the analysis
of an application’s activity. Unfortunately, the volume
of activity an application produces makes it difficult
to separate out unimportant sequences. In this work,
we demonstrate how our new domain specific lan-
guage, PORT offers a way to write concise and pow-
erful descriptions of application activity sequences.
These descriptions can be compiled into programs
that both recognize the described activity sequence
and modify its contents in order to facilitate more ac-
tive testing. We used this capability to recreate the
successful programs from earlier work on the SEA
technique and showed that SEA can be extended to
other activity representations, such as recorded USB
traffic.

REFERENCES

Agrawal, J., Diao, Y., Gyllstrom, D., and Immerman, N.
(2008). Efficient pattern matching over event streams.
In Wang, J. T., editor, Proceedings of the ACM SIG-
MOD International Conference on Management of
Data, SIGMOD 2008, Vancouver, BC, Canada, June
10-12, 2008, pages 147–160. ACM.

Aho, A. V., Kernighan, B. W., and Weinberger, P. J.
(1979). Awk-a pattern scanning and processing lan-
guage. Softw. Pract. Exp., 9(4):267–279.

Barquero, G., Burgueño, L., Troya, J., and Vallecillo,
A. (2018). Extending complex event processing to
graph-structured information. In Wasowski, A., Paige,
R. F., and Haugen, Ø., editors, Proceedings of the
21th ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems, MOD-
ELS 2018, Copenhagen, Denmark, October 14-19,
2018, pages 166–175. ACM.

barscanner (2009). Barscanner Stopped Function-
ing. https://bugzilla.kernel.org/show_bug.
cgi?id=13411.

Beschastnikh, I., Brun, Y., Ernst, M. D., and Krishna-
murthy, A. (2014). Inferring models of concurrent
systems from logs of their behavior with csight. In
Jalote, P., Briand, L. C., and van der Hoek, A., ed-
itors, 36th ICSE, Hyderabad, India - May 31 - June
07, 2014, pages 468–479. ACM.

Bollig, B., Habermehl, P., Leucker, M., and Monmege, B.
(2014). A robust class of data languages and an appli-
cation to learning. Log. Methods Comput. Sci., 10(4).

Christakis, M., Emmisberger, P., Godefroid, P., and Müller,
P. (2017). A general framework for dynamic stub in-
jection. In Uchitel, S., Orso, A., and Robillard, M. P.,
editors, Proceedings of the 39th ICSE 2017, pages
586–596. IEEE / ACM.

Dávid, I., Ráth, I., and Varró, D. (2018). Foundations for
streaming model transformations by complex event
processing. Softw. Syst. Model., 17(1):135–162.

Dayarathna, M. and Perera, S. (2018). Recent advance-
ments in event processing. ACM Comput. Surv.,
51(2):33:1–33:36.

Emam, S. S. and Miller, J. (2018). Inferring extended
probabilistic finite-state automaton models from soft-
ware executions. ACM Trans. Softw. Eng. Methodol.,
27(1):4:1–4:39.

Forrest, S., Hofmeyr, S. A., Somayaji, A., and Longstaff,
T. A. (1996). A sense of self for unix processes. In
1996 IEEE Symposium on Security and Privacy, May
6-8, 1996, Oakland, CA, USA, pages 120–128. IEEE
Computer Society.

García-Teodoro, P., Díaz-Verdejo, J., Maciá-Fernández, G.,
and Vázquez, E. (2009). Anomaly-based network
intrusion detection: Techniques, systems and chal-
lenges. Computers & Security, 28(1):18–28.

Giffin, J. T., Jha, S., and Miller, B. P. (2002). Detecting
manipulated remote call streams. In Boneh, D., editor,
Proceedings of the 11th USENIX Security Symposium,
San Francisco, CA, USA, August 5-9, 2002, pages 61–
79. USENIX.

Gopstein, D., Iannacone, J., Yan, Y., DeLong, L., Zhuang,
Y., Yeh, M. K.-C., and Cappos, J. (2017). Understand-
ing misunderstandings in source code. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Soft-
ware Engineering, ESEC/FSE 2017, page 129–139,
New York, NY, USA. Association for Computing Ma-
chinery.

Hak5 (2022). Usb rubber ducky. https://docs.hak5.
org/usb-rubber-ducky-1/.

Hirzel, M. (2012). Partition and compose: parallel complex
event processing. In Bry, F., Paschke, A., Eugster,
P. T., Fetzer, C., and Behrend, A., editors, Proceed-
ings of the Sixth ACM International Conference on
Distributed Event-Based Systems, DEBS 2012, Berlin,
Germany, July 16-20, 2012, pages 191–200. ACM.

Hirzel, M., Andrade, H., Gedik, B., Jacques-Silva, G.,
Khandekar, R., Kumar, V., Mendell, M. P., Nasgaard,
H., Schneider, S., Soulé, R., and Wu, K. (2013). IBM
streams processing language: Analyzing big data in
motion. IBM J. Res. Dev., 57(3/4):7.

Kaminski, M. and Francez, N. (1994). Finite-memory au-
tomata. Theor. Comput. Sci., 134(2):329–363.

Ko, C., Fink, G., and Levitt, K. N. (1994). Automated de-
tection of vulnerabilities in privileged programs by ex-
ecution monitoring. In 10th ACSAC 1994, 5-9 Decem-
ber, 1994 Orlando, FL, USA, pages 134–144. IEEE.

Mariani, L., Pezzè, M., and Santoro, M. (2017). Gk-tail+
an efficient approach to learn software models. IEEE
Trans. Software Eng., 43(8):715–738.

McMahon, L. E. (1979). SED: a Non-interactive Text Edi-
tor. Bell Telephone Laboratories.

Moore, P., Cappos, J., Frankl, P. G., and Wies, T. (2019).
Charting a course through uncertain environments:
SEA uses past problems to avoid future failures. In
Wolter, K., Schieferdecker, I., Gallina, B., Cukier, M.,
Natella, R., Ivaki, N. R., and Laranjeiro, N., editors,
30th IEEE International Symposium on Software Re-
liability Engineering, ISSRE 2019, Berlin, Germany,
October 28-31, 2019, pages 1–12. IEEE.

Provos, N. (2003). Improving host security with system call
policies. In Proceedings of the 12th USENIX Secu-
rity Symposium, Washington, D.C., USA, August 4-8,
2003. USENIX Association.

Walkinshaw, N., Taylor, R., and Derrick, J. (2013). Infer-
ring extended finite state machine models from soft-
ware executions. In Lämmel, R., Oliveto, R., and
Robbes, R., editors, 20th Working Conference on Re-
verse Engineering, WCRE 2013, Koblenz, Germany,
October 14-17, 2013, pages 301–310. IEEE Computer
Society.

Wireshark (2022). Wireshark.org. https://www.
wireshark.org/.

wrongid (2014). wrong Vendor-Id and Product-
Id. https://bugzilla.kernel.org/show_bug.
cgi?id=87631.

Zhang, L., Morin, B., Baudry, B., and Monperrus, M.
(2020). Realistic error injection for system calls.
CoRR, abs/2006.04444.

https://bugzilla.kernel.org/show_bug.cgi?id=13411
https://bugzilla.kernel.org/show_bug.cgi?id=13411
https://docs.hak5.org/usb-rubber-ducky-1/
https://docs.hak5.org/usb-rubber-ducky-1/
https://www.wireshark.org/
https://www.wireshark.org/
https://bugzilla.kernel.org/show_bug.cgi?id=87631
https://bugzilla.kernel.org/show_bug.cgi?id=87631

	1 Introduction
	2 Background and Motivation
	2.1 Our Motivating Example
	2.2 Why a New Domain Specific Language?

	3 Language Overview
	4 Architecture and Implementation
	5 Evaluation
	5.1 Expressing SEA Anomalies
	5.2 Extending PORT to Other Activity Representations
	5.3 PORT's Performance
	5.4 Threats to Validity

	6 Related Work
	7 Conclusion

