
On an Efficient Decision Procedure for

 Imperative Tree Data Structures

Thomas Wies , Marco Muñiz , and Viktor Kuncak

IST Austria (Institute of Science and Technology Austria)

Am Campus 1

A-3400 Klosterneuburg

Technical Report No. IST-2011-0005

http://pub.ist.ac.at/Pubs/TechRpts/201 1 /IST-201 1 -000 5 .pdf

April 26, 2011

http://pub.ist.ac.at/Pubs/TechRpts/2009/IST-2009-002.pdf
http://pub.ist.ac.at/Pubs/TechRpts/2009/IST-2009-002.pdf
http://pub.ist.ac.at/Pubs/TechRpts/2009/IST-2009-002.pdf
http://pub.ist.ac.at/Pubs/TechRpts/2009/IST-2009-002.pdf
http://pub.ist.ac.at/Pubs/TechRpts/2009/IST-2009-002.pdf
http://pub.ist.ac.at/Pubs/TechRpts/2009/IST-2009-002.pdf

Copyright © 2011, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission.

On an Efficient Decision Procedure for
Imperative Tree Data Structures

IST-2011-0005
EPFL-REPORT-165193

Thomas Wies1, Marco Muñiz2, and Viktor Kuncak3

1 Institute of Science and Technology (IST), Austria
wies@ist.ac.at

2 University of Freiburg, Germany
muniz@informatik.uni-freiburg.de

3 EPFL, Switzerland
viktor.kuncak@epfl.ch

Abstract. We present a new decidable logic called TREX for expressing con-
straints about imperative tree data structures. In particular, TREX supports a tran-
sitive closure operator that can express reachability constraints, which often ap-
pear in data structure invariants. We show that our logic is closed under weakest
precondition computation, which enables its use for automated software verifica-
tion. We further show that satisfiability of formulas in TREX is decidable in NP.
The low complexity makes it an attractive alternative to more expensive logics
such as monadic second-order logic (MSOL) over trees, which have been tradi-
tionally used for reasoning about tree data structures.

1 Introduction

This paper introduces a new decision procedure for reasoning about imperative manip-
ulations of tree data structures. Our logic of trees with reachability expressions (TREX)
supports reasoning about reachability in trees and a form of quantification, which en-
ables its use for expressing invariants of tree data structures, including the tree prop-
erty itself. Despite the expressive power of the logic, we exhibit a non-deterministic
polynomial-time decision procedure for its satisfiability problem, showing that TREX
is NP-complete. Our development is directly motivated by our experience with verify-
ing tree data structures in the Jahob verification system [15, 19, 21] in which we used
the MONA decision procedure [11] for MSOL over trees. Although MONA contributed
great expressive power to our specification language and, in our experience, works well
for programs that manipulate lists, there were many tree-manipulating programs whose
verification failed due to MONA running out of resources.

It was therefore a natural goal to identify a logic that suits our needs, but can be
decided much more efficiently. There are other expressive logics supporting reacha-
bility but with lower complexity than MSOL [4, 7, 10, 20]. However, we did not find
them suitable as a MONA alternative, for several reasons. First, we faced difficulties

http://ist.ac.at/~wies
http://swt.informatik.uni-freiburg.de/staff/muniz
http://lara.epfl.ch/~kuncak

2 Thomas Wies, Marco Muñiz, Viktor Kuncak

in the expressive power: some of the logics can only reason about sets but not indi-
vidual objects, others have tree model property and thus cannot detect violations of
the tree invariants. Moreover, the complexity of these logics is still at least EXPTIME,
and their decision procedures are given in terms of automata-theoretic techniques or
tableaux procedures, which can be difficult to combine efficiently with existing SMT
solvers. Similarly, the logic of reachable patterns [20] is decidable through a highly non-
trivial construction, but the complexity is at least NEXPTIME, as is the complexity of
the Bernays-Schönfinkel Class with Datalog [5]. The logic [2] can express nested list
structures of bounded nesting along with constraints on data fields and numerical con-
straints on paths, but cannot express constraints on arbitrary trees. On the other hand,
TREX does not support reasoning on data fields; although such an extension is in princi-
ple possible. Other approaches generate induction scheme instances to prove transitive
closure properties in general graphs [14]. While this strategy can succeed for certain
examples, it does not have completeness or complexity guarantees, and suffers from the
difficulties of first-order provers in handling transitive relations. Tree automata with size
constraints can express properties such as the red-black tree invariant [8]. However, this
work does not state the complexity of the reasoning task and the presented automata
constructions appear to require running time beyond NP. Regular tree model checking
with abstraction has yielded excellent results so far [3] and continues to improve, but
has so far not resulted in a logic whose complexity is in NP, which we believe to be an
important milestone.

The primary inspiration for our solution came from the efficient SMT-based tech-
niques for reasoning about list structures [13], as well as the idea of viewing single-
parent heaps as duals of lists [1]. However, there are several differences from this
immediate inspiration. For integration with other decision procedures, as well as for
modular reasoning with preconditions and postconditions, it was essential to obtain a
logic and not only a finite-model property for the analysis of systems as in [1]. Fur-
thermore, the need to support imperative updates on trees led to technical challenges
that are very different than those of [13]. To address these challenges, we introduced a
reachability predicate that is parameterized by a carefully chosen class of formulas to
control the reachability relation. We show that the resulting logic of trees is closed under
weakest preconditions with respect to imperative heap updates, which makes it suitable
for expressing verification conditions in imperative programs. We devised a four-step
decision procedure that contains formula transformations and ultimately reduces to a
Ψ -local theory extension [9, 16]. Consequently, our logic can be encoded using a quan-
tifier instantiation recipe within an SMT solver. We have encoded the axiomatization of
TREX in Jahob and used Z3 [6] with a default instantiation strategy to verify tree and
list manipulating programs. We have obtained verification times of around 1s, reducing
the running times by two orders of magnitude compared to MONA.

2 Motivating Example

We next show how to use our decision procedure to verify functional correctness of a
Java method that manipulates a binary tree data structure.

On an Efficient Decision Procedure for Imperative Tree Data Structures 3

class Node {Node l, r, p;}
class Tree {

private static Node root;
invariant ”ptree p [l , r] ” ; invariant ”p root = null ” ;
private static specvar content :: objset ;
vardefs ”content=={x. root 6= null ∧ (x,root) ∈ {(x,y). p x = y}∗}”;
public void insertLeftOf(Node pos, Node e)

requires ”pos ∈ content ∧ pos 6= null ∧ l pos = null ∧
e /∈ content ∧ e 6= null ∧ p e = null ∧ l e = null ∧ r e = null”

modifies content,l,p
ensures ”content = old content ∪ {e}”

{
e.p = pos; pos.l = e;

} }

Fig. 1. Fragment of insertion into a tree

Example: insertion into a binary search tree. Fig. 1 shows a fragment of Java code
for insertion into a binary search tree, factored out into a separate insertLeftOf method.
In addition to Java statements, the example in Fig. 1 contains preconditions and post-
conditions, written in the notation of the Jahob verification system [12, 15, 18, 19, 21].

The search tree has fields (l, r) that form a binary tree, and field p, which for each
node in the tree points to its parent (or null, if the node is the root of the tree). This
property is expressed by the first class invariant using the special predicate ptree, which
takes the parent field and a list of successor fields of the tree structure as arguments.
The second invariant expresses that the field root points to the root node of the tree. The
vardefs notation introduces the set content denoting the useful content of the tree. Note
that if we are given a program that manipulates a tree data structure without explicit
parent field then we can always introduce one as a specification variable that is solely
used for the purpose of verification. This is possible because the parent field in a tree is
uniquely determined by the successor fields.

The insertLeftOf method is meant to be invoked when the insertion procedure has
traversed the tree and found a node pos that has no left child, as illustrated in Figure 2.
The node e then becomes the new left child of pos. Our system checks that after each
execution of the method insertLeftOf the specified class invariants still hold and that its
postcondition is satisfied. The postcondition states that the node e has been properly
inserted into the tree.

pos

e

Fig. 2. State of insertion method before and after call to insertLeftOf

4 Thomas Wies, Marco Muñiz, Viktor Kuncak

∀x. 〈p〉∗(x, null)
∧ ∀x. p(l(x)) = x ∨ l(x) = null
∧ ∀x. p(r(x)) = x ∨ r(x) = null
∧ ∀x. l(p(x)) = x ∨ r(p(x)) = x ∨ p(x) = null
∧ ∀xy. l(x) = y ∧ r(x) = y → y = null
∧ ∀xy. p(x) = null ∧ l(y) = x→ x = null
∧ ∀xy. p(x) = null ∧ r(y) = x→ x = null

Fig. 3. Defining formula of ptree p [l, r]

p(root) = null ∧ root 6= null ∧ 〈p〉∗(pos, root) ∧ ¬〈p〉∗(e, root) ∧
e 6= null ∧ p(e) = null ∧ l(e) = null ∧ r(e) = null
→ (∀z.〈upd(p, e, pos)〉∗(z, null))

Fig. 4. Verification condition expressing that, after execution of method insertLeftOf,
the heap graph projected to field p is still acyclic

The full verification condition of method insertLeftOf can be expressed in our logic.
Figure 4 shows one of the subgoals of this verification condition. It expresses that after
execution of method insertLeftOf the heap graph projected to field p is still acyclic.
This is a proof subgoal for checking that the ptree invariant is preserved by method
insertLeftOf. Note that our logic supports field update expressions upd(p, e, pos) so
that we can express the verification condition directly in the logic. Note further that the
precondition stating that the ptree invariant holds at entry to the method is not explicitly
part of the verification condition, i.e., it does not appear on the left hand side of the
implication. This is because in the semantics of TREX we only consider models that
satisfy the ptree invariant. Nevertheless, TREX can still be used to prove preservation
of the ptree invariant because this invariant is expressible in the logic, as shown in
Figure 3, and the logic is closed under computation of weakest preconditions for heap
manipulating statements.

Our logic also supports reasoning about forward reachability 〈l, r〉∗ in the trees (i.e.,
transitive closure of the successor fields rather than the parent field) and quantification
over sets of reachable objects. The latter is used, e.g., to prove the postcondition of
method insertLeftOf stating that the node e was properly inserted and that no elements
have been removed from the tree.

While we only consider a logic of binary trees in this paper; the generalization to
trees of arbitrary finite arity is straightforward. In particular, an acyclic doubly-linked
list is a special case of a tree with parent pointers, so reasoning about such structures is
also supported by our decision procedure.

3 Decision Procedure Through an Example

We consider the negation of the verification condition shown in Figure 4, which is
unsatisfiable in tree structures. Our decision procedure is described in Section 6 and
proceeds in four steps.

On an Efficient Decision Procedure for Imperative Tree Data Structures 5

p(root) = null ∧ root 6= null ∧ 〈p〉∗(pos, root) ∧ ¬〈p〉∗(e, root) ∧
e 6= null ∧ p(e) = null ∧ l(e) = null ∧ r(e) = null ∧
¬(∀z.〈p〉∗(x 6=e)(z, null) ∨ 〈p〉∗(z, e) ∧ 〈p〉∗(x 6=e)(pos, null))

Fig. 5. Negated verification condition from Fig. 4 after function update elimination

p(root) = null ∧ root 6= null ∧ P (pos, root) ∧ ¬P (e, root) ∧
e 6= null ∧ p(e) = null ∧ l(e) = null ∧ r(e) = null ∧
¬(∀z.P (z, null) ∧ P (null, bp(x 6=e)(z)) ∨ P (z, e) ∧ P (pos, null) ∧ P (null, bp(x 6=e)(pos))) ∧
(∀z. P (z, null)) ∧ (∀z. P (z, z)) ∧ (∀wz. P (w, z) ∧ P (z, w) → z = w) ∧
(∀vwz. P (v, w) ∧ P (v, z) → P (w, z) ∨ P (z, w)) ∧
(∀wz. P (w, z) → w = z ∨ P (p(w), z)) ∧
(∀z. P (z, bp(z 6=e)(z))) ∧ (∀z. bp(x 6=e)(z) 6= e→ bp(x 6=e)(z) = null) ∧
(∀wz. P (w, z) ∧ P (z, bp(x 6=e)(w)) → z 6= e ∨ z = bp(x 6=e)(w)) ∧ . . .

Fig. 6. Negated verification condition from Figure 4 after the reduction step to first-
order logic. Only the axioms that are necessary for proving unsatisfiability of the for-
mula are shown.

The first step (described in Section 6.1) is to eliminate all function update expres-
sions in the formula. The result of this step is shown in Figure 5. Our logic supports so
called constrained reachability expressions of the form 〈p〉∗Q where Q is a binary pred-
icate over dedicated variables x, y. The semantics of this predicate is that 〈p〉∗Q(u, v)
holds iff there exists a p-path connecting u and v and between every consecutive nodes
w1, w2 on this path, Q(w1, w2) holds. Using these constrained reachability expressions
we can reduce reachability expressions over updated fields to reachability expressions
over the non-updated fields, as shown in the example. This elimination even works
for updates of successor functions below forward reachability expressions of the form
〈l, r〉∗.

The second step (described in Section 6.2) eliminates all forward reachability con-
straints over fields l, r from the formula and expresses them in terms of the relation 〈p〉∗.
Since there are no such constraints in our formula, we immediately proceed to Step 3.

The third step (described in Section 6.3) reduces the formula to a formula in first-
order logic, whose finite models are exactly the models of the formula from the previous
step, which is still expressed in TREX. For the purpose of the reduction, all occurrences
of the reachability relation 〈p〉∗ are replaced by a binary predicate symbol P , which
is then axiomatized using universally quantified first-order axioms so that 〈p〉∗ and P
coincide in all finite models. All remaining reachability constraints are of the form
〈p〉∗Q. We can express these constraints in terms of P by introducing a unary function
bpQ (called break point function) that maps each node u to the first p-reachable node v
of u for which Q(v, p(v)) does not hold, i.e., bpQ(u) marks the end of the segment of
nodes w that satisfy 〈p〉∗Q(u,w). The function bpQ can be axiomatized in terms of P
and Q. Figure 6 shows the resulting formula (including only the necessary axioms for
proving unsatisfiability of the formula).

6 Thomas Wies, Marco Muñiz, Viktor Kuncak

The fourth step (described in Section 6.4) computes prenex normal form and
skolemizes remaining top-level existential quantifiers. Then we add additional axioms
that ensure Ψ -locality of the universally quantified axioms in the formula obtained from
Step 3. The key property of the resulting formula is that its universal quantifiers can be
instantiated finitely many times with terms syntactically derived from the terms within
the formula. The result is an equisatisfiable quantifier-free formula, which can be han-
dled by the SMT solver’s congruence closure and the SAT solver.

4 Preliminaries

In the following, we define the syntax and semantics of formulas. We further recall the
notions of partial structures and Ψ -local theories as defined in [9].
Sorted logic. We present our problem in sorted logic with equality. A signature Σ is
a tuple (S,Ω), where S is a countable set of sorts and Ω is a countable set of function
symbols f with associated arity n ≥ 0 and associated sort s1 × · · · × sn → s0 with
si ∈ S for all i ≤ n. Function symbols of arity 0 are called constant symbols. In this
paper we will only consider signatures with sorts S = {bool, node} and the dedicated
equality symbol =∈ Ω of sort node × node → bool. Note that we generally treat
predicate symbols of sort s1, . . . , sn as function symbols of sort s1× . . .× sn → bool.
Terms are built as usual from the function symbols in Ω and (sorted) variables taken
from a countably infinite set X that is disjoint from Ω. A term t is said to be ground, if
no variable appears in t. We denote by Terms(Σ) the set of all ground Σ-terms.

AΣ-atomA is aΣ-term of sort bool. We use infix notation for atoms built using the
equality predicate =. A Σ-formula F is defined using structural recursion as either one
of A, ¬F1, F1∧F2, or ∀x : s.F1, where A is a Σ-atom, F1 and F2 are Σ-formulas, and
x ∈ X is a variable of sort s ∈ S. In the formulas appearing in this paper we will only
ever quantify over variables of sort node, so we typically drop the sort annotation. We
use syntactic sugar for Boolean constants (>, ⊥), disjunctions (F1 ∨ F2), implications
(F1 → F2), and existential quantification (∃x.F1). For a finite index set I and Σ-
formulas Fi, for all i ∈ I, we write

∧
i∈I Fi for the conjunction of the Fi (respectively,

> if I is empty) and similarly
∨
i∈I Fi for their disjunction. We further write F [x1 :=

t1, . . . , xn := tn] for the simultaneous substitutions of the free variables xi appearing
in F by the terms ti. We define literals and clauses as usual. A clause C is called flat
if no term that occurs in C below a predicate symbol or the symbol = contains nested
function symbols. A clause C is called linear if (i) whenever a variable occurs in two
non-variable terms in C that do not start with a predicate or the equality symbol, the
two terms are identical, and if (ii) no such term contains two occurrences of the same
variable.
Total and partial structures. Given a signature Σ = (S,Ω), a partial Σ-structure
α is a function that maps each sort s ∈ S to a non-empty set α(s) and each function
symbol f ∈ Ω of sort s1 × · · · × sn → s0 to a partial function α(f) : α(s1) × · · · ×
α(sn) ⇀ α(s0). If α is understood, we write just t instead of α(t) whenever this is
not ambiguous. We assume that all partial structures interpret the sort bool by the two-
element set of Booleans {0, 1}. We therefore call α(node) the universe of α and often
identify α(node) and α. We further assume that all structures α interpret the symbol

On an Efficient Decision Procedure for Imperative Tree Data Structures 7

= by the equality relation on α(node). A partial structure α is called total structure or
simply structure if it interprets all function symbols by total functions. For aΣ-structure
α where Σ extends a signature Σ0 with additional sorts and function symbols, we write
α|Σ0 for the Σ0-structure obtained by restricting α to Σ0.

Given a total structure α and a variable assignment β : X → α(S), the evaluation
JtKα,β of a term t in α, β is defined as usual. For a ground term t we typically write
just JtKα. A quantified variable of sort s ranges over all elements of α(s). From the
interpretation of terms the notions of satisfiability, validity, and entailment of atoms,
formulas, clauses, and sets of clauses in total structures are then derived as usual. In
particular, we use the standard interpretations for propositional connectives of classical
logic. We write α, β |= F if α satisfies F under β where F is a formula, a clause, or
a set of clauses. Similarly, we write α |= F if F is valid in α. In this case we also call
α a model of F . The interpretation JtKα,β of a term t in a partial structure α is as for
total structures, except that if t = f(t1, . . . , tn) for f ∈ Ω then JtKα,β is undefined
if either JtiKα,β is undefined for some i, or (Jt1Kα,β , . . . , JtnKα,β) is not in the domain
of α(f). We say that a partial structure α weakly satisfies a literal L under β, written
α, β |=w L, if (i) L is an atom A and either JAKα,β = 1 or JAKα,β is undefined, or
(ii) L is a negated atom ¬A and either JAKα,β = 0 or JAKα,β is undefined. The notion
of weak satisfiability is extended to clauses and sets of clauses as for total structures.
A clause C (respectively, a set of clauses) is weakly valid in a partial structure α if α
weakly satisfies α for all variable assignments β. In this case we call α a weak partial
model of C.

Ψ -local theories. Note that the following definition is a particular special case of the
more general notion of Ψ -local theory extensions. For the general definitions of local
theory extensions, respectively, Ψ -local theory extensions, we direct the reader to [9,
16].

Let Σ = (S,Ω) be a signature. A theory T for a signature Σ is simply a set of
Σ-formulas. We consider theories T (K) defined as a set of Σ-formulas that are conse-
quences of a given set of clauses K. We call K the axioms of the theory T (K) and we
often identify K and T (K). In the following, when we refer to a set of ground clauses
G, we assume they are over the signature Σc = (S,Ω ∪ Ωc) where Ωc is a set of
new constant symbols. For a set of clauses K, we denote by st(K) the set of all ground
subterms that appear in K. Let Ψ be a function associating with a set of (universally
quantified) clauses K and a set of ground terms T a set Ψ(K, T) of ground terms such
that (i) all ground subterms in K and T are in Ψ(K, T); (ii) for all sets of ground terms
T, T ′ if T ⊆ T ′ then Ψ(K, T) ⊆ Ψ(K, T ′); (iii) Ψ is a closure operation, i.e., for all sets
of ground terms T , Ψ(K, Ψ(K, T)) ⊆ Ψ(K, T). (iv) Ψ is compatible with any map h
between constants, i.e., for any map h ∈ Ωc → Ωc, Ψ(K, h(T)) = h(Ψ(K, T)) where
h is the unique extension of h to terms. Let K[Ψ(K, G)] be the set of instances of K
in which all terms are in Ψ(K, st(G)), which here will be denoted by Ψ(K, G). We say
that K is Ψ -local if it satisfies condition (LocΨ):

(LocΨ) For every finite set of ground clauses G, K ∪G |= ⊥ iff K[Ψ(K, G)] ∪G
has no weak partial model in which all terms in Ψ(K, G) are defined.

8 Thomas Wies, Marco Muñiz, Viktor Kuncak

5 TREX: Logic of Trees with Reachability Expressions

We now formally define the formulas of our logic of trees with reachability expressions
(TREX), whose satisfiability we study. For simplifying the exposition in the remainder
of this paper, we restrict ourselves to binary trees. The decidability and complexity
result carries over to trees of arbitrary finite arity in a straightforward manner.

5.1 Syntax of TREX Formulas

Figure 7 defines the TREX formulas. A TREX formula is an arbitrary propositional com-
bination of atomic formulas. An atomic formula is either an equality between terms, a
reachability expression, or a restricted quantified formula. A term t is either a con-
stant c ∈ Γ or a function term f applied to a term t. The set of constants Γ is an
arbitrary countably infinite set of symbols disjoint from all other symbols used in the
syntax of formulas. However, we assume that Γ contains the special constant symbol
null. A function term is either one of the function symbols l, r (standing for the two
successor functions of a tree), and p (standing for the parent function of a tree), or an
update upd(f, t1, t2) of a function term f . In the latter case we call t1 the index of
the update and t2 the target. A forward reachability expression relates two terms by a
relation 〈fl, fr〉∗Q where fl and fr are the possibly updated successor functions and Q
is a predicate built from boolean combinations of equalities between constants and the
dedicated variables x and y. The syntactic restrictions on Q ensure that if one computes
the disjunctive normal form of Q then the resulting formula will contain a disjunct,
which is a conjunction of disequalities between constants and variables. A backward
reachability expression is similar but refers to the possibly updated parent function in-
stead of the successor functions. We call the relations 〈fl, fr〉∗Q descendant relations
and the relations 〈fp〉∗Q ancestor relations. Finally, the formulas below restricted quan-
tified formulas are almost like TREX formulas, except that the quantified variable may
only appear at particular positions below function symbols and only as arguments of
constrained ancestor relations.

For ease of notation we use the same syntactic shorthands in TREX formulas as for
first-order formulas. For a predicate Q over the variables x and y and terms t1, t2, we
typically write Q(t1, t2) for the formula Q[x := t1, y := t2]. Finally, we simply write
p∗ as a shorthand for the unconstrained ancestor relation 〈p〉∗>.

5.2 Semantics of TREX Formulas

TREX formulas are interpreted over finite forests of finite binary trees. We formally
define these forests as first-order structures αF over the signature ΣF of constant sym-
bols Γ and the unary function symbols l, r and p. To this end define the set of tree nodes
N as the set of strings consisting of the empty string ε and all strings over alphabet
N ∪ {L,R} that satisfy the regular expression N · (L | R)∗, i.e., we enumerate the trees
comprising a forest by attaching a natural number to the nodes in each tree. A forest
αF is then a structure whose universe is a finite prefixed-closed subset of tree nodes.
The interpretation of the special constant symbol null ∈ Γ and the function symbols l,
r, and p are determined by the universe of αF as in Figure 8. The remaining constant

On an Efficient Decision Procedure for Imperative Tree Data Structures 9

F ::= A | F ∧ F | ¬F
A ::= t = t | 〈fl, fr〉∗Q(t, t) | 〈fp〉∗Q(t, t) | F∀
t ::= c | f(t)
f ::= fl | fr | fp
fl ::= upd(fl, t, t) | l
fr ::= upd(fr, t, t) | r
fp ::= upd(fp, t, t) | p
Q ::= v = c→ R | Q ∧Q
R ::= tR = tR | R ∧R | ¬R
tR ::= v | c
F∀ ::= ∀z.Gin

Gin ::= f(z) = t→ Gin | Fin

Fin ::= Ain | Fin ∧ Fin | ¬Fin

Ain ::= tin = tin | 〈fp〉∗Q(tin, tin)
tin ::= z | t

terminals:
c ∈ Γ - constant symbol
l, r, p - function symbols
v ∈ {x, y} - dedicated variable
z ∈ X - variable

Fig. 7. Logic of trees with reachability TREX

symbols in Γ may be interpreted by any tree node in αF . Let F be the set of all forests
and letMF be the set of all first-order structures over signatureΣF that are isomorphic
to some structure in F . We extend the term forest to all the structures inMF .

αF (null) = ε

αF (l)(n) =

{
nL if nL ∈ αF

ε otherwise

αF (r)(n) =

{
nR if nR ∈ αF

ε otherwise

αF (p)(n) =

{
n′ if n = n′s for some s ∈ N ∪ {L,R} and n′ ∈ αF

ε otherwise

Fig. 8. Semantics of functions and constants in the forest model.

For defining the semantics of TREX formulas, let αF ∈ MF . We only explain the
interpretation of terms, function terms, and reachability expressions in detail, the re-
maining constructs are interpreted as expected. The notions of satisfiability, entailment,
etc. for TREX formulas are defined as in Section 4.

The interpretation of terms and function terms in αF under a variable assignment β
recursively extend the interpretation of ΣF -terms as follows:

JfKαF ,β
def
= αF (f), for f ∈ {l, r, p}

Jupd(f, t1, t2)KαF ,β
def
= JfKαF ,β [Jt1KαF ,β 7→ Jt2KαF ,β]

Jf(t)KαF ,β
def
= JfKαF ,β(JtKαF ,β)

10 Thomas Wies, Marco Muñiz, Viktor Kuncak

In order to define the semantics of reachability expressions compactly, we write
〈Fn〉∗Q(t1, t2) for either a forward reachability expression 〈fl, fr〉∗Q(t1, t2) or a back-
ward reachability expression 〈fp〉∗Q(t1, t2). In the first case, the meta variable Fn de-
notes the set of function terms {fl, fr} and in the second case the set {fp}. We will later
also use the notation 〈f,Fn〉∗Q(t1, t2) meaning 〈fp〉∗Q(t1, t2) if f = fp and Fn = ∅,
respectively, 〈fl, fr〉∗Q(t1, t2) if Fn = {fr} and f = fl or Fn = {fl} and f = fr.
A reachability expression 〈Fn〉∗Q(t1, t2) expresses that the node defined by t2 can
be obtained from the node defined by t1, by successively applying the functions de-
fined by the function terms in Fn , where at each step Q holds between the current
node and its image. Formally, we define the binary predicate RQ,Fn by the formula(∨

f∈Fn f(x) = y
)
∧ Q and interpret the reachability relation 〈Fn〉∗Q as the reflexive

transitive closure of RQ,Fn :

J〈Fn〉∗QKαF ,β
def
=
{
(u, v) ∈ αF × αF | JRQ,FnKαF ,β[x 7→u,y 7→v]

}∗
The interpretation of 〈Fn〉∗Q(t1, t2) is then defined as expected.

Definition 1 (Satisfiability Problem for TREX). The satisfiability problem for TREX
asks whether, given a TREX formula F , there exists a forest αF that satisfies F .

6 Decision Procedure for TREX

The logic TREX is a proper subset of MSOL over finite trees. Thus, decidability of the
satisfiability problem for TREX follows from the result described in [17]. In fact TREX
formulas can be expressed in terms of MSOL formulas with at most two quantifier alter-
nations, which gives a 2-EXPTIME upper-bound for the complexity. In the following,
we show that the satisfiability problem for TREX is actually in NP.

For the remainder of this section we fix a TREX formula F0. Our decision proce-
dure proceeds in four steps. The first two steps eliminate function updates and forward
reachability expressions from F0, resulting in equisatisfiable TREX formulas F1 and
then F2. In the third step the formula F2 is reduced to a first-order formula F3 that has
the same finite models as the original formula F . We then use results on local theo-
ries [9,16] to prove a small model property for the obtained formulas. This allows us to
use an existing decision procedure to check satisfiability of F3 in the final step of our
algorithm and obtain NP completeness. Proofs of Lemmas stated in this section can be
found in Appendix A.

6.1 Elimination of Function Updates

We first describe the elimination of function updates from the input formula F0. The
algorithm that achieves this is as follows:

1. Flatten the index and target terms of function updates in F0 by exhaustively apply-
ing the following rewrite rule:
C[upd(f, i, t)] ; C[upd(f, ci, ct)] ∧ ci = i ∧ ct = t
where i, t are non-constant terms and ci, ct ∈ Γ are fresh constant symbols

On an Efficient Decision Procedure for Imperative Tree Data Structures 11

2. Eliminate function updates in reachability expressions by exhaustively applying the
following rewrite rule:
C[〈upd(f, ci, ct),Fn〉∗Q(t1, t2)] ; C[H] ∧

∧
f ′∈Fn cf ′ = f ′(ci)

where the cf ′ are fresh constant symbols and
H

def
= 〈f,Fn〉∗R(t1, t2) ∨ 〈f,Fn〉∗Q(t1, ci) ∧ 〈f,Fn〉∗R(ct, t2) ∧ Q(ci, ct)

R
def
= Q ∧ (x = ci →

∨
f ′∈Fn y = cf ′)

3. Eliminate all remaining function updates by exhaustively applying the following
rewrite rule:
t1 = C[upd(f, ci, ct)(t2)] ; t2 = ci ∧ t1 = C[ct] ∨ t2 6= ci ∧ t1 = C[f(t2)]

Note that the exhaustive application of the rule in each of the steps 1. to 3. is guaranteed
to terminate. Thus, let F1 be one of the possible normal forms obtained after exhaustive
application of these rules to F0.

Lemma 2. F1 is a TREX formula and is equisatisfiable with F0.

We briefly sketch the key arguments in the proof of Lemma 2. First, one can easily
check that each application of the rewrite rules in steps 1. and 3. produces equisatisfiable
formulas. We discuss the rule in Step 2. in more detail. Given a structure α, let Gα be
the graph spanned by the functions that are defined by the interpretations of function
terms f,Fn in α, respectively, G′α the graph spanned by upd(f, ci, ct),Fn . There are
two cases to consider for 〈upd(f, ci, ct),Fn〉∗Q(t1, t2) to be true in α. The first case is
that there already exists a Q-path in Gα between nodes t1 and t2, and if this path uses
the edge (ci, f(ci)) (which might no longer exist in the updated function graph G′α)
then it is by means of one of the other functions defined by Fn , which are not affected
by the update. The first disjunct in the formula H captures precisely this case.

The second case for 〈upd(f, ci, ct),Fn〉∗Q(t1, t2) to be true is that the update of f
creates a new Q-path between t1 and t2 in G′α that is not present in Gα (respectively,
such a path exists but the update does not change the function f). Consider the shortest
of these paths between t1 and t2. Then we can split this path into three segments: (i)
the segment from t1 to ci, (ii) the new edge (ci, ct), and (iii) the segment from ct to t2.
Because we consider the shortest path, the segment (i) is not affected by the update so
it must already we present in Gα. The segment (iii) can only exist in G′α if it is already
present in Gα and does not use the updated edge (ci, f(ci)). This is precisely captured
by the second disjunct in formula H .

It is worth mentioning that Lemma 2 does not rely on the fact that we only consider
forests for the interpretation of TREX formulas.

6.2 Elimination of Descendant Relations
We next describe the second step of our decision procedure, which eliminates all de-
scendant relations from the formula F1. The elimination is performed using the follow-
ing rewrite rule:

〈l, r〉∗Q(s, t) ; s= t ∨ s 6=null ∧ (∃z. (l(z)= t ∨ r(z)= t) ∧ 〈p〉∗Q−1(z, s) ∧Q(z, t))

where Q−1 def
= Q[x := y, y := x]. Let F2 be one of the normal forms obtained by

exhaustively applying this rewrite rule to F1.

Lemma 3. F2 is a TREX formula and is equisatisfiable with F1.

12 Thomas Wies, Marco Muñiz, Viktor Kuncak

6.3 Reduction to First-Order Logic

In the third step of our decision procedure we reduce the formula F2 obtained after the
second step to a formula F3 in first-order logic.

The idea of the reduction is to provide a first-order axiomatization of the uncon-
strained ancestor relation p∗ whose finite models are precisely the forestsMF defined
in Section 5.2. For this purpose we introduce a fresh binary predicate symbol P repre-
senting p∗. The axioms defining P are given in Figure 9. We can then axiomatize each
constrained ancestor relation 〈p〉∗Q in terms of p∗. To achieve this we exploit that, in
forests, the relations 〈p〉∗Q can be characterized as follows:

∀xy. 〈p〉∗Q(x, y)↔ p∗(x, y) ∧ p∗(y, bpQ(x)) (1)

where bpQ is the function that maps a node x to the first ancestor z of x such that
Q(z, p(z)) does not hold (or null if such a node does not exist). We call bpQ the break
point function for 〈p〉∗Q. The intuition behind the above definition is that for 〈p〉∗Q(x, y)
to be true, the break point for the path of ancestor nodes of xmust come after y has been
reached (respectively, y itself is the break point of x). Note that this definition exploits
the fact that forests are acyclic graphs. The axioms defining the functions bpQ are given
in Figure 10.

Formally, the reduction of F2 to a first-order logic formula F3 is defined as follows:

1. Let P be a fresh binary predicate symbol and let F3,1 be the formula obtained by
conjoining F2 with the axioms shown in Figure 9.

2. Let Q be the set of predicates Q appearing in reachability expressions 〈p〉∗Q(t1, t2)
in F2. For each Q ∈ Q, let bpQ be a fresh unary function symbol. For each Q ∈ Q,
replace all occurrences of the form 〈p〉∗Q(t1, t2) in F2 by P (t1, t2)∧P (t2, bpQ(t1)).
Let the result be F3,2.

3. Finally, for each Q ∈ Q, conjoin F3,2 with the axioms shown in Figure 10. Let F3

be the resulting formula.

Let ΣP be the extension of the signature ΣF with the symbols P , and bpQ, for all
Q ∈ Q.

Lemma 4. For every finite ΣP -model α of the axioms in Figure 9, α(P) = α(p)∗ and
α|ΣF ∈MF .

Lemma 5. The TREX formula F2 has a model in MF iff the ΣP -formula F3 has a
finite ΣP -model.

6.4 Ψ -Locality

Now let F4 be the formula obtained by transforming F3 into prenex normal from and
skolemizing all existential quantifiers. Note that our syntactic restrictions on TREX for-
mulas ensure that there are no alternating quantifiers appearing in the formulas F0, F1,
F2, and hence F3. So skolemization only introduces additional Skolem constants, but
no additional function symbols.

On an Efficient Decision Procedure for Imperative Tree Data Structures 13

l-Child: p(l(x)) = x ∨ l(x) = null
r-Child: p(r(x)) = x ∨ r(x) = null
Parent: l(p(x)) = x ∨ r(p(x)) = x ∨ p(x) = null

lr-Distinct: l(x) = y ∧ r(x) = y → y = null
l-Root: p(x) = null ∧ l(z) = x→ x = null
r-Root: p(x) = null ∧ r(z) = x→ x = null
p-Loop: p(x) = x→ x = null

NullTerm: P (x, null)
Refl: P (x, x)

Trans: P (x, y) ∧ P (y, z) → P (x, z)
AntiSym: P (x, y) ∧ P (y, x) → x = y

Total: P (x, y) ∧ P (x, z) → P (z, y) ∨ P (y, z)
p-Step: P (x, p(x))

p-Unfold: P (x, y) → x = y ∨ P (p(x), y)

Fig. 9. First-order axioms for the unconstrained ancestor relation p∗ (represented by the
binary predicate symbol P) and the functions l, r, and p in a forest

bpQ-Def1: P (x, bpQ(x))
bpQ-Def2: Q(bpQ(x), p(bpQ(x))) → bpQ(x) = null
bpQ-Def3: P (x, y) ∧ P (y, bpQ(x)) → Q(y, p(y)) ∨ y = bpQ(x)

Fig. 10. First-order axioms defining the break point function bpQ used to express a
constrained ancestor relation 〈p〉∗Q in a forest

Let C be the set of clauses obtained by transforming F4 into clausal normal form.
Then partition C into sets of ground clauses G and non-ground clauses KP in which all
terms have been linearized and flattened. The idea is now to define a closure operator
Ψ such that condition (LocΨ) from Section 4 holds for the particular pair KP , G. We
can then use the decision procedure described in [9, Section 3.1] to check satisfiability
of KP , G using finite instantiation of the quantified variables in KP . To ensure that we
can extend finite weak partial models of KP [Ψ(KP , G)] ∪ G to finite total models of
KP ∪G, we have to make sure that Ψ(KP , G) contains sufficiently many ground terms.

Specifically, we have to make sure that we can always construct a finite total model
that satisfies the axioms in Figure 9 defining the ancestor relation, the parent function,
and the successor functions, respectively, the axioms in Figure 10 defining the break
point functions. Also note that the break point functions may appear below univer-
sal quantifiers in F4 that come from restricted quantified subformulas in the original
formula F0, respectively, universal quantifiers that have been introduced in the rewrite
steps that eliminate all occurrences of descendant relations (as described in Section 6.2).
To guarantee that weak partial models of KP [Ψ(KP , G)] ∪ G can be extended to total
models of KP ∪ G, we will therefore define Ψ such that in every finite weak partial
model of KP [Ψ(KP , G)] ∪G, both P and the break point functions are already totally
defined. However, for this we have to bound the possible values of the break point func-
tions. In fact, each predicate Q ∈ Q bounds the possible values that bpQ can take. Let
Γ (Q) be the set of constants appearing in Q and let α be a finite total model of KP ,
then for all u ∈ α, bpQ(u) is one of null, c, l(c), or r(c) for some c ∈ Γ (Q). Thus,

14 Thomas Wies, Marco Muñiz, Viktor Kuncak

bpQ-Def4: P (x, y) ∧ P (y, bpQ(x)) → bpQ(x) = bpQ(y)
bpQ-Def5:

∨
t∈BP(Q) bpQ(x) = t

Fig. 11. Additional first-order axioms for bounding the break point functions

for each predicate Q ∈ Q define the set of its potential break points BP(Q) as follows.
For sets of ground terms T and a k-ary function symbol f , let f(T) be the set of all
(properly sorted) ground terms f(t1, . . . , tk) for some t1, . . . , tk ∈ T . Then define

BP(Q)
def
= Γ (Q) ∪ l(Γ (Q)) ∪ r(Γ (Q)) ∪ {null}

Let further BP(Q) be the union of all sets BP(Q) for Q ∈ Q. This leads us to our first
approximation Ψbp of Ψ . To this end let f i(T) be the set f(T) restricted to the terms
in which the function symbol f appears at most i times, and let bp−(T) be the set of
ground terms obtained by removing from each ground term in T all appearances of the
function symbols

{
bpQ | Q ∈ Q

}
. Then define

Ψ0(T)
def
= T ∪ { p(t) | t ∈ T, t = l(t′) ∨ t = r(t′) } ∪ BP(Q) ∪ p(BP(Q))

Ψ4(T)
def
= T ∪

⋃
Q∈Q bpQ(bp

−(T))

Ψ5(T)
def
= T ∪ P (T)

Ψbp(K, T)
def
= Ψ5 ◦ Ψ4 ◦ Ψ0(st(K) ∪ T)

Let furtherKbp be the set of universally quantified clauses obtained fromKP by adding
the linearized and flattened clauses corresponding to the axioms shown in Figure 11.
These additional axioms ensure that the interpretation of the break point functions in
weak partial models of KP are consistent with those in total models of KP .

However, the above definition is not yet sufficient to ensure Ψ -locality. Assume that
a clause of the form z = c∨z = d appears inKbp that results from a restricted quantified
formula ∀z.z = c ∨ z = d in F0. Then this clause imposes an upper bound of 2 on the
cardinality of the models of F4. We thus have to make sure that for any weak partial
model of Kbp [Ψbp(Kbp , G)] ∪ G, we can find a total model of the same cardinality.
Unfortunately, for Kbp and Ψbp this is not always possible. For instance, assume G is
the formula

d 6= null ∧ P (a, d) ∧ P (b, d) ∧ P (c, d) ∧
¬P (a, b) ∧ ¬P (a, c) ∧ ¬P (b, a) ∧ ¬P (b, c) ∧ ¬P (c, a) ∧ ¬P (c, b)

Then Kbp [Ψbp(Kbp , G)]∪G has a weak partial ΣP -model of cardinality 5, but all total
ΣP -models of Kbp ∪ G have cardinality at least 6. We can ensure that total models
of matching cardinality exist by enforcing that every weak partial model already de-
termines the first common ancestor of every pair of nodes. We can axiomatize the first
common ancestor of two nodes by introducing a fresh binary function symbol fca and
then adding the axioms shown in Figure 12. Let Σfca be the signature ΣP extended
with the binary function symbol fca and let Kfca be the set of universally quantified
clauses obtained by adding to Kbp the linearized and flattened clauses corresponding to
the axioms in Figure 12.

On an Efficient Decision Procedure for Imperative Tree Data Structures 15

fca-Def1: P (x, fca(x, y))
fca-Def2: P (y, fca(x, y))
fca-Def3: P (x, z) ∧ P (y, z) → P (fca(x, y), z)
fca-Def4: fca(x, y)=w ∧ fca(x, z)=w ∧ fca(y, z)=w → x=y ∨ x=z ∨ y=z ∨ w=null

Fig. 12. Axioms defining the first common ancestor of two nodes in a forest

Lemma 6. Let α be a finite Σfca -model of Kfca . Then α also satisfies the following
formulas

∀xy. fca(x, y) = fca(y, x)
∀xyzw. fca(fca(x, y), z) = w → w = fca(x, y) ∨ w = fca(y, z) ∨ w = fca(x, z)

Lemma 6 bounds the values that the function fca can take in models of Kfca . This
leads us to our second attempt at defining Ψ , which is as follows:

Ψ3(T)
def
= T ∪ fca1(T) ∪ fca2(T ∪ fca1(T))

Ψfca(K, T)
def
= Ψ5 ◦ Ψ4 ◦ Ψ3 ◦ Ψ0(st(K) ∪ T)

Note that axiom fca-Def4 ensures that in weak partial models of
Kfca [Ψfca(Kfca , G)] ∪ G all proper nodes u of trees have at most two immediate
P -predecessors even if l and r are not defined on u. For instance, assume G is

a 6= b ∧ P (b, a) ∧ ¬P (b, l(a)) ∧ ¬P (b, r(a))

Then G has no ΣP -model that is also a model of KP and Kfca [Ψfca(Kfca , G)] has no
weak partial model in which all terms in Ψfca(Kfca , G) are defined. On the other hand,
Kbp [Ψbp(Kbp , G)] has such weak partial models.

Unfortunately, the operator Ψfca is still not good enough to ensure Ψ -locality. As-
sume that a universally quantified clause of the form

f(z) = t→ H (2)

appears in Kfca that resulted from a restricted quantified formula in F0 of the form
∀z. f(z) = t→ H and where f is either one of p, l, or r. Assume that f = p. To ensure
that (2) remains valid whenever we complete p to a total function in some weak partial
model α of (2), we have to ensure that we never have to define p(u) = t, for any u ∈ α
for which p is undefined. Consider first the case that in said model t is not null, then we
can guarantee that we never have to define p(u) = t by making sure that α is already
defined on the ground terms p(l(t)) and p(r(t)). This suggests that we should add the
following additional ground terms to the set of ground terms generated by Ψ0(T):

Ψ1(T)
def
= T ∪ { l(t), p(l(t)), r(t), p(r(t)) | (p, t) ∈ Grd }

∪ { p(t), l(p(t)), p(l(p(t))) | (l, t) ∈ Grd }
∪ { p(t), r(p(t)), p(r(p(t))) | (r, t) ∈ Grd }

where Grd is the set of all pairs (f, t) of function symbols and ground terms appearing
in guards of clauses of the form (2) in Kfca .

16 Thomas Wies, Marco Muñiz, Viktor Kuncak

Root1: P (x, y) → P (y, root(x)) ∨ y = null
Root2: root(x) = null ↔ x = null
l-Leaf1: P (lleaf (x), x) ∨ lleaf (x) = null
r-Leaf1: P (rleaf (x), x) ∨ rleaf (x) = null
l-Leaf2: P (lleaf (x), l(x))
r-Leaf2: P (rleaf (x), r(x))
l-Leaf3: lleaf (lleaf (x)) = null
r-Leaf3: rleaf (rleaf (x)) = null
l-Leaf4: lleaf (rleaf (x)) = null
r-Leaf4: rleaf (rleaf (x)) = null

Leaves1: fca(lleaf (x), rleaf (x)) = x ∨ lleaf (x) = null ∨ rleaf (x) = null
Leaves2: (lleaf (x) = null ∨ rleaf (x) = null) ∧ fca(y, z) = x→ x = y ∨ x = z ∨ x = null
Leaves3: lleaf (x) = null ∧ rleaf (x) = null ∧ P (y, x) → y = x ∨ x = null

Fig. 13. Axioms for the auxiliary function symbols root , lleaf , and rleaf

If for some guard (f, t) the weak partial model α satisfies t = null then the situation
is not quite so simple. In this case we have to make sure that α already explicitly deter-
mines which nodes u ∈ α satisfy f(u) = null, even if f is not defined on u. However,
there is no finite set of ground terms T over the signature Σfca such that instantiation of
Kfca with the terms in T will enforce this property. To enable the construction of such
a finite set of terms, we introduce auxiliary functions root , lleaf , and rleaf that deter-
mine the root, a left child, and a right child of every node in a forest. More precisely,
the semantics of these functions is as follows: for each u ∈ α, root(u) determines the
root of the tree in α to which u belongs (i.e., in all total models α of Kfca and u ∈ α,
p(u) = null if and only if root(u) = u). Similarly, lleaf (u) is some leaf of the tree
to which u belongs such that lleaf (u) is a left descendant of u, or null if u has no left
descendant (i.e., in all total models α of Kfca and u ∈ α, l(u) = null holds if and only
if lleaf (u) = null). The semantics of rleaf is analogous to lleaf . LetΣ be the signature
Σfca extended with fresh unary function symbols root , lleaf , and rleaf . The axioms
capturing the above semantics of the auxiliary functions are given in Figure 13. We can
then replace every clause of the form (2) in Kfca by the following two clauses:

f(z) = t→ t = null ∨H
t = null ∧Nf (z)→ H

where Nf (z) is root(z) = z if f is p, lleaf (z) = null if f is l, and rleaf (z) = null if
f is r. Let K be the resulting set of clauses extended with the linearized and flattened
clauses obtained from the axioms in Figure 13.

Lemma 7. The formula F3 has a finite ΣP -model if and only if K ∪ G has a finite
Σ-model.

Lemma 8. Let α be a finiteΣ-model ofK. Then α also satisfies the following formulas

∀xyw. root(fca(x, y)) = w → w = root(x) ∨ w = root(y)
∀x. root(root(x)) = root(x)
∀x. root(lleaf (x)) = root(x)
∀x. root(rleaf (x)) = root(x)

On an Efficient Decision Procedure for Imperative Tree Data Structures 17

Lemma 8 now suggests the following final definition for the closure operator Ψ :

Roots(T)
def
= root1(T) ∪ root(root1(T))

Leaves(T)
def
= lleaf 1(T ∪ root1(T)) ∪ rleaf 1(T ∪ root1(T))

Ψ2(T)
def
= T ∪ Roots(T) ∪ Leaves(T) ∪ lleaf (Leaves(T)) ∪ rleaf (Leaves(T))

Ψ(K, T) def
= Ψ5 ◦ Ψ4 ◦ Ψ3 ◦ Ψ2 ◦ Ψ1 ◦ Ψ0(st(K) ∪ T)

One can easily check that Ψ satisfies the conditions (i) to (iv) on the closure operator of
a Ψ -local theory, as defined in Section 4.

Lemma 9. If there exists a weak partial model of K[Ψ(K, G)] ∪ G in which all terms
in Ψ(K, G) are defined, then there exists a finite total model of K ∪G.

Lemma 9 implies that we can decide satisfiability of K ∪G using the decision pro-
cedure described in [9, Section 3.1]. Together with the previous Lemmas we conclude
that the combination of the steps described in this section result in a decision procedure
for the satisfiability problem of TREX.
Complexity. Note that the number of terms in Ψ(K, G) is polynomial in the size of
K ∪ G. From the parametric complexity considerations for Ψ -local theories in [9, 16]
follows that satisfiability of K ∪G can be checked in NP. Further note that all steps of
the reduction, except for the elimination of function updates, increase the size of the
formula at most by a polynomial factor. The case splits in the rewrite steps 2. and 3. of
the function update elimination may cause that the size of the formula increases expo-
nentially in the nesting depth of function updates in the original formula F0. However,
this exponential blowup can be easily avoided using standard techniques that are used,
e.g., for efficient clausal normal form computation.

Theorem 10. The satisfiability problem for TREX is NP-complete.

Implementation and experiments. We started implementation of our decision proce-
dure in the Jahob system. Our current prototype implements the first three steps of our
decision procedure and already integrates with the verification condition generator of
Jahob. Instead of manually instantiating the generated axioms, as described in the fourth
step of our decision procedure, we currently give the generated axioms directly to the
SMT solver and use triggers to encode some of the instantiation restrictions imposed
by Ψ . While this implementation is not yet complete, we already successfully used it to
verify implementations of operations on doubly-linked lists and a full insertion method
on binary search trees (including the loop traversing the tree). The speedup obtained
compared to using the MONA decision procedure is significant. For instance, using our
implementation the verification of all 16 subgoals for the insert method takes about 1s
in total. Checking the same subgoals using MONA takes 135s. We find these initial
results encouraging and consistent with other success stories of using SMT solvers to
encode NP decision procedures.

7 Conclusion

This paper introduced the logic TREX for reasoning about imperative tree data struc-
tures. The logic supports a transitive closure operator and a form of universal quantifi-
cation. It is closed under propositional operations and weakest preconditions for heap

18 Thomas Wies, Marco Muñiz, Viktor Kuncak

manipulating statements. By analyzing the structure of partial and finite models, we
have exhibited a particular Ψ -local axiomatization of TREX. This result then implies
that the satisfiability problem for TREX is in NP. It also yields algorithms for generating
model representations for satisfiable formulas, respectively, proofs of unsatisfiability.

References
1. I. Balaban, A. Pnueli, and L. D. Zuck. Shape analysis of single-parent heaps. In VMCAI,

Lect. Notes in Comp. Sci. Springer, 2007.
2. A. Bouajjani, C. Dragoi, C. Enea, and M. Sighireanu. A logic-based framework for reasoning

about composite data structures. In CONCUR, 2009.
3. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract regular tree model

checking of complex dynamic data structures. In SAS, 2006.
4. D. Calvanese, G. di Giacomo, D. Nardi, and M. Lenzerini. Reasoning in expressive descrip-

tion logics. In A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning.
Elsevier, 2001.

5. W. Charatonik and P. Witkowski. On the complexity of the bernays-schönfinkel class with
datalog. In LPAR (Yogyakarta), 2010.

6. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, pages 337–340, 2008.
7. P. Genevès, N. Layaı̈da, and A. Schmitt. Efficient static analysis of XML paths and types. In

ACM PLDI, 2007.
8. P. Habermehl, R. Iosif, and T. Vojnar. Automata-based verification of programs with tree

updates. Acta Inf., 47:1–31, January 2010.
9. C. Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans. On local reasoning in verification. In

TACAS, pages 265–281, 2008.
10. N. Immerman, A. M. Rabinovich, T. W. Reps, S. Sagiv, and G. Yorsh. The boundary between

decidability and undecidability for transitive-closure logics. In Computer Science Logic
(CSL), pages 160–174, 2004.

11. N. Klarlund and A. Møller. MONA Version 1.4 User Manual. BRICS Notes Series NS-01-1,
Department of Computer Science, University of Aarhus, January 2001.

12. V. Kuncak. Modular Data Structure Verification. PhD thesis, EECS Department, Mas-
sachusetts Institute of Technology, February 2007.

13. S. Lahiri and S. Qadeer. Back to the future: revisiting precise program verification using
SMT solvers. In POPL, 2008.

14. T. Lev-Ami, N. Immerman, T. Reps, M. Sagiv, S. Srivastava, and G. Yorsh. Simulating
reachability using first-order logic with applications to verification of linked data structures.
In CADE-20, 2005.

15. A. Podelski and T. Wies. Counterexample-guided focus. In ACM Symposium on the Princi-
ples of Programming Languages (POPL 2010), pages 249–260. ACM, 2010.

16. V. Sofronie-Stokkermans. Hierarchic reasoning in local theory extensions. In CADE, pages
219–234, 2005.

17. J. W. Thatcher and J. B. Wright. Generalized finite automata theory with an application to a
decision problem of second-order logic. Mathematical Systems Theory, 2(1):57–81, August
1968.

18. T. Wies. Symbolic Shape Analysis. PhD thesis, University of Freiburg, 2009.
19. T. Wies, V. Kuncak, P. Lam, A. Podelski, and M. Rinard. Field constraint analysis. In Proc.

Int. Conf. Verification, Model Checking, and Abstract Interpratation, 2006.
20. G. Yorsh, A. M. Rabinovich, M. Sagiv, A. Meyer, and A. Bouajjani. A logic of reachable

patterns in linked data-structures. J. Log. Algebr. Program., 2007.
21. K. Zee, V. Kuncak, and M. Rinard. Full functional verification of linked data structures. In

PLDI, 2008.

On an Efficient Decision Procedure for Imperative Tree Data Structures 19

A Additional Proofs

Lemma 4. For every finite ΣP -model α of the axioms in Figure 9, α(P) = α(p)∗ and
α|ΣF ∈MF .

Proof. Let α be a finite ΣP -model of the axioms in Figure 9. We first prove α(p)∗ =
α(P). For proving the left-to-right inclusion, let u, v ∈ α such that p∗(u, v). Then
there exist u1, . . . , un with n ≥ 1 such that u = u1, v = un, and for all 1 ≤ i < n,
p(ui) = ui+1. If n = 1 then u = v and by axiom Refl we immediately have P (u, v).
If on the other hand u 6= v then by p-Step we have for all 1 ≤ i < n, P (ui, p(ui))
and thus P (ui, ui+1). Using axiom Trans we then conclude by induction on i that for
all 1 < i ≤ n, P (u1, ui). Hence, P (u, v).

For proving the other inclusion, let u ∈ α and let Su = { v ∈ α | P (u, v) }. We
show that for all v ∈ Su, p∗(u, v). Since α is finite, so is Su. Thus, using axioms Total
and AntiSym we can construct an enumeration u1, . . . , un of the elements of Su such
that for all 1 ≤ i < j ≤ n, P (ui, uj) but not P (uj , ui). In particular u1 = u. We prove
by induction on i that for all 1 ≤ i ≤ n, p∗(u1, ui). By reflexivity of p∗ we immediately
have p∗(u1, u1). Now assume that p∗(u1, ui). Since ui ∈ Su, we know by p-Step and
Trans that p(ui) ∈ Su. Hence, p(ui) = uj for some j ≥ i. By p-Unfold we know that for
all j ≥ i, ui = uj or P (p(ui), uj). Hence, by construction of the enumeration it follows
that either ui = p(ui) or ui+1 = p(ui). Assume ui = p(ui). Then from axiom p-Loop
follows that ui = α(null). However, we do not have P (ui+1, ui), which contradicts the
fact that α satisfies axiom NullTerm. Hence, we must have ui+1 = p(ui). Together with
the induction hypothesis we then conclude p∗(u1, ui+1). We, thus, proved P = p∗.

It remains to show that α|ΣF ∈MF . To this end, let u0, . . . , un be an enumeration
of all elements u ∈ α such that p(u) = null and u 6= null. Let further V def

= α \
{u0, . . . , un, null}. Note that p+ is well-founded on V and moreover for all v ∈ V ,
p+(v, ui) for some ui, 0 ≤ i ≤ n. We can thus recursively define a function h from α
to tree nodes as follows:

1. h(null) = ε,
2. h(ui) = i, for all 0 ≤ i ≤ n,
3. h(v) = h(p(v))L, for all v ∈ V with l(p(v)) = v, and
4. h(v) = h(p(v))R, for all v ∈ V with r(p(v)) = v

Axiom lr-Distinct and the definitions of V and the ui ensure that the 4 cases are exclu-
sive, thus h is well-defined. Moreover, axiom Parent ensures that h is totally defined
on α. Furthermore, h is injective by construction. Let N be the range of h, then N is
a prefix-closed set of tree nodes, again by construction of h. Let αF ∈ F be the forest
with αF (node) = N and αF (c) = h(α(c)) for all c ∈ Γ . From the axioms l-Child,
r-Child, l-Root, r-Root and the construction of h and αF now follows that h is a struc-
ture isomorphism between α|ΣF and αF . Thus α|ΣF ∈MF . ut

Lemma 5. The TREX formula F2 has a model in MF iff the ΣP -formula F3 has a
finite ΣP -model.

20 Thomas Wies, Marco Muñiz, Viktor Kuncak

Proof. We first prove that all finite ΣP -models of the axioms in Figure 9 and Figure 10
satisfy property (1). Let α be such a model and let u, v ∈ α. Assume 〈p〉∗Q(u, v). First
note that by axiom bpQ-Def4 (and α(P) = α(p)∗) we have p∗(u, bpQ(u)). Further-
more, by definition either (i) u = v or (ii) there exist distinct u0, . . . , un with n ≥ 1
such that u0 = u, un = v, and for all i, 0 ≤ i < n, p(ui) = ui+1 and Q(ui, ui+1).
In case (i) we then immediately have p∗(u, v) and p∗(v, bpQ(u)). In case (ii) we also
immediately have p∗(u, v). Moreover, p∗(u, bpQ(u)) and functionality of p imply that
either bpQ(u) = ui for some i, 1 ≤ i < n, or p∗(v, bpQ(u)). In the first case we have
by axiom bpQ-Def2, bpQ(u) = null and thus ui = ui+1 = null, which contradicts that
ui and ui+1 are distinct. Hence, p∗(v, bpQ(u)).

For proving the other direction assume p∗(u, v) and p∗(v, bpQ(u)). If u = v then
〈p〉∗Q(u, v) by definition. Otherwise there exist distinct u0, ..., un with n ≥ 1 such that
u0 = u, un = v, and for all i, 0 ≤ i < n, p(ui) = ui+1. Then for all 0 ≤ i < nwe have
p∗(u, ui) and p∗(ui, bpQ(u)) by transitivity of p∗. Thus by axiom bpQ-Def3 we have
for all 0 ≤ i < n, Q(ui, ui+1) or ui = bpQ(u). If for some i we have ui = bpQ(u)
then by AntiSym, ui = uj for all j, i ≤ j ≤ n, which gives a contradiction. Hence, for
all i, 0 ≤ i < n, Q(ui, ui+1) and therefore 〈p〉∗Q(u, v).

Now let αF ∈MF be a model of F2. Then extend αF to aΣP -structure by defining
αF (P) = p∗ and for all Q ∈ Q and u ∈ αF let αF (bpQ)(u) = pi(u) where i =

min
{
j ∈ N | ¬Q(pj(u), pj+1(u)) ∨ pj(u) = null

}
. One can easily verify that αF is

a model of the axioms in figures 9 and 10. Hence, αF satisfies property (1) and is a
finite model of F3.

For proving the other direction of the lemma, assume that α is a finite ΣP -model
of F3. Then from Lemma 4 we know that α(P) = α(p)∗ and α|ΣF ∈ MF . Hence, α
satisfies property (1) and therefore α|ΣF |= F2. ut

Lemma 7. The formula F3 has a finite ΣP -model if and only if K ∪ G has a finite
Σ-model.

Proof. We first show that for all f ∈ {p, l, r}, all models α of the axioms in Figures 9,
12, and 13, and all u ∈ α:

Nf (u) iff f(u) = null (3)

Let α be such a model and u ∈ α. Note that we have α(P) = α(p)∗ and α|ΣF ∈ MF
according to Lemma 4. First, consider the case where f = p. For proving the left-to-
right direction, assume root(u) = u but p(u) 6= null. Then p(root(u)) 6= root(u)
and p(root(u)) 6= null. Then P (root(u), p(root(u)) implies P (u, p(root(u)) but we
do not have P (p(root(u), root(u))), which contradicts axiom Root1. For proving the
other direction assume p(u) = null. We distinguish two cases: if root(u) = null then
u = null = root(u) according to axiom Root2. If however root(u) 6= null then u 6=
null, again by axiom Root2. Hence P (u, u) implies P (u, root(u)) by axiom Root1 and
thus u = root(u) because p(u) = null.

Next consider the case where f = l. Assume lleaf (u) = null. Then from ax-
iom l-Leaf2 immediately follows l(u) = null. For proving the other direction assume
l(u) = null but lleaf (u) 6= null. From l-Leaf1 now follows P (lleaf (u), u). Since axiom
l-Leaf3 implies lleaf (u) 6= u, we must have P (lleaf (u), r(u)) and r(u) 6= null. Then

On an Efficient Decision Procedure for Imperative Tree Data Structures 21

axiom r-Leaf2 implies P (rleaf (u), r(u)) and rleaf (u) 6= null. From axiom Leaves1
we then conclude fca(lleaf (u), rleaf (u)) = u and therefore u = r(u). But this implies
u = r(u) = null, which gives a contradiction. The case for f = r is analogous.

Now, for proving the lemma first note that skolemization, linearization, flattening,
and computation of clausal normal form are all satisfiability-preserving transforma-
tions. In particular, KP ∪ G is satisfiability if and only if F3 is satisfiable. More-
over, every finite ΣP -model of KP ∪ G is also a model of F3. Thus, let α be a finite
ΣP -model of KP ∪ G. Let u ∈ α and Q ∈ Q. From axiom bpQ-Def3 follows that
¬Q(bpQ(u), p(bpQ(u))) or bpQ(u) = null. In the first case, the syntactic restrictions
onQ imply that we must have bpQ(u) ∈ BP(Q). In the second case bpQ(u) ∈ BP(Q)
follows immediately from the definition of BP . Hence, α satisfies axiom bpQ-Def5.
Axiom bpQ-Def4 is a consequence of axioms Refl, Trans, AntiSym, NullTerm, and the
axioms in Figure 10. Thus, α also satisfies bpQ-Def4.

The axioms Refl, Trans, AntiSym, and NullTerm ensure that P is a partial order on α
for which all upper bounds exist. Define α(fca) as the function associating with every
pair u, v ∈ α the least upper bound of u and v with respect to P . Then α satisfies
axioms fca-Def1, fca-Def2, and fca-Def3. Moreover, using α(P) = α(p)∗ and axiom
Parent one case easily show that α also satisfies fca-Def4.

Now for each u ∈ α, define α(root)(u) = u if p(u) = null and otherwise define
α(root)(u) = v where v is the unique element in α such that P (u, v), v 6= null and
p(v) = null. Similarly, define lleaf (u) = v where v is chosen freely from all v′ ∈ α
such that l(v′) = null, r(v′) = null, and P (v′, l(u)). The fact that at least one such v′

exists easily follows from α|ΣF ∈ MF and α(P) = α(p)∗. Define rleaf (u) analo-
gously. Then one can easily verify that α satisfies all axioms in Figure 13. Hence, α
satisfies property (3) and is a model of K ∪G.

For proving the other direction let α be a finite Σ-model of K ∪ G. Then from
property (3) immediately follows that α|ΣP

satisfies KP ∪G. ut

Lemma 9. If there exists a weak partial model of K[Ψ(K, G)] ∪ G in which all terms
in Ψ(K, G) are defined, then there exists a finite total model of K ∪G.

Proof Sketch. Let α be a weak partial model of K[Ψ(K, G)] ∪ G in which all terms in
ΨK(G) are defined. We can obtain a finite partial substructure α0 from α by restricting
the universe of α to the elements that are used to interpret the ground terms in ΨK(G).
Then α0 still weakly satisfies K[Ψ(K, G)] ∪ G. Furthermore, from the definition of
Ψ(K, G), Lemma 6, and the fact that α0 weakly satisfies K[Ψ(K, G)] follows:

(a) P is totally defined in α0,
(b) fca is totally defined in α0,
(c) for each Q ∈ Q, bpQ is totally defined in α0,
(d) for each Q ∈ Q and u ∈ α0, p is defined on bpQ(u).
(e) for each u ∈ α0 and f ∈ {l, r}, if f is defined on u then p is defined on f(u).

From these properties follows that α0 is already a model of all clauses in K that result
from the axioms: NullTerm, Refl, Trans, AntiSym, Total, fca-Def1, fca-Def2, fca-Def3,
fca-Def4, as well as the axioms bpQ-Def1, bpQ-Def2, bpQ-Def4, and bpQ-Def5 for all

22 Thomas Wies, Marco Muñiz, Viktor Kuncak

Q ∈ Q. Note further that α0 is a model of all clauses in K that result from restricted
quantified formulas of the form ∀z. Fin occuring in F0 because such clauses only con-
tain constant symbols, the function symbols bpQ, and the predicate symbol P .

We now complete α0 to a total model of K[Ψ(K, G)] ∪G step by step starting with
the interpretation of the function symbol root . Let α1 be the structure α0 where the
interpretation of root is completed to a total function as follows: we know that even if
root is undefined for some u ∈ α0 then the root r ∈ α0 of the tree to which u belongs
is already determined, i.e., r = root(v) for some other v ∈ α0 that belongs to the same
tree as u. This can be seen as follows: from the definition of Ψ we conclude that if root
is undefined for some u ∈ α0 then u is either one of (i) lleaf (v) for some v ∈ α0 and
r = root(v), (ii) rleaf (v) for some v ∈ α0 and r = root(v), or (iii) fca(v, w) for some
v, w ∈ α0 such that either root(v) = r or root(w) = r, or cases (i),(ii) apply to both
v and w. We can thus define α1(root)(u) = r where r is determined by the case above
that applies. Note that in all cases root is already defined on r in α0, i.e., r 6= u. We thus
conclude that α1 still weakly satisfiesK[Ψ(K, G)]∪G and, by construction, is now also
a model of the clauses in K that result from the axioms Root1 and Root2, as well as the
clauses that result from restricted quantified formulas of the form ∀z. fp(z) = t→ Gin

in F0.
Using similar reasoning we can show that whenever lleaf or rleaf are undefined

for some u ∈ α1 then there exists a corresponding descendant v ∈ α1 of u such that
lleaf , respectively rleaf is defined on v with image w ∈ α1, and w is different from
null. We can thus extend α1 to a weak partial model α2 of K[Ψ(K, G)] ∪ G such that
α2 also interprets the function symbols lleaf and rleaf as total functions and is now a
model of all clauses that result from restricted quantified formulas in F0, as well as all
clauses that result from the axioms given in Figure 13, except for the axioms l-Leaf2
and r-Leaf2.

Now define the function parent ∈ α2 → α2 as follows: for all u ∈ α2, if u = null
then define parent(u) = null and otherwise define parent(u) = v such that

v 6= u, P (u, v), and for all w ∈ α2, if w 6= u and P (u,w) then P (v, w) (4)

We argue that parent is well-defined. First, from the fact that α2 is finite and satisfies
axioms NullTerm, Total, and Trans we conclude that there exists at least one v ∈ α2 sat-
isfying condition (4). Furthermore, from axioms AntiSym follows that this v is unique.
We further argue that for all u ∈ α2 if p is defined on u then parent(u) = p(u). If
u = null then p(null) = null follows from axioms p-Step, NullTerm, and AntiSym. If
on the other hand u 6= null then axiom p-Loop implies p(u) 6= u and axiom p-Step im-
plies P (u, p(u)). Furthermore, axiom p-Unfold implies that for all w ∈ α2 with w 6= u,
P (p(u), w) holds. Hence, condition (4) is satisfied for v = p(u).

Now define α3
def
= α2[p 7→ parent] then α3 still weakly satisfies K[Ψ(K, G)] ∪ G

and, by construction, is a model of the axioms p-Loop, p-Step, and p-Unfold. From
property (d) and the fact that α2 is a model of axiom bpQ-Def4, for all Q ∈ Q, further
follows that α3 is also a model of the clauses resulting from the axiom bpQ-Def3, for
all Q ∈ Q.

In order to complete the interpretations of l and r to total functions, and hence α3 to
a total structure, we first define a function Children that maps every node u ∈ α3 with

On an Efficient Decision Procedure for Imperative Tree Data Structures 23

u 6= null, to the set of its proper children as follows:

Children(u)
def
= { v ∈ α3 | p(v) = u }

Let v, w ∈ Children(u) such that v 6= w. Then from axioms fca-Def1, fca-Def2,
fca-Def3, and condition (4) follows that u = fca(v, w). Axiom fca-Def4 thus im-
plies that Children(u) contains at most two elements. We can then use the func-
tion Children to define functions left , right ∈ α3 → α3 as follows: first define
left(null) = right(null) = null. For u ∈ α3 with u 6= null we distinguish three cases:

Case 1: both lleaf (u) and rleaf (u) are different from null. Then from axiom
Leaves1, l-Leaf1, r-Leaf1, the axioms for fca , and condition (4) follows that
Children(u) must contain two distinct elements vl, vr such that P (lleaf (u), vl) but
not P (rleaf (u), vl) and, vice versa, P (rleaf (u), vr) but not P (lleaf (u), vr). Then
define left(u) = vl and right(u) = vr.

Case 2: exactly one of lleaf (u) and rleaf (u) is null. Assume rleaf (u) = null
then from axiom Leaves2, the axioms for fca , and condition (4) follows that
Children(u) contains exactly one element v, moreover P (lleaf (u), v) must hold
because of axiom l-Leaf1. Thus define left(u) = v and right(u) = null. The case
for lleaf = null is analogous.

Case 3: both lleaf (u) and rleaf (u) are null in α3. Then from axiom Leaves3 and con-
dition (4) follows that Children(u) = ∅. We thus define left(u) = right(u) = null.

We show that left and right extend the interpretations of l and r in α3 to total
functions. Assume f(u) is defined for some u ∈ α3 where f ∈ {l, r}. If u = null
then f(u) = null follows from property (e) and the fact that α3 weakly satisfies ax-
ioms l-Child and l-Root, respectively, r-Child and r-Root. If on the other hand u 6= null
then from property (e) and the fact that α3 weakly satisfies axioms l-Leaf2 and r-Leaf2
follows P (lleaf (u), f(u)) if f = l, respectively, P (rleaf (u), f(u)) if f = r. If
f(u) = null then together with axioms NullTerm and AntiSym this immediately im-
plies lleaf (u) = null, respectively, rleaf (u) = null and hence left(u) = null, re-
spectively, right(u) = null. If f(u) 6= null then from the fact that α3 weakly satis-
fies the axioms l-Child and r-Child follows that f(u) ∈ Children(u). Together with
P (lleaf (u), f(u)), respectively, P (rleaf (u), f(u)) this again implies left(u) = f(u),
respectively, right(u) = f(u).

Now, define α4
def
= α3[l 7→ left , r 7→ right]. Then by construction α4 is also a model

of all remaining clauses in K that result from axioms in which the function symbols l
and r occur and, thus, α4 is a model of K ∪G. Moreover, α4 is finite. ut

