Heap Assumptions on Demand

Andreas Podelskj Andrey Rybalchenkt and Thomas Wiés

L University of Freiburg
2 MPI-SWS

Abstract. Termination of a heap-manipulating program generally depends on
preconditions that expredgeap assumption§.e., assertions describing reach-
ability, aliasing, separation and sharing in the heap). We present aritfaihgor
for the inference of such preconditions. The algorithm exploits a unictee-in
play between counterexample-producing abstract termination chacleshape
analysis. The shape analysis produces heap assumptions on deremiitate
counterexamples, i.e., non-terminating abstract computations. Hezigents
with our prototype implementation indicate its practical potential.

1 Introduction

Heap-manipulating programs are prone to termination efi@f Manually inferring
preconditions that exclude such errors is both tedious and, lsince the termination
reasoning must involve trehapeof the heap (we use the term shape in the broad sense
to describe how heap locations and heap regions are aliasedreachable, separated,
and shared). In this paper, we present an algorithea®MINFER that automates this
inference process. Given a heap-manipulating programalgarithm computes a set
of conditions on the shape of initial states, e.g., at theyautint of a given code frag-
ment, that lead to terminating computations. We identiflaagofregular programs for
which the algorithm HAPINFERIS complete. An evaluation on characteristic examples
practically demonstrates that the inferred preconditemessufficiently weak.

Our algorithm iteratively applies a termination analysisat‘shape-free’ abstrac-
tion of the program. IHAPINFER avoids invocation of shape analysis until it finds a
counterexample in the form of a non-terminating abstraotmatation, i.e., it applies
shape analysis on demand. The shape analysis produaspaassumptigrwhich is
an assertion describing the heap shape. This assumptiopgedither the abstraction
or the precondition. As the result, the refinement step abitais the counterexample.
Thus, we obtain an iterative refinement scheme that apphiesterexamples to guide
the refinement of abstractions and preconditions.

The ‘shape-free’ abstraction and the demand-driven agific of shape analysis
rely on several specifics of termination proofs. A termioatanalysis synthesizes ter-
mination arguments in the form of ranking functions (whesrgyossible). To define a
ranking function directly on heaps does not seem apprapridie notion of a rank is
intimately related to numbers. Thus, an intermediate stequpalgorithm is to trans-
late the input program over pointer variabletyemp programP, into a program over
integer variables, which we callmeasure progran®,,. This translation step from heap
to measure programs represents a low-cost and coarse -Bleapabstraction.



The algorithm HAPINFER applies a termination analysis i, at the next step. We
obtain either a termination proof fdr, and, hence, also faP,, or a counterexample,
i.e., an infinite trace of,. In general, the attempt to find a termination proof f&y
fails. This is not surprising as wexpectthat a termination proof must involve some
amount of information that onlghape analysisan compute. Shape analysis is noto-
riously expensive, however. Hence, our algorithm calls @pshanalysis on demand,
i.e., for a specific, isolated task: to check the validity ofiavariant assertion which
is crafted for the counterexample. Recent shape analysiis ¢an exploit this kind of
specificity by adapting the degree of precision, and thupikgethe practical cost of
shape analysis at a minimum [3, 25]. Furthermore, theses tcanh efficiently handle
series of analysis requests. They reuse results obtaingddfaously processed queries
when proving a new assertion, and thus avoid re-computétom scratch.

If the shape analysis proves the validity of the invariaseason by checking a cor-
respondingassertstatement inP,, then HEAPINFER inserts a correspondingssume
statement into the measure progr&n Thus, it will refine the abstraction represented
by P,. The refined version oPf, still represents a sound abstractionféf, but the
previously discovered counterexample is no longer feasibthe progranP,,. The in-
variant assertion, which is crafted to exclude the courtermle ofP,, is an expression
over integer variables. The expression can be evaluat&j as well as inP,. Thus, it
is meaningful in theassertstatement of the prograth, over pointer variables as well
as in theassumestatement in the prograi, over integer variables.

In summary, the proposed algorithmekPINFER exploits a unique interplay be-
tween failed abstract termination proofs and shape arsatysl applies an interleaving
of abstraction and precondition refinement. Thus, we oltkegrfto our knowledge first)
algorithm for the inference of preconditions on the heapsfthat guarantee termina-
tion of heap-manipulating programs. The experiments with prototype implemen-
tation indicate its practical potential. We applied our iempentation on characteristic
fragments of heap manipulating programs, see [19], inoy#ernel code from an op-
erating system [17]. The inferred preconditions matchnierided calling environment,
and were confirmed as such by the kernel developers.

Related WorkOur work fills a gap between two recent lines of research: iteation
proofs under given preconditions (for heap-manipulatimgpams), and precondition
inference for correctness properties other than termdnatnemory safety of heap-
manipulating programs and other safety properties). Qyorahm exploits the recent
advances in the respected areas by utilizing the correspprachalyses as subpro-
cedures: shape analysis for heap-manipulating prograihgeamination analysis of
integer-manipulating programs.

The recent termination analyses for heap manipulatingrarog, e.g., [2,5], do not
focus on precondition inference, but rather on proving teation under given precon-
ditions. They do not take advantage of lazy reasoning altmhéap. Unlike [2], the
present version of our algorithm does not account for mersafgty. It can be extended
to track information related to memory safety by using measusimilarly to [5, 15].

The idea of extracting ranking functions from heap-maratinfy programs by trans-
lating its statements into updates of integer variable®rg natural and is classical by
now. The existing transformations of heap-manipulatinggpams into programs over



integer variables in [2, 5] are sophisticated. Each transftion uses a form of shape
analysis as a preliminary step, i.e., before translatirgamgram over integer variables.
The shape analysis is used to eagerly infer strongest antarfor the whole program,
and is oblivious to the actual proof obligations requiredtésmination reasoning. The
cost of the translation and the size of the resulting progoaar integer variables de-
pend on the number of shapes computed by the shape anatysisntrast, our work
aims at minimizing the cost of the shape analysis by usingljt for checking specially
crafted assertions. The complexity of the translation stepa measure program does
not depend on the number of shapes. It is cubic in the numbgoiofer variables and
linear in the number of statements of the heap program.

The recently proposed algorithm for deriving precondiidar memory safety of
list-manipulating programs [8] employs quite differenthaical concepts. It neither
applies shape analysis lazily, nor infers to preconditfonsermination.

There is a large amount of related work on shape analysisythtaesis of invariant
assertions about the heap). A partial selection of varipgsaaches contains [4, 6, 12,
13,22]. Our algorithm uses shape analysis as a black boxeWbilrequiring and being
dependent on any particular implementation of shape asalisEAPINFER can benefit
from shape analyses that are property-directed, e.g.]3,25

To the best of our knowledge, our work is the first that appdieape analysis on
demand for inferring preconditions. A graph-based heapysisa[22] can be lazily
combined with predicate abstraction [14] to improve itscig®n in proving safety
properties [3].

Our algorithm relies on a termination prover for programerawmerical domains.
There exist several practical methods and tools for protemmination of such pro-
grams, e.g. [7,9, 10, 11, 16]. All these tools can be empldyedur algorithm (after
adding an extension to produce counterexamples, if neggssa

2 Preconditionsfor kernel code

A major application area of termination analyses for heapipdating programs is
low-level operating systems code [1,2]. Often the opeggtiystem kernel contains sub-
routines whose termination is an inevitable requiremenefwsuring that the operating
system remains responsive.

Figure 1 presents an example of such a subroutine. It shawgmént of the system
call handlempr ocess_ki | | found in the process scheduler of the operating system
VAMOS [17]. The handler kills the process with the given mss ID. The handler
needs to ensure consistency of the process scheduler'stdattures, e.geady list
The ready list keeps track of all processes that are readgdimg scheduled. When
a process with identifiepr ocess is killed, the handler ensures that the process is
removed from the ready list (if it is contained). Furthersdhe maximal priority of the
remaining ready processes is recomputed. The outer lodgeihandler code traverses
the ready list until eithepr ocess is found orNULL is reached. Ipr ocess is found
it is removed from the list. Furthermore, ir ocess has maximal priority, then the
inner loop traverses the ready list once more to compute éliernaximal priority of
the remaining ready processes.



int process_Kill(unsigned int pid) {
proc_id = pid & 127u;
process = pid2pcb(proc_id); ...
prev_el em = NULL;
ready_list_elem= ready_list;
while ((ready_list_elem!= NULL) && (found == false)) {
proc_id2 = ready_|ist_el em >pid;
if (proc_id == proc_id2) {
if (prev_elem!= NULL)
prev_el em>next = ready_|ist_el em >next;
el se
ready_list = ready_|ist_el em>next;
ready_|ist_el em >next = NULL;
if (process->priority == max_prio) {
hi ghest _prio = Ou;
hi ghest _search = ready_li st;
whi l e (highest_search !'= NULL) {
if (highest_search->priority > highest_prio)
hi ghest _prio = highest_search->priority;
hi ghest _search = hi ghest _sear ch->next;
}

max_pri o = highest_prio;

found = true;
}
prev_elem = ready_list_elem
ready_list_elem= ready_|ist_el em>next;
Yoo
}

Fig. 1. System call handler from the process scheduler of the VAMOS ketiigl [

The execution of the handlgr ocess_ki | | may diverge if we call it from an
arbitrary program state. The termination property of théecdepends on the shape of
the ready list. For example, if the ready list is cyclic anéglmot contairpr ocess
then the outer loop does not terminate.

Our algorithm HAPINFERautomatically infers the necessary preconditions for ter-
mination:pr ocess_Kki | | expects the ready list to be acyclic. At the first inference
step, the algorithm automatically introduces integeralglgs that measure the length
of paths along pointer fields in the heap. Their value may fieiiy, represented byo,
which indicates that the corresponding path does not exi#té heap. In our exam-
ple, there are three measures that track the length of thes f@iowing thenext
link from (1) ready_|ist to NULL, (2) ready_|ist_el emto NULL, and (3)
hi ghest sear ch to NULL. We refer to these measungs, Mo, andMms respectively.

Then, HEAPINFER translates the heap program into a measure program over inte
gers. For example, the first conjunct in the loop conditiothefouter loop is translated
to the disequality tesii, # 0, and the outer loop decrements the measur# its value
is different fromoo. Next, the precondition inference process iterativelyli@s@ termi-
nation analysis to the measure program and a shape analybis lheap program. The
shape analysis is used to derive new facts from the heapaotirat rule out spurious
non-terminating computations in the measure program. Wiegrseich a computation
cannot be ruled out, the precondition is strengthened. Batprecondition and the fact
derived from the heap program are assertions over measures.

In our example, the first termination check on the measurgrpro fails. As a coun-
terexample, it reports an infinite computation in which theasurem, is initially co



and is never decremented in the outer loop. This is beaaugand thusv,) is initially
unconstrained and might have valte This computation is feasible and corresponds
to the infinite traversal of the ready list in case itcigclic. Consequently, the infer-
ence algorithm strengthens the precondition by the assentj < oo. This rules out
any infinite iteration of the outer loop in the measure pragrand, hence, of the heap
program.

Nevertheless, the next application of the terminationysiglifails and produces a
counterexample that infinitely often iterates through teer loop with the value of
measurev s being equal tac. This might come as a surprise, because acyclicity of the
ready list, expressed as < oo, is preserved by the heap updates in the body of the
outer loop. Thus, the heap program maintains< oo at entry to the inner loop. How-
ever, due to the loss of precision by the measure abstrattisrfact cannot be derived
for the measure program. Now, the inference algorithm apglie shape analysis to
check the validity of the assertiom; < oo at the entry to the inner loop. This assertion
is expressible using a reachability predicate supportatidghape analysis. The shape
analysis verifies thatl; < oo holds. This fact is propagated to the measure program by
assumingviz < oo at the inner loop entry that, in turn, makes the subsequemira-
tion check succeed. The inference process stops and réipeftseconditionm; < oo.

It states thapr ocess_Kki | | expects an acyclic ready list.

3 Preliminaries

We now provide necessary definitions of heap manipulatiognams, their computa-

tions, and properties. To simplify presentation, we restiurselves to heap programs
that manipulate singly-linked lists. An extension to miittked lists is discussed in the

technical report [19].

Heap programsWe represent &eap programPy, by a tuple(V, L, ¢y, 7). Here,V is

a finite set of program variables. Each variablec V' ranges over a set of memory
addressesC is a finite set of control locations of the program that inelsidhe initial
location/y. We assume a distinguished program variakléhat ranges over the control
locations., and is includes iV. 7 is a finite set of program transitions. Each transi-
tion T = (¢, grd, op,¢") consists of an entry and exit locatioAgnd ¢’, respectively,

a guardgrd, and operatiorop. Guards and operations are defined by the following
grammar, where € V' \ {pc} andn is a data structure link name.

exp == v | exp.n

grd ::= true | false | exp = exp | grd A grd | —grd

op = assert(grd) |v:=v |v:=v.n|vn:=v | new(v)

A states = (stack,h) of a heap program is a valuation of the program variables
stack together with the heap function The heap functior is atotal function from
addresses to addresses. Functionodels singly-linked data structures manipulated by
the program. Given a variablec V', we writes(v) for the valuation ob in the states.

We write s[v — €] to represent a staté such thats’(v) = e and for eachu € V' \ {v}
we haves’(u) = s(u).

Each transitionr = (¢, grd, op, ') represents a transition relatipn that contains
pairs of statess, s’) such that(pc) = ¢, s = grd and the following conditions apply to



sands’. If op is an operationssert(grd), we have eithes |= grd ands’ = s[pc — ¢'],
ors £ grd ands’ = s[pc — {g]. For dealing with update operations, we define an
evaluationfunction eval that computes the value of an expression in a given state.

def {s(v) if exp = v,

eval(s, exp) = .
(s, cop) h(eval(s, exp’)) if exp = exp’.n .

For an operation that updates a program variable= ezp, we haves’ = s[pc —
v — eval(s, exp)]. In case of heap update operatiom := exp, we haves’ =
s[pc — '] and the heap functioh is modified at the addressal(s, v.n) to map to the
value eval(s, exp). Finally, if the update operation is an allocation opemiew (v)
thens’ = s[pc — ¢',v — a] andh is updated tch U {a — o'} wherea ¢ dom(h)
is a fresh address and € dom(h) U {a}. We assume a garbage-collected heap where
we always allocate a fresh address, but we put no constmititevalue of the heap
function for that fresh address. For a statand transitionr we denote bypost(, )
the set of allr-successors of.

A programcomputationis a (possibly infinite) sequenee= sy =% s; — ... of
states and transitions such tiatpc) = ¢, for each pair of consecutive statgsand
s;+1 we haves; 1 € post(7;, s;). If o is finite then for its final state, say and for each
transitionsr € 7 we havepost(r, s) = 0.

Measure ProgramsA measure is a termi(eq, eo) wheree; ande, are expressions. It
denotes the length of the shortest (possibly emptphath in the heap from the address
denoted bye; to the address denoted by, andcc if such a path does not exist.

We extend the evaluation functiemal from expressions to measures as follows:

00 ifforalliEN:s#el.ni#eg
min{i € N | s |= e1.n’ = e } otherwise.

eval(s,M(e1, e2)) = {

Measure assertions are defined by the following grammar:

rel i=<|>|< | > =

const :=0|1|2]---|o0

mezp ::= const | M(exp, exp) | mezp + mexp | mexp — mexp
atom ::= true | false | mexp rel mexp

assn ::= atom | —assn | assn A assn

A measure progran®?, = (M, L, ¢y, 7T) is a program whose program variabl&s
are the set of all measures. The set of locatiGnsnd initial location/, are as for
heap programs. A state of a measure program is a valuatidmegfcttogether with
valuations of all measures. Transitions of measure program guarded by measure
assertions and perform simultaneous updates of all meadupelates of measures are
expressed in terms of measure expressioasp.

Memory safetyThe totality of heap functioth implies that in a heap prograim there
exists no computation that can fail because of memory méatipa error, i.e.,P is
memory safe. This assumption simplifies the presentatiamupfshape-free’ abstrac-
tion of heap programs, and can be easily avoided in practicesimg measures for
proving memory safety.



input
Py, heap program
M: set of tracked measures
vars
Py : measure program
st; : measure statement at locatibrand with guardyuard,;
PRE measure assertion

begin
1 Py :=Translate(M, Py)
2 PRE= true
3 repeat
4 if Py terminateghen
5 return “termination under preconditioPrRE’
6 else
7 St1 ... Stm—1.(Stm ... stn)® := choose infinite trace i@y
8 i := choose position ifm, ..., n}
9 if under preconditio®RE, Py U ¢; : assert(—guard,) is safethen
10 Py := Py U{; : assume(—guard,)
11 else
12 PRE= PREA wlp(Py, atl; — —guard,)

done o
end.

Fig. 2. Algorithm HeEAPINFER for demand-driven inference of heap assumptions. The algorithm
uses three oracle$) the termination test on a measure program, 2) the safety check mptite
heap program strengthened by a measure assertion, and 3) thesiyg@o®ndition operator on
measure assertions for the input heap program.

4 Algorithm

We present our algorithm #aPINFER for the automatic inference of heap assumptions
for termination in Figure 2. It takes as input a heap progianand a set of measures
to be tracked for proving termination df;. The output of the algorithm is a set of
preconditions that guarantee termination of the input lpragram.

HEAPINFER executes in two phases: the translation of the heap progngmai
measure program that simulates the heap program, and acexsrnple-guided refine-
ment. The refinement phase iteratively derives two kindswef facts. First, it computes
invariants of the heap program that eliminate spuriousteominating computations in
the measure program. Second, it infers preconditions Kta@e feasible infinite com-
putations in the heap program. In the following we descriteetivo phases of Eap-
INFERIn more details. Section 5 supports this description witlsttative examples.

Translation.Figure 3 presents the functiofranslate that is used in line 1 of HAP-
INFER to translate a heap prograf, into a measure program under a given set of
tracked measurel/. The translation can be seen as a source-to-source trarafon.
Each transition of the heap program is translated to a seao$itions in the measure
program. An update operatiaipd in the heap program is translated to a simultane-
ous update of all measures in the measure program (trackedtacked). Tracked
measures/ (eq, e2) are updated according to the update functiofq (e, e2), as de-



Pi=(V,L,lo,lr,T)
Translate(M, Py) = (M, L, lo, LE, U trlT(M, 1))

T€T

trl T(M, (£, g, op,£")) = bifurcate(¢, trIG(g), trlO(M, op), £")
trlG(e1 = e2) = M(61 e2) =0
trlG(true) = tru
trlG(false) = false
trlG(—grd) = —(trlG(grd))
trlG(grd, A grdy) = trlG(grd,) A trlG(grd,)
trlO(M, assert(grd)) = assert(trlG(grd))
trlO(M, upd) = [ms := trlU(M, upd, ms) | ms € M|

M d(tl,tg) if M(t1,t2) e M
trlU(M, upd, M(t1, 1)) = {* ’ otherwise

If opisx := ythen If opisx.n := ythen
Moy (€1, e2) def M(e1[y/x], e2ly/x]) lete; = z.n' andes = w.n’
MO})(el7e2) déf
If opisx := y.nthen 1 >0AM(z,z) =kANkE<i=
Mo (2,2) 4 0 Mop(y° 1, €2)
Mop(z.07, 2107 ) 2 Moy (yn+, y.ni+h) J>0AMw,z)=kNk<j=
Mop (e, z) & Mop(e1,y.n’ ")
M(e,y) = co = M(e,y.n) (i>0—M(z,x) 2 M(z,e1)) A
M(e,y)<oo (j>OHM(w,$)ZM(w762))
M(y,y.n) =1 M(er,e2) < M(er,x) = M(e1,e2)
M(y.n,e) # 0= M(e,y) + 1 M(e1, e2) > M(e1, x)
M(y.n,e) =0=0 M(y, e2) < oo A M(y,e2) < M(y,x) =
M(y,y.n) = 0= M(e,y) M(e1, ) + 1+ M(y, e2)
Mop (z, €) 2 M(y,e2) = 0oV M(y,e2) > M(y,z) = oo
M(y,e) = 0o = o0 .
M(y, e) < oo If opis new(q:) then
M(y,e) >0 = M(y,e) — 1 Moy (2, ) =
M(y,e) =0 Moy (e, ) < o0
M(y,y.n) = 1= M(y.n,e) Mop(z,€) =k, k€N U{oo}
M(y, y.n) =0=0 Mop (€, z.n") j=§ *
op(T.m’,€) = = op(yn'*,e) MOp(x'nl’e)det; -
Mop(e1,62) = M(61,62)

Mop
i\ def
Mop(e,x.nl)d? Mo,,(e, y.n +1)
M(,p(el,eg) = M(61,62)

Fig.3. Translation of a heap program to a measure program. Wesxute denote a non-
deterministically chosen element frafuU {oo}. Here,bifurcate creates a set of transitions for

each choice of measure update$T, trlG, trlO, andtrlU translate transitions, guards, operations
and updates, respectively.



fined in Figure 3, while untracked measures are non-detéstitially assigned a value
fromN U {c0}.

The rules in Figure 3 defining the update functions shouldeld in the top-down
way. The rule that matches first is applied. We only providetited description for
the translation of heap updates: := y and omit other cases for brevity. Such heap
updates are translated into updates of measures of themMgem’, w.n’). Since the
heap functiom occurs in the subexpressions:’ andw.n’ of the measure, the trans-
lation needs to take into account the effect of the heap egdahe denotation of these
subexpressions. The first two cases apply the rule reciysinél 2 does neither occur
on the path from: to z.n* nor on the path fromw to w.n?. Thus, eventually the third
case applies. It is divided into three subcases. The firstamgbhandles the situation
whenz does not occur on the path fromw? to w.n’. Here, the measure remains un-
changed. The second subcase deals with the situationaiseeachable from.n? and
the update introduces a new path frem? to w.n’ via z andy. Finally, the third sub-
case accounts for the update eliminating any existing gegtvweeen:.n! andw.n’. We
present a soundness proof of the translation in the exterelsibn of the paper [19].

Note that the provided updates of measures are preciseheixception of update
expressions for new statements. Here, precision meanththavaluation of an update
expressiomM,, (e1, e2) in a given states determines the value of(eq, e2) in the post
state ofs under operatiorp. Update expressions of new statements are not precise in
this sense, because new statements translate into nandesgic updates.

Each of the update functions,,,(e1, e2) defines a set of guarded update expres-
sions of the formgrd = exp with the following meaning. Ifgrd is satisfied in the
current state of the measure program then the next value asumem (e, e2) is deter-
mined byexp.

Finally, the functionbifurcate transforms a single transition with guarded update
expressions for each tracked measure into a set of tramsitach of the resulting
transitions corresponds to one possible choice of pickimg af the guarded update
expressions per tracked measure. The guard of each rgsuitirsition is the translated
guard of the original transition in the heap program corgdinvith the guards of the
chosen guarded update expressions.

Choosing measures to tradkle determine the set of tracked measuyésising a sim-
ple heuristic. Initially, we consider measures that areiregl for the precise translation
of loop conditions. During the translation, additional reeees are lazily taken into con-
sideration if they occur in updates of existing tracked meas according to Figure 3.
To ensure that the sét/ remains finite we only track measures of the fowrte, y)
wherex andy are program variables. Note that the precision of the imfezelgorithm

is monotonic with respect td/, i.e., adding more measures to the set will result in
weaker preconditions.

Refinement loopThe core of algorithm HAPINFER is its counterexample-guided re-
finement loop. In each iteration of the algorithm a termimatchecker is applied to
check whether the measure program terminates under cpmecanditionPRE If the
termination check succeeds them®APINFER stops and guarantees that the heap pro-
gram is guaranteed to terminate uneé®e Otherwise, there exists a non-terminating
computation in the measure program. The algorithm nonrehééstically chooses one



of these computationst; . .. st,,—1.(st,, ... st,)*. Now there are two possible cases.
First, the selected computation is spurious, there is no corresponding computation
in the heap program. Second, the computation is feasibkeihéap program. To deter-
mine whether the counterexample is feasible, the algorithooses a guargd, from

the loop segmentst,, ... st,). Then, a safety checker is called to verify whether the
negation ofgrd; is an invariant of the heap program at locatiQrunder the current
preconditionPRE

If this safety check succeeds then we conclude that the feondterexample is
spurious. In this case, we strengthen the guards of allitrans that start at; in the
measure program using the measure assettigid;, and hence eliminate the coun-
terexample from the measure program.

If the safety check fails, then the counterexample mightespond to a feasible
computation in the heap program (or some other choigedfwill prove its spurious-
ness). The algorithm invokes an oracle that computes th&egéearecondition of the
negated guardrd; and adds it to the current precondition. If the same couxéengle
is produced in a later iteration of the refinement loop thenbgation of guargrd; is
an invariant of the heap program at locatiGrunder the new precondition. Thus, the
counterexample is eliminated eventually.

If there is a counterexample in the measure program thatisasys, but all guards
in its loop are reachable by some finite computation in th@peagram, then the infer-
ence algorithm will produce a precondition which is too sgroln this case the safety
check in line 9 will fail on all of the loop guards and the refiment will rule out the
counterexample by strengthening the precondition. Thisrimpleteness is deliberate.
In such a case a ranking function based on measures simplyrmbbexist. However,
we do not expect to observe this incompleteness on prograps Itypically found in
low-level system code.

Weakest preconditions of measure assertidtigorithm HEAPINFER relies on an or-
aclewlp that computes the weakest precondition for a measure mssarid a heap
program. We propose a simple solution for implementing dinésle.

Note that measure assertions are closed under weakeshgitimas for loop free
heap programs. In fact, we can use the update functions frigord-3 to compute
weakest preconditions for finite sequences of transitidasume that the current coun-
terexample path in the refinement loop is of the forat; . .. sty—1.(Stm, . . . stp)“. If
the algorithm attempts to strengthen the preconditiongugiguardgrd, from a transi-
tion of the loop segmeritst,,, . . . st,,), then we update preconditi®RE as follows:

PRE:= widen(PREA wlp(stq,...,st;_1,grd;)) .

The operatowiden is a widening operator on measure assertiaiden(F') identifies a
series of conjunct€’(z.n?), C(x.n'*1),... in F and replaces them by the unbounded
conjunctiony; > 0 : C(z.n'*7).

If one uses update expressions of measures to compute weaesnditions then
the only source for nondeterministic updates are new stresn\We use a simple quan-
tifier elimination procedure to eliminate the resultinguarsal quantifiers in weakest
preconditions.
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The algorithm HEAPINFER has a solid theoretical foundation. We briefly sketched
soundness in the discussion above. Under assumption thatdlles for the termina-
tion check, safety check, andp computation always terminate, there exists a back-
tracking strategy on the nondeterministic choices (linesd@ 8) such that the refine-
ment loop in algorithm HAPINFER always terminates. Finally, we identify a class of
regular programs for which the algorithm #APINFER is complete. That is, it com-
putes theweakesfprecondition for termination of the input heap program. Te¢ails
are presented in the extended version [19].

5 Example

We illustrate the algorithm EAPINFER on a simple, yet instructive example. The
left-hand side of Figure 4 shows programlRAVERSE which traverses a singly-linked
list. We apply algorithm HAPINFER to program RAVERSE with the singleton set
of tracked measures containing onhy(p, ¢). Executing line 1 in the algorithm yields
the measure programA, shown on the right-hand side of Figure 4. For legibility, we
omit the non-deterministic updates of untracked measkregirampP,, does not always
terminate. Let us assume that the non-deterministic chaoidiee 7 of the algorithm
HeAPINFER selects the infinite computatien(¢[1])* that repeatedly executes the loop
body according to caske There is only one position to choose in line 8 of the algonith
namely, the one associated with locatiband guardv (p, q) = oco. As an assertion on
states of program AAVERSE, this guard means thatis not reachable from. Obvi-
ously, the negated guand(p,q) < oo is not an invariant of program RAVERSE at
location/. Hence, the condition in line 9 does not hold. In this case Weakest pre-
condition of the stenwlp (M (p,q) < oo) is again the assertion (p, ¢) < oo. Thus,
line 12 assign®REtO M(p, ¢) < oo.

One might expect that under the precondition thiatreachable fronp the program
TRAVERSE terminates. HAPINFER finds that it is not sufficient. The next iteration
of the algorithm produces the counterexamfi22.1].(¢[1])“. The loop part of this
infinite trace is the same as for the previous counterexariples, we again choose
guardm(p, g) = oo. The condition in line 9 is again false. The weakest predwmdf
the negated guandip, , 1j(M(p, ¢) < oo) simplifies to the assertion

M(p,q) > 0V M(p,p.n) =0V M(p.n,q) < oo .
Line 12 updates the preconditierEto:
PRE= M(p,q) < oo A (M(p,q) >0V M(p,p.n) =0V M(p.n,q) <o) .

The new preconditio®RE means that is reachable fromp and either (1)p is differ-
ent fromgq or (2) they are aliased and either (27lhas a self-loop or (2.2) is on a
non-trivial cycle. We expect that the programrRAVERSE terminates under the current
precondition. Indeed, the termination test of the measwgram P,, under the pre-
conditionPREsucceeds and the algorithm returns that the program tetesinader the
preconditionPRE.

In[19], we discuss additional example programs that mdatpsingly- and doubly-
linked lists. These examples are inspired by code fragnfeaotsd in low-level system
code, such as the example in Section 2.
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£ :do £ :do

pi=pn; M(p,q) =

while p # ¢ 1 M(p,q) = o0 = 00

2 M(p,q) <o

2.1 M(p,q) >0 = M(p,q) — 1

2.2 M(p,q) =0

2.2.1 M(p,p.n) =1 = M(p.n,q)

2.2.2 M(p,p.n) =0 = 0;
whilem(p,q) > 0

Fig.4. Program RAVERSEand its associated measure progr&m

6 Implementation and experiments

We developed a prototype implementation, calleduBICER, of our algorithm for the
demand-driven inference of heap assumptions. We appl@dNBER to the example
programs in [19] and a scheduling routine from the VAMOS ktft7].

BouNcERapplies the BHNE tool for symbolic shape analysis [24] to implement
the oracle that checks assertion validity of heap progr&®2[]. For proving termina-
tion of measure programs,dNCERapplies the ARMC tool for proving termination
of transition relations in linear arithmetic [18, 21]. Theaole forwlp uses widening, as
described in Section 4.

We model the valuec in our translation to a measure program by a negative inte-
ger constant, say. Our translation rewrites each measure expression aceptdithe
following rules:

mexp = 00 — MmeTp = C,
mezp < 00 — mexp =cV mexp >0,

mezp < oo — mexp > 0.

The rewriting step allows one to apply a termination cheétieprograms over numer-
ical domains as black-box.

While our implementation is preliminary, we observe that bledavior of the al-
gorithm with respect to the number of applied measures idasiito the behavior of
algorithms for predicate abstraction with respect to thelper of predicates. We be-
lieve that local use of measures, similarly to localizedttaasion [14], can make our
tool scale to larger programs.

Our experiments with process scheduling functions frorMAMOS kernel show
that BouNcERcan successfully infer preconditions for termination fderesting prac-
tical programs. In the current implementation, we had tounadp abstract all non-heap
operations by non-deterministic choice. The inferred pnelitions are in agreement
with the preconditions provided manually by the VAMOS deyrs.
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