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Abstract. Contract-based property checkers hold the potential for pre-
cise, scalable, and incremental reasoning. However, it is difficult to apply
such checkers to large program modules because they require program-
mers to provide detailed contracts, including an interface specification,
module invariants, and internal specifications. We argue that given a
suitably rich assertion language, modest effort suffices to document the
interface specification and the module invariants. However, the burden
of providing internal specifications is still significant and remains a de-
terrent to the use of contract-based checkers. Therefore, we consider the
problem of intra-module inference, which aims to infer annotations for
internal procedures and loops, given the interface specification and the
module invariants. We provide simple and scalable techniques to search
for a broad class of desired internal annotations, comprising quantifiers
and Boolean connectives, guided by the module specification. We have
validated our ideas by building a prototype verifier and using it to ver-
ify several properties on Windows device drivers with zero false alarms
and small annotation overhead. These drivers are complex; they contain
thousands of lines and use dynamic data structures such as linked lists
and arrays. Our technique significantly improves the soundness, preci-
sion, and coverage of verification of these programs compared to earlier
techniques.

1 Introduction

Program verification is an undecidable problem, which makes it impossible to
build automated and precise program verifiers. In the last few decades, research
in static analysis and program verification has attempted to improve the pre-
cision and scalability of program verification tools without requiring significant
user input. Most existing tools for verifying properties of software fall under two
extremes: push-button tools based on model checking [7] and abstract interpre-
tation [9] that have little room for user guidance, or contract-based verifiers such
as ESC/Java [14] and Spec# [5] that require the user to specify all the contracts.

Contract-based property checkers hold the potential for precise, scalable, and
incremental reasoning. However, it is difficult to apply such checkers to large pro-
gram modules because they require programmers to provide detailed contracts.



These contracts include an interface specification (preconditions and postcondi-
tions for public procedures), module invariants, and internal specifications (loop
invariants, preconditions, and postconditions for internal procedures). Manually
providing such contracts is infeasible for large modules that typically contain
thousands of lines and hundreds of procedures. Operating systems modules such
as device drivers, file systems, and memory managers are typically large and
consequently remain outside the scope of existing verification techniques.

We argue that given a suitably rich assertion language, modest effort suffices
to document the interface specification and the module invariants. This is for-
tunate because these specifications are the most useful for documentation and
program understanding. While the interface specification documents the client’s
view, the module invariants provide the central argument for establishing the
interface specification and other desirable properties of the module. However,
the burden of providing internal specifications is still significant and remains a
deterrent to the use of contract-based checkers. Therefore, we solve the problem
of intra-module inference. Given a module with an interface specification, mod-
ule invariants, and a property to be proved, we infer annotations on loops and
internal procedures guided by the provided specifications.

In this work, we demonstrate how to synthesize a broad class of internal
annotations containing quantifiers and Boolean structure, in a scalable fash-
ion, guided by the module invariants. Our inference method generates a set of
candidate annotations using an idea of exception sets, and then searches for an-
notations within the candidate pool using the scalable Houdini algorithm [13].
We formalize our ideas in terms of a general and extensible annotation language
comprising type-state assertions. The type-state of a pointer can be static or
can depend on runtime attributes such as the runtime type of a pointer, values
of object fields, and membership (or non-membership) in heap-allocated data
structures [22].

We have validated our ideas by building a prototype verifier and using it to
verify several properties on Windows device drivers with zero false alarms and
small annotation overhead. These drivers are complex; they contain thousands
of lines and use dynamic data structures such as linked lists and arrays. We
show that proving even simple type-state properties may require tracking type-
states related to linked lists and non-trivial aliasing constraints in the module
invariants. We then demonstrate how our inference technique is able to infer
almost all internal annotations. Our technique significantly improves the sound-
ness, precision and coverage of verification of these programs compared to earlier
techniques applied on these programs (see Section 6 for related work).

Our experience leads us to the following conclusions:

1. Having the programmer specify the module invariants and the tool infer the
internal annotations is a useful tradeoff in the quest for automated program
verifiers that can check general properties with high precision. Given only the
property to be proved, inferring the module invariants automatically with
reasonable cost seems unlikely because the required invariant may depend on
sophisticated type-state abstractions absent from the property. Inference of



internal annotations guided by the structure of the module invariants seems
more amenable to cost-effective automation.

2. Searching for internal annotations guided by user-specified module invari-
ants discovers annotations that are understandable by a programmer, unlike
intermediate assertions of static analysis tools that can only be understood
by machines. This attribute is important if a tool attempts to aid program
documentation and incremental checking, in addition to finding bugs.

2 Motivating example

In this section, we show the module invariants and internal annotations required
to verify properties of a real-life Windows device driver kbdclass. We focus
on checking the absence of the following double-free property: a pointer of type
DEVICE OBJECT that is deleted with a call to IoDeleteDevice was allocated
via a prior call to IoCreateDevice, and an object is not deleted twice. The
purpose of this section is to show that the module invariants required to check
this property can be expressed succinctly over a set of suitable type-states with
a relatively low annotation burden. On the other hand, it is non-trivial to arrive
at the relevant invariants mechanically starting from the property of interest, as
they contain type-state abstractions, quantifiers and Boolean structure.
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Fig. 1. Data structures in kbdclass.

2.1 Module invariants

Module invariants are a set of assertions that are preserved by the public pro-
cedures of a module and are strong enough to prove the property of interest.



∀x ∈ MyDevObj : x->DeviceExtension->Self = x (1)

∀y ∈ MyDevExtn : y->Self->DeviceExtension = y (2)

∀x ∈ MyDevObj : x->DeviceExtension ∈ MyDevExtn (3)

∀y ∈ MyDevExtn : y->Self ∈ MyDevObj (4)

∀z ∈ GL LIST : z = HD ∨ ENCL(z) ∈ MyDevExtn (5)

HD ∈ GL LIST (6)

Globals.GrandMaster 6= 0 =⇒ Globals.GrandMaster ∈ MyDevExtn (7)

&Globals.GrandMaster->Link /∈ GL LIST (8)

Fig. 2. Module invariants for checking double-free property on kbdclass. ENCL(x) is a
macro for CONTAINING RECORD(x, DEVICE EXTENSION, Link).

Figure 2 shows the module invariants required to prove the double-free property
on kbdclass. Each of these invariants either specifies a property on all pointers
satisfying a dynamic type-state, or the type-state of a global variable. In this
section, we will explain these invariants with respect to the kbdclass module.

Allocation type-states and aliasing invariants. We use the mutable
sets MyDevObj and MyDevExtn to model the allocation (in IoCreateDevice)
and deletion (in IoDeleteDevice) of DEVICE OBJECT pointers in kbdclass. The
structure of a device object and a device extension are described below (ignore
the field of type PLIST ENTRY for now):

typedef struct _DEVICE_OBJECT{

void *DeviceExtension;

...

}

DEVICE_OBJECT, *PDEVICE_OBJECT;

typedef struct _DEVICE_EXTENSION{

PLIST_ENTRY Link;

PDEVICE_OBJECT Self;

...

}

DEVICE_EXTENSION, *PDEVICE_EXTENSION;

Intuitively, each call to IoCreateDevice adds a pointer u to MyDevObj and
a pointer v to MyDevExtn, setting u->DeviceExtension to v at the same time.
Conversely, when a pointer u is passed to IoDeleteDevice, it removes u from
MyDevObj and u->DeviceExtension from MyDevExtn. The aliasing constraints
between the fields Self and DeviceExtension (see Figure 1) are captured by
invariants 1 and 2.

Now, consider the public method KeyboardPnP in the kbdclass module:
requires (DeviceObject ∈ MyDevObj)
NTSTATUS KeyboardPnP(PDEVICE_OBJECT DeviceObject, PIRP Irp){

...

data = (PDEVICE_EXTENSION) DeviceObject->DeviceExtension;

...

case IRP_MN_REMOVE_DEVICE: IoDeleteDevice (data->Self);

...

}



When the request IRP MN REMOVE DEVICE is passed in the Irp parameter,
the procedure deletes the device object DeviceObject . The kernel ensures that
KeyboardPnP is only invoked on a device object that was previously allocated by
a call to IoCreateDevice in this module. This property is reflected in the precon-
dition given in the requires annotation. However, note that IoDeleteDevice is
invoked on DeviceObject->DeviceExtension->Self — it is typical of device
drivers to extract the device extension from the device object at the beginning
and then use the device extension for the rest of the routine. This is safe because
DeviceObject->DeviceExtension->Self is identical to DeviceObject, a fact
provided by the module invariant 1 in Figure 2.

Type-state for list membership. The kbdclass module also contains a
global structure variable Globals of type GLOBALS as shown below:

typedef struct _GLOBALS{

LIST_ENTRY LegacyDeviceList;

PDEVICE_EXTENSION GrandMaster;

...

} GLOBALS;

typedef struct _LIST_ENTRY{

PLIST_ENTRY Flink;

PLIST_ENTRY Blink;

} LIST_ENTRY, *PLIST_ENTRY;

The GLOBALS structure contains a pointer to a device extension in GrandMaster,
and the head of a list of device extensions in LegacyDeviceList. The LIST ENTRY
structure contains forward and backward links for a linked list; fields of this type
represent the head (LegacyDeviceList in GLOBALS) as well as the links (Link
in DEVICE EXTENSION) in a list (refer to Figure 1).

Now consider the public procedure KeyboardClassUnload which deletes all
the device objects present in the driver, before unloading the driver.

VOID KeyboardClassUnload(PDRIVER_OBJECT DriverObject){

...

// Delete all of our legacy devices

for (entry = Globals.LegacyDeviceList.Flink;

entry != &Globals.LegacyDeviceList;){

PDEVICE_EXTENSION data =

CONTAINING_RECORD (entry, DEVICE_EXTENSION, Link);

RemoveEntryList (&data->Link);

entry = entry->Flink;

...

IoDeleteDevice(data->Self);

}

// Delete the grandmaster if it exists

if (Globals.GrandMaster) {

data = Globals.GrandMaster;

Globals.GrandMaster = NULL;

...

IoDeleteDevice(data->Self);

}

}
The loop in the procedure iterates over the list Globals.LegacyDeviceList

using the iterator variable entry. The macro CONTAINING RECORD is used to



obtain the enclosing structure given the address of an internal field, and is defined
as:

#define CONTAINING_RECORD(x, T, f) ((T *)((int)(x) - (int)(&((T *)0)->f)))

For each iteration, data points to the enclosing DEVICE EXTENSION structure
of entry. This entry is removed from the list by RemoveEntryList and freed
by the call to IoDeleteDevice on data->Self. Finally, the device object in
Globals.GrandMaster is freed, after the loop terminates.

We argue about the safety of these operations in the remainder of this sec-
tion. First, we define two macros that are used in the definition of the module
invariants in Figure 2, to refer to the linked list in Globals.LegacyDeviceList:

#define HD &Globals.LegacyDeviceList

#define GL_LIST Btwn(Flink, HD->Flink, HD)

Here HD denotes the dummy head of the linked list and GL LIST denotes the
pointers in the linked list. The set constructor Btwn(f, x, y) [20] denotes the set
of pointers {x, x->f, x->f->f, . . . , y} when x reaches y using f, or {} otherwise.

1. We need to specify that for each entry z of the list apart from the dummy
head HD, the pointer CONTAINING RECORD(z, DEVICE EXTENSION, Link) is
a MyDevExtn pointer. This is specified in invariant 5. Invariant 6 denotes
that the set is non-empty. Notice that invariant 5 corresponds to a type-
state invariant, where the type-state is determined by membership in a data
structure.

2. For any MyDevExtn pointer x, x->Self should be a MyDevObj pointer, to
enable the call to IoDeleteDevice to succeed (invariant 4).

3. Furthermore, we need to ensure that IoDeleteDevice is not invoked on the
same device object pointer in two different iterations of the loop. This can
happen if x->Self = y->Self, where x and y correspond to the values of
data in two different loop iterations. This can be prevented by requiring
that any MyDevExtn pointer x satisfies x->Self->DeviceExtension = x
(invariant 2).

4. Finally, invariant 7 ensures that Globals.GrandMaster is a valid device
extension and invariant 8 ensures that Globals.GrandMaster is not present
in the GL LIST, and therefore Globals.GrandMaster->Self was not freed
in the loop.

2.2 Internal annotations

Let us now look at some of the annotations required on the internal procedures
to verify the absence of the double-free property modularly. In the ideal case,
the module invariants would act as the necessary preconditions, postconditions
and loop invariants for all the procedures. However, these invariants can be
temporarily broken due to allocation of new objects satisfying a given type-state
or mutation of fields in objects. For instance, many invariants on the global state



(invariants 5, 7, 8) do not hold on internal procedures and loops called within
the initialization procedure of the module. For kbdclass, most of the internal
annotations in addition to the module invariants can be categorized into one of
the following:

Module invariant exceptions. In the procedure KeyboardClassUnload
below, a device object *ClassDeviceObject is initialized after being created by
IoCreateDevice.

NTSTATUS KbdCreateClassObject(..., PDEVICE_OBJECT *ClassDeviceObject)

{

...

status = IoCreateDevice(..., ClassDeviceObject);

...

deviceExtension =

(PDEVICE_EXTENSION) (*ClassDeviceObject)->DeviceExtension;

deviceExtension->Self = *ClassDeviceObject;

...

}

Any procedure call between the call to IoCreateDevice and the setting of
Self would violate the invariant 1. In this case, the type-state invariant 1 holds
for all pointers with the exception of *ClassDeviceObject.

Type-states of pointers and their fields. We have to propagate the type-
states of pointers available from preconditions of public procedures to internal
procedures to utilize the type-state invariants. In another case, we need the loop
invariant entry ∈ GL LIST for the loop in KeyboardClassUnload (described in
Section 2.1); it describes the type-state of the local variable entry.

Modifies clauses. In the absence of any annotation about the side-effect
(or modifies set), a procedure havocs (scrambles) all the globals the fields and
type-states of pointers in the heap. Modifies annotations are needed to provide
precise updates to the relevant fields and type-states.

Conditional annotations. Sometimes the annotations in each of above cat-
egories need to be guarded by some conditions (e.g. return value, flags in some
parameters). The procedure KbdCreateClassObject (encountered earlier in this
section) creates and returns a MyDevObj pointer through the out-parameter
*ClassDeviceObject, only when the return value is non-negative.

In the remainder of the paper, we formalize the notion of type-states (Sec-
tion 3), and provide mechanisms to generate internal annotations guided by the
module invariants (Section 4), and finally evaluate our technique on a set of
real-world device drivers (Section 5).

3 Type-state assertions

In this section, we formally define a type-state and type-state assertions that
comprise our annotation language. A type-state is a set of pointers, and the
type-state of a pointer is determined by membership or exclusion from the set.



φ ∈ Formula ::= ∀x ∈ S : φ | ψ
ψ ∈ BFormula ::= t ∈ S | t ≤ t | ¬ψ | ψ ∨ ψ
t ∈ Expr ::= x | t->f | &t | ∗t
S ∈ SetExpr ::= {} | int | S ∪ S | S \ S | Btwn(f, t, t) | Array(t, t, t) | . . .

Fig. 3. Grammar for type-state invariants. Here f refers to a program field. The top-
level invariant is of the form φ, S is a set expression, and int is the set of all integers.
We require that x not appear in S in the formula ∀x ∈ S : φ.

Type-states are a generalization of static types in a program and are useful
for two purposes: (a) for establishing non-aliasing between pointers belonging to
disjoint type-states, and (b) to state a property about a set of pointers satisfying
a type-state.

The language of type-states is extensible by the user and includes the follow-
ing:

1. Static: The static types in programs correspond to immutable type-states.
2. Dynamic: Some type-states are mutable at runtime. For example, the type-

state MyDevObj is mutated by calls to IoCreateDevice and IoDeleteDevice.
3. Membership in data structures: As we have seen, we often need to

distinguish pointers based on their membership in a list (e.g., GL LIST),
a tree or an array. We use set constructors to refer to all elements of a
list between two pointers (Btwn) or all elements in the range between two
pointers or integers [6].

Often, there are interesting sub-typing relationships among type-states. For ex-
ample, the type-state MyDevObj is a subtype of PDEVICE OBJECT.

Figure 3 shows the recursive structure of a type-state assertion. Formula rep-
resents a top-level assertion, that can either be a quantified type-state assertion,
or a BFormula. A BFormula represents a Boolean combination over type-states
and arithmetic relations over terms; Expr represents the various pointer terms
that can be constructed from a variable x. The vocabulary of type-states SetExpr
is extensible by the user. Here Array(a, s, n) .= {a+ s ∗ i | 0 ≤ i < n } is the set
constructor for all pointers in an array of size n starting at a, where each entry
has a size of s bytes.

The quantified assertions represent type-state invariants which state a prop-
erty for all pointers satisfying a given type-state; examples of such an assertion
are invariants 1 and 5 in Figure 2. Quantifier-free assertions are used to de-
scribe type-states of variables or their fields; invariants 7 and 8 are examples
of it. Type-state invariants can be nested: the following invariant establishes the
parent-child relationship for all elements in a list:

∀x ∈ TypeA : ∀y ∈ Btwn(Flink, x->first, NULL) : y->parent = x



4 Generating internal annotations

Given the interface specification and the module invariants, the next step is to
infer the internal annotations. There are two broad classes of annotations that
need to be inferred for modular verification—assertions and modifies clauses. As-
sertions include loop invariants and preconditions and postconditions on internal
procedures.

As we illustrated in Section 2, sound verification of real-world modules re-
quires module invariants to contain quantifiers and Boolean connectives. Auto-
matic inference of such annotations is challenging and existing procedures for
constructing quantified invariants with Boolean structure is limited to relatively
small programs [15, 19, 17, 24]. In this section, we demonstrate the use of excep-
tion sets to synthesize a broad class of internal annotations containing quantifiers
and Boolean structure, in a scalable fashion guided by the module invariants.

We use the Houdini [13] algorithm for inferring the internal annotations of
a module decorated with module invariants. The algorithm is simple yet scal-
able: the algorithm takes as input a set of candidate annotations for the internal
procedures and outputs the largest subset of the candidate annotations that
is mutually consistent. The algorithm initially assumes all the candidate anno-
tations and then greedily removes an annotation that does not hold during a
modular verification step — the process terminates when the set of annotations
is consistent or empty. Although this can be seen as solving a restricted case of
the predicate abstraction problem (often called monomial predicate abstraction),
the restricted nature of the problem makes it scalable. For example, when the
complexity of deciding formulas in the assertion logic is Co-NP complete, the
complexity of the predicate abstraction problem is PSPACE complete, whereas
the complexity of monomial predicate abstraction is Co-NP complete [21].

The main challenge in using Houdini is to generate enough candidate anno-
tations to capture a broad class of internal invariants containing quantifiers and
Boolean connectives. In the next two sections, we illustrate the use of exception
sets to generate candidate annotations for assertions (Section 4.1) and modifies
clauses (Section 4.2) guided by the module invariants. We conclude the section
with some description of conditional annotations that our approach does not
capture currently (Section 4.3).

4.1 Candidate assertions

We have found the following kinds of assertions suitable for populating the can-
didate pool for preconditions, postconditions, and loop invariants.

Type-states of pointers. The various type-states mentioned in the mod-
ule invariants and the interface specification signify the relevant attributes of
pointers that should be tracked. For every well-typed path expression in scope
and for each relevant type-state, we introduce a candidate assertion stating that
the path expression is in the type-state. The declared types of variables and
fields are of great value in reducing the set of pointers to check for membership



in a given type-state. These candidate facts are important for instantiating the
universally-quantified type-state invariants in the module invariants.

Module invariant exceptions. Consider a module invariant ∀x ∈ S : ψ(x)
which specifies some property ψ(x) holds for all pointers x satisfying S. Such an
assertion could be broken at a few pointers, which we call module invariant excep-
tions. We guess that this can happen only for the sets of pointers Θ1, Θ2, . . . , Θk.
We can generate the following candidate assertions:

∀x ∈ S : x ∈ Θ1 ∨ . . . ∨ x ∈ Θk ∨ ψ(x)
∀x ∈ Θ1 : ψ(x)
. . .
∀x ∈ Θk : ψ(x)

Assuming the different sets Θ1, . . . , Θk are pairwise disjoint, the above candi-
date assertions allow us to capture the tighest exception to the module invariant
in terms of the input sets. For instance, if the module invariant holds, then all
the candidate assertions hold. On the other hand, if the exceptions to the mod-
ule invariant cannot be captured in the input sets, then the first assertion would
fail. When a set Θi

.= {θi} is a singleton, then the quantified fact ∀x ∈ Θi : ψ(x)
can be simplied to ψ(θi).

Example 1. Consider a simple example with the following module invariant in
the “steady state” (recall the set constructor Array from Section 3):

∀x ∈ Array(a, 4, n) : x->d = 42

For a loop that initializes the array, the loop invariant is a combination of a
module invariant exception and a type-state assertion on the pointer iter, where
iter is the iterator over the array.

∀x ∈ Array(a, 4, n) : x ∈ Array(a, 4, n) \ Array(a, 4, iter) ∨ x->d = 42
iter ∈ Array(0, 1, n + 1)

The exception set in this example is Array(a, 4, n) \ Array(a, 4, iter).

4.2 Candidate modifies clauses

A candidate modifies annotation for a field F looks as follows:

modifies F Θ1

. . .
modifies F Θk

This is an annotation that specifies that F is possibly modified only at pointers
in the set

⋃
1≤i≤k Θi. These annotations relate the state of F at entry and exit

from a procedure, or at entry and the beginning of an arbitrary iteration of a
loop. Modifies annotations are crucial for tracking the side-effect of a procedure
or a loop on the heap.



We model the memory as a collection of maps, one for each type and each
field [8]. Notice that the modifies annotation simply says that the sets Θi are
exceptions to the assertion stating that the map F is preserved at all pointers!
Hence, we use an almost identical strategy as the module invariant exceptions.
If the user provides the above modifies annotations as candidates, we generate
the following candidate annotations:

∀x ∈ int : x ∈ Θ1 ∨ . . . ∨ x ∈ Θk ∨ F(x) = old(F)(x)
∀x ∈ Θ1 : F(x) = old(F)(x)
. . .
∀x ∈ Θk : F(x) = old(F)(x)

Here old(F) refers to the value of the map F at the pre-state (either at the
entry of a procedure or a loop). For singleton Θi = {θi}, the quantified assertions
can be simplified to F(θi) = old(F)(θi).

The modifies clauses for mutable type-states (such as MyDevExtn) are dealt
with similarly.

4.3 Conditional annotations

In some cases, the above candidate assertions may need to be guarded by the
type-states of a few pointers. For example, the type-state of a pointer might
depend on the type-state of the return variable and/or some flag in the param-
eters. In other cases, different type-states of a pointer may be correlated (e.g.,
invariant 7 in Figure 2). We currently require the user to provide the conditional
annotations.

5 Implementation and results

We have implemented a prototype tool for the problem of intra-module inference.
The input to the tool is a module (a single compilation unit) written in C,
along with the specifications of external procedures that are called from the
module, and the interface specifications for the public procedures. The user then
describes a set of module invariants (similar to Figure 2) for the module. Our
tool generates a set of candidate annotations and infers the internal annotations
over them using the Houdini algorithm.

Generation of the candidate annotations from the module invariants requires
providing a set of pointers at procedure and loop boundaries. These pointers
form parts of type-state assertions or exception sets for module invariants and
modifies clauses. Pointers can range over the variables (procedure parameters,
globals) in scope and field dereferences over them. However, manually specify-
ing the pointers for each procedure and loop can be cumbersome. To relieve
this burden, we provide patterns that match against the variables in scope at
procedure and loop boundaries to generate actual pointer expressions. For ex-
ample, to generate pointers of type PDEVICE EXTENSION, we provide a pattern to



match against variables of type PDEVICE EXTENSION, or DeviceExtension fields
of PDEVICE OBJECT variables.

We use HAVOC to translate [8] an annotated C program into an intermediate
language BoogiePL [12] and use the Boogie [4] verification condition generator
to translate a BoogiePL program into an logical formula. We use an efficient
implementation of the Houdini algorithm [13] using the Satisfiability Modulo
Theory (SMT) solver Z3 [11].

5.1 Benchmarks

We have evaluated our prototype on 4 sample device driver modules in the
Windows operating system. These drivers are distributed with the Windows
Driver Development Kit (DDK) [1]. Among these drivers, kbdclass is a class
driver for keyboard devices installed in a system, mouclass is a class driver
for all mouse devices installed in a system, flpydisk is a class floppy driver,
and mouser is a serial mouse driver. The size and complexity of the drivers are
mentioned in Figure 4.

For each driver, we check two properties:

1. The double-free property, as illustrated in Section 2.
2. The lock-usage property, as described below.

The lock-usage property states that all KSPINLOCK locks alternate between ac-
quired and released states by calls to KeAcquireSpinLock and KeReleaseSpinLock
respectively, after the lock has been initialized into the released state by a call
to KeInitializeSpinLock. We use a mutable type-state Released to capture
the state of a lock; this type-state is modified by these Ke*SpinLock procedures.

Since these locks appear as fields of device extensions, we also augmented
the module invariants with the following invariant:

∀x ∈ MyDevExtn :
∧

i Released (& x->locki) (L)

where locki is the name of the ith field of type KSPINLOCK. This invariant signifies
that at entry and exit from a module, the locks in the module are released.

5.2 Results

Figure 4 summarizes the results of our experiments. The experiments were per-
formed on a 2.4GHz machine running Windows with 2GB of memory. For each
driver, we first check the double free property (-df extension) and then check
both the properties (-all extension). For checking the -all properties, the ad-
ditional type-state invariant (“Type”) in the module invariant column refers to
the invariant L described for the locks. Since flpydisk and mouser do not have
any global variables relevant to the properties, their module invariants do not
require any type-state assertions on the globals.

The results show that our technique is able to infer most of the internal
annotations — the number of manual annotations is small. Besides, the number



Example LOC # Pr # Pub # Loops
kbdclass 7242 51 28 20
mouclass 6857 50 27 18
flpydisk 6771 35 11 24
mouser 7415 67 27 12

Example Module Inv Infrd Manual Time
Type Glob Pr Cond Oth Inf Chk

kbdclass-df 5 3 1476 3 1 2 480 190
kbdclass-all 6 3 1591 3 4 2 818 228
mouclass-df 5 3 1391 3 1 2 491 185
mouclass-all 6 3 1502 3 4 2 892 273
flpydisk-df 4 0 1355 0 0 0 632 129
flpydisk-all 5 0 1431 0 0 0 827 167
mouser-df 4 0 1608 0 0 0 571 126
mouser-all 5 0 1774 2 0 2 224 124

Fig. 4. Benchmarks and results: “df” extensions check double-free and “all” checks
both the double-free and lock-usage property. “Module Inv” is the number of mod-
ule invariants, and comprises of type-state invariants (“Type”) type-state assertions
on globals (“Glob”). “Infrd” and “Manual” represent sizes of inferred, and manual
annotations. “Pr” is the number of procedures manually annotated. The manual an-
notations are broken up into conditional (“Cond”) or others (“Oth”). “Time” is the
runtime in seconds — “Inf” is the time for inference, and “Chk” is the time to check
the annotated program.

of inferred annotation is much larger than the set of module invariants, thereby
justifying the intra-module inference problem. Finally, our inference technique
is scalable; the time taken to generate the inferred annotations (“Inf”) is of the
same order as the time taken to check the final set of annotations (“Chk”). A
distributed implementation of the algorithm would further reduce the time.

We have already seen that the burden of writing the module invariants is low,
and these annotations are quite succinct. In fact, most of the module invariants
for MyDevObj and MyDevExtn are reusable across all drivers of a given class,
modulo renaming of fields. This further amortizes the annotation effort across a
class of drivers, and also provides module invariants that drivers of a given class
should document and export.

Some internal annotations still had to be provided manually. For kbdclass,
most of the manual annotations were on a procedure KbdCreateClassObject
which is a wrapper around IoCreateDevice with partial initialization of some
of the fields. These annotations were guarded postconditions, where the guard is
a predicate on the return value signifying successful device creation. More such
annotations were needed for checking the lock-usage property, as only a subset of
the locks were initialized in the procedure violating the module invariant L tem-
porarily on some locks. The other manual annotations required for this module
included the loop invariant entry ∈ GL LIST for the KeyboardClassUnload.5

For mouser, the additional annotations for checking both the properties come
from the need to specify preconditions on the objects of asynchronous proce-
dure calls that are never called directly — these procedures get enqueued along
with their input argument (a DEVICE EXTENSION object), and can fire later. For

5 This loop invariant matches our template for candidate assertions, but our tool
currently does not support instrumenting local variables. Therefore, the user has to
provide loop invariants involving local variables.



these procedures, we had to specify that the argument satisfied the type-state
MyDevExtn.

For mouser, Figure 4 shows a surprising result: the runtime of the inference
component of mouser-all is substantially smaller than mouser-df, even though
the latter checks only one property. Recall that the verification of mouser-all
required extra manully-provided preconditions on asynchronous procedure calls.
Even though the verification of mouser-df did not require these preconditions,
their absence caused many candidate annotations to be refuted in Houdini and
thus the algorithm took longer to converge.

The verification of kbdclass and mouclass relies on an assumption that has
not been mechanically verified. These drivers have linked lists of two different
types, DEVICE EXTENSION and IRP, that use the same underlying Flink field.
We assume that linked lists of these two types are disjoint. We have verified this
assumption manually, and are currently working on verifying it mechanically.

6 Related work

In this work, we have shown how to extend the precise reasoning performed
by modular checkers to large modules in systems code with small annotation
overhead. We have shown that verification of simple type-state properties may
need invariants about type-states and data structures that can be best specified
by users at the level of a module. In this section, we briefly compare with related
work on checking type state properties on large modules.

Automated software verification tools for simple type-state properties (e.g.
lock-usage, resource leaks) are largely based on predicate abstraction [16] (e.g.
SLAM [3], BLAST [18]), data-flow analysis (e.g. ESP [10], Saturn [2]) and more
recently on interpolants [23]. Most of these approaches lose precision when the
analysis requires complex type-state invariants in the presence of open modules
or unbounded heap, as shown in Figure 2, resulting in false alarms. Existing
automated tools deal with this problem in two ways. First, post processing of the
set of warnings is done to heuristically report a subset of warnings whereby real
bugs may be hidden. Second, a harness is created that nondeterministically calls
a public procedure after initializing the heap with a small number of objects, thus
avoiding the need to specify quantified invariants on an unbounded set of heap
objects. Both of these approaches reduce false alarms by sacrificing soundness.

Tools based on abstract interpretation [9] have been specialized to perform
shape analysis [25] for systems code. These tools have specialized abstractions
to deal with recursive data structures. Recent work using separation logic has
been shown to scale to realistic device drivers [26]. However, such tools cannot
be used for checking generic type-state properties without building specialized
abstract domains. Unlike our method, these tools do not allow the specification
and verification of the module invariants.

Verification of object-oriented programs makes heavy use of class or mod-
ule invariants [4]. However, the focus on annotation inference and automation
is secondary — these techniques are primarily focused on scalability of inter



module analysis, where each module has manageable complexity. However, for
OS modules with several hundred and possibly thousands of internal procedures,
the problem of intra-module inference is crucial for utilizing module invariants.
The work on HOB [22] is closest in spirit to our work, where a combination of
user-specified type-state annotations and inference is used to verify non-trivial
programs; however unlike our approach the inference does not leverage the mod-
ule invariants.
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