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ABSTRACT

Systems for verifiable outsourcing incur costs for a prover, a verifier,
and precomputation; outsourcing makes sense when the combi-

nation of these costs is cheaper than not outsourcing. Yet, when

prior works impose quantitative thresholds to analyze whether out-

sourcing is justified, they generally ignore prover costs. Verifiable

ASICs (VA)—in which the prover is a custom chip—is the other way

around: its cost calculations ignore precomputation.

This paper describes a new VA system, called Giraffe; charges
Giraffe for all three costs; and identifies regimes where outsourcing

is worthwhile. Giraffe’s base is an interactive proof geared to data-

parallel computation. Giraffe makes this protocol asymptotically
optimal for the prover and improves the verifier’s main bottleneck

by almost 3×, both of which are of independent interest. Giraffe

also develops a design template that produces hardware designs
automatically for a wide range of parameters, introduces hardware

primitives molded to the protocol’s data flows, and incorporates

program analyses that expand applicability. Giraffe wins even when

outsourcing several tens of sub-computations, scales to 500× larger

computations than prior work, and can profitably outsource parts
of programs that are not worthwhile to outsource in full.

1 INTRODUCTION

In probabilistic proofs—Interactive Proofs (IPs) [12, 49, 50, 58, 76],

arguments [30, 52, 54, 62], SNARGs [48], SNARKs [26, 47], and

PCPs [9, 10]—a prover efficiently convinces a verifier of a claim, in

such a way that the verifier is highly likely to reject a false claim.

These protocols are foundational in complexity theory and cryptog-

raphy. There has also been substantial progress in implementations

over the last six years [14, 15, 17–19, 21, 22, 32, 34, 36, 37, 39, 40, 42,

45, 47, 56, 64, 66, 72–75, 77, 79, 81, 82, 84, 88] (for a survey, see [85]),

based on theoretical refinements and systems work.

A central application example is verifiable outsourcing. The veri-
fier specifies a computation and input; the prover returns the (pur-

ported) output and proves the claim that “the returned output equals

the computation applied to the input.” The essential property here

is that the verifier’s probabilistic checks are asymptotically less

expensive than executing the computation; as a result, outsourcing
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can be worthwhile for the verifier. This picture partially motivated

the original theory [13, 46, 49, 62] and has reappeared in tales of

outsourcing to the cloud. But to validate these stories, one must

consider three kinds of costs:

• Prover overhead. Even in the best general-purpose probabilistic

proof protocols, the prover has enormous overhead in running

the protocol versus simply executing the underlying computa-

tion: the ratio between these is typically at least 10
7
[85, Fig. 5].

• Precomputation. Many of the implemented protocols require a

setup phase, performed by the verifier or a party that the verifier

trusts. This phase is required for each computation and can be

reused over different input-output instances. Its costs are usually

proportional to the time to run the computation. (Precomputation

can be asymptotically suppressed or even eliminated, but at vastly

higher concrete cost [17, 21, 22, 34]; see §10.)

• Verifier overhead. Separate from precomputation, there are inher-

ent costs that the verifier incurs for each input-output instance.

These costs are at least linear in the input and output lengths.

More or less tacitly, “practical” work in this area has bundled in

assumptions about the regimes in which these costs are reasonable

for the operator of the verifier.
1
For example, one way to tame the

costs is not to charge the operator for precomputation. This is the

approach taken in Pinocchio, which focuses on per-instance verifier

overhead [66, 67].
2
This choice can be justified if there is a trusted

third party with extremely inexpensive cycles.

Another possibility is to target data-parallel computations, mean-

ing identical sub-computations on different inputs. Here, one can

charge the operator of the verifier for the precomputation, which

amortizes, and then identify cross-over points where the verifier

saves work from outsourcing [32, 37, 66, 73–75, 81, 84, 88].

In both of these cases, prover overhead is measured but in some

sense ignored (when considering whether outsourcing is worth-

while). This would make sense if the prover’s cycles were vastly

cheaper than the verifier’s—the required ratio is approximately the

prover’s overhead: 10
7×—or if the outsourced computation could

not be executed in any other way.

Recently, Zebra [82] used a different justification by observing

that one can gain high-assurance execution of custom chips (ASICs)

by using trusted slow chips to verify the outputs of untrusted fast

chips. In this Verifiable ASICs (VA) domain (§2.3), one can charge

1
A variant of this story, exploiting the zero knowledge property of some probabilistic

proofs, such as SNARKs [26, 47], includes applications where the proof can incorporate

input hidden from the verifier [18, 39, 64, 66]. Here, one does not obsess over the

verifier’s overhead or total cost comparisons because the verifier cannot execute locally.

Nevertheless, identifying regimes where overhead is reasonable similarly requires

some effort. We do not discuss in detail, but see §9 and §10.

2
Pinocchio certainly considers precomputation [66, §5.3], but its emphasized compari-

son is between native execution and verifier overhead.
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the operator for both verifier and prover and still identify regimes

where their combination outperforms a baseline of executing the

functionality in a trusted slow chip. However, Zebra does not charge

for precomputation—and worse, introduces a preposterous assump-

tion about daily delivery of hard drives to handle the problem.

The work of this paper is to create a system, Giraffe; to charge the
operator for all three costs; and to seek out regimes where this com-

bined cost is superior to the baseline. Giraffe builds on Zebra and

likewise targets the VA setting. However, some of Giraffe’s results

and techniques apply to verifiable outsourcing more generally.

Giraffe has two high-level aspects. The first is a new probabilistic

proof built on a protocol that we call T13 [77, §7]. As with all work

in this area, T13 requires computations to be expressed as arithmetic
circuits, or ACs (§2.1). T13 has three key advantages: (a) T13 is a

variant of CMT [36, 49], which is Zebra’s base, and thus promises

amenability to hardware implementation; (b) in the VA context, T13

can in principle pay for precomputation and break even, because it is

geared to the aforementioned data-parallel model: precomputation

is proportional to one sub-computation, and amortizes over N sub-

computations; and (c) T13 ought to permit breaking even for small

N : CMT has low overhead compared to alternatives [85]. From this

starting point, Giraffe does the following (§3):

• Giraffe improves T13.Most significantly, Giraffemakes the prover

asymptotically time-optimal: for sufficiently largeN , the prover’s

work is now only a multiple (≈ 10×) of executing the AC (§3.1).

This can save an order of magnitude or more for any implemen-

tation of T13 in any context (for example, vSQL [88]), and is of

independent interest.

• Giraffe develops a design template that automatically instantiates

physically realizable, efficient, high-throughput ASIC designs for

the prover and verifier. The basic challenge is that, consistent

with our search for applicable regimes, there are variables with

wide ranges: small and large N , different hardware substrates,

etc. As a result, the optimal architectures are diverse. For ex-

ample, large ACs (large sub-computations and/or large N ) must

iteratively reuse the underlying hardware whereas small ACs

call for high parallelism. Giraffe responds with the RWSR: a new
hardware structure that, when applied to the data flows in T13,

both runs efficiently in serial execution and parallelizes easily.

• Giraffe demonstrates algorithmic improvements that apply to all

CMT-based systems [36, 77, 79, 81, 82, 88]. This includes reducing

the verifier’s main bottleneck by ≈3× (§3.3), eliminating a log

factor from one of the verifier’s other computations by shifting

additional work to the prover, and other optimizations that result

in constant-factor improvements ([83, Appx. B.2]).

The second aspect of Giraffe is motivated by our search for

applicable regimes. In existing systems, protocol overhead limits

the maximum size of a computation that can be outsourced. Worse,

outsourcing really makes sense only if the computation is naturally

expressed as an AC; otherwise, the asymptotic savings do not apply

until program sizes are well beyond the aforementioned maximum.

While these systems differ in the particulars, their restrictions are

qualitatively similar—and there has been no fundamental progress

on the expressivity issue over the last six years. As a consequence, it

seems imperative to adapt to this situation. Two possible approaches

are to handle these constraints by outsourcing amenable pieces

of a given computation and to apply program transformations

to increase the range of suitable computations. These ideas have

of course appeared in the literature on compiling cryptographic

protocols [43, 45, 59, 87], but previous efforts in the context of

verifiable outsourcing have been very limited [37, 84].

We study techniques for each of these approaches, adapted to

this setting (§4). Giraffe employs slicing, which takes as input an ab-

stract cost model and a program, automatically identifies amenable

subregions of the program, and generates glue code to sew the out-

sourced pieces into the rest of the program. Slicing is a very general

technique that can work with all probabilistic proof implementa-

tions. Giraffe also uses squashing, which transforms sequential ACs

into parallel ACs and adjusts the verifier to link these computations;

this is relevant to CMT and T13, which require parallel ACs.

Our implementation of Giraffe (§5) applies the above transforma-

tions to programs written in a subset of C, producing one or more

ACs. Giraffe’s design template uses these ACs, along with several

physical parameters (hardware substrates, chip area, etc.), and auto-

matically generates concrete hardware designs for the prover and

verifier, built in SystemVerilog, that can be used for cycle-accurate

simulation or synthesized (i.e., compiled to a chip).

We evaluate using detailed simulation and modeling of these

generated hardware designs. Accounting for all costs (prover, pre-

computation, verifier), Giraffe saves compared to native execu-

tion across a wide range of computation sizes and hardware sub-

strates (§6.2). Giraffe breaks even on operating costs for N≈30 par-
allel sub-computations; this value is essentially independent of the

size of each sub-computation (§6.1). Compared to prior work in the

VA setting, Giraffe scales to 500× larger computation sizes, holding

all else constant (§8.1). A disadvantage of Giraffe is that its verifier is

costlier than Zebra’s, and thus Giraffe’s break-even point is higher

than Zebra’s. This is not because Zebra is fundamentally cheaper,

but rather because it assumes away precomputation and thus does

not have to pay for it. Furthermore, Giraffe’s program analysis

techniques expand applicability beyond Zebra; our experiments

demonstrate that slicing enables an image-matching application

that neither Zebra nor Giraffe could otherwise handle (§8.2).

Nevertheless, Giraffe has limitations (some of which reflect the

research area itself (§9)). Breaking even requires data-parallel com-

putations (to amortize precomputation), requires that the computa-

tion be naturally expressed as a layered AC, and requires a large gap

between the hardware technologies used for the verifier and prover

(which holds in some concrete settings; see [82, §1]). Moreover, the

absolute cost of verifiability is still very high. Finally, the program

transformation techniques have taken only a small first step.

Despite these limitations, we think that Giraffe has a substantial

claim to significance: it adopts the most stringent cost regime in

the verifiable outsourcing literature and (to our knowledge) is the

only system that can profitably outsource under this accounting.

Debts and contributions. Giraffe builds on the T13 protocol [77,

§7] and an optimization [78] (§2.2). It also generalizes a prior tech-

nique [1–3, 77, 82] (§3.2, “Algorithm”). Finally, Giraffe borrows from

Zebra [82], specifically: the setting (§2.3), how to evaluate in that

setting (§2.3, §6.2), a high-level design strategy (implicit in this



paper), a design for a module within the prover (footnote 5), and

the application to Curve25519 (§8.1). Giraffe’s contributions are:

• Algorithmic refinements of the T13 interactive proof, yielding

an asymptotically optimal prover (§3.1) and a ≈3× reduction in

the verifier’s main bottleneck (§3.3).

• Hardware design templates for prover and verifier chips (§3.2,

“Computing in hardware”; §3.3).We note that automatically gener-
ating a wide variety of optimized hardware designs is a significant
technical challenge; it is achieved here via the introduction of

the RWSR (and other hardware primitives), and the observation

that RWSRs service a wide range of possible designs.

• Techniques for compiling from a subset of C to ACs while auto-

matically optimizing for outsourcing based on cost models (§4).

• An implemented pipeline that takes as input a program in a

subset of C and physical parameters, and produces hardware

designs automatically (§5).

• Evaluation of the whole system (§6–§8) and a new application of

verifiable outsourcing: image matching using a pyramid (§8.2).

• The first explicit consideration of the stringent, tripartite cost

regime, and—for all of Giraffe’s limitations—being the first that

can at least sometimes outsource profitably in that regime.

2 BACKGROUND

2.1 Probabilistic proofs for verifiability

The description below is intended to give necessary terminology;

it does not cover all variations in the literature.

Systems for verifiable outsourcing enable the following. A verifier
V specifies a computation Ψ (often expressed in a high-level lan-

guage) to a prover P.V determines input x ; P returns y, which is

purportedly Ψ(x). A protocol betweenV and P allowsV to check

whether y = Ψ(x) but without executing Ψ. There are few (and

sometimes no) assumptions about the scope of P’s misbehavior.

These systems typically have a front-end and a back-end. The
interface between them is an arithmetic circuit (AC). In an AC, the

domain is a finite field F, usually Fp (the integers mod a prime p);
“gates” are field operations (add or multiply), and “wires” are field

elements. The front-end transforms Ψ from its original expression

to an AC, denoted C; this step often uses a compiler [19, 22, 31, 32,

37, 45, 66, 73, 75, 81, 84], though is sometimes done manually [18,

36, 77]. The back-end is a probabilistic proof protocol, targeting the

assertion “y = C(x)”; this step incorporates tools from complexity

theory and sometimes cryptography.

2.2 Starting point for Giraffe’s back-end: T13

Giraffe’s back-end builds on a line of interactive proofs [12, 49,

50, 58, 76]: GKR [49], as refined and implemented by CMT [36],

Allspice [81], Thaler [77], and Zebra [82]. Our description below

sometimes borrows from [81, 82].

In these works, the AC C must be layered: the gates are parti-
tioned, and there are wires only between adjacent partitions (lay-

ers). Giraffe’s specific base is T13 [77, §7], with an optimization [78].

T13 requires data parallelism: C must have N identical sub-circuit

copies, each with its own inputs and outputs (x and y now denote

the aggregate inputs and outputs). We call each copy a sub-AC. Each

sub-AC has d layers. For simplicity, we assume that every sub-AC

layer has the same width, G (this implies that |x | = |y | = N · G).
The properties of T13 are given below; probabilities are overV’s

random choices ([83, Appx. A] justifies these properties, by proof

and reference to the literature):

• Completeness. If y = C(x), and if P follows the protocol, then

Pr{V accepts} = 1.

• Soundness. If y , C(x), then Pr{V accepts} < ϵ , where ϵ =
(⌈log |y |⌉ + 6d log (G · N ))/|F|. This holds unconditionally (no

assumptions about P). Typically, |F| is astronomical, making this

error probability tiny.

• Verifier’s running time. V requires precomputation that is

proportional to executing one sub-AC:O(d ·G). Then, to validate
all inputs and outputs, V incurs cost O(d · log (N ·G) + |x | +
|y |) (which, under our “same-size-layer assumption”, is O(d ·
log (N ·G) + N ·G)). Notice that the total cost to verify C, O(d ·
G + d · logN + N ·G) , is less than the cost to execute C directly,

which is O(d ·G · N ).
• Prover’s running time. P’s running time isO(d ·G ·N · logG);
we improve this later (§3.1).

Details. Within a layer of C, each gate is labeled with a pair (n,д) ∈
{0, 1}bN ×{0, 1}bG , wherebN ≜ logN andbG ≜ logG . (We assume

for simplicity that N and G are powers of 2.) We also view labels

numerically, as elements in {0, . . . ,N −1}×{0, . . . ,G−1}. In either

case, n (a gate label’s upper bits) selects a sub-AC, and д (a gate

label’s lower bits) indexes a gate within the sub-AC.

Each layer i has an evaluator functionVi : {0, 1}bN ×{0, 1}bG → F
that maps a gate’s label to the output of that gate;

3
implicitly, Vi

depends on the input x . By convention, the layers are numbered in

reverse execution order. Thus, V0 refers to the output layer, and Vd
refers to the inputs. For example,V0(n, j1) is the correct j1th output

in sub-AC n; likewise, Vd (n, j2) is the j2th input in sub-AC n.
Notice thatV wants to be convinced that y, the purported out-

puts, matches the correct outputs, as given by V0. However,V can-

not check this directly: evaluating V0 would require re-executing

C. Instead, P combines all V0(·) values into a digest. Then, the pro-

tocol reduces this digest to another digest, this one (purportedly)

corresponding to all of the values V1(·). The protocol proceeds in
this fashion, layer by layer, untilV is left with a purported digest

of the input x , whichV can then check itself.

Instantiating the preceding sketch requires some machinery. A

key element is the sum-check protocol [58], which we will return to

later (§3.1). For now, let P : Fm → F be anm-variate polynomial. In

a sum-check invocation, P interactively establishes forV a claim

about the sum of the evaluations of P over the Boolean hypercube

{0, 1}m ; the number of protocol rounds ism.

Another key element is extensions. Technically, an extension
˜f

of a function f is a polynomial that is defined over a domain that

encloses the domain of f and equals f at all points where f is de-

fined. Informally, one can think of
˜f as encoding the function table

of f . In this paper, extensions will always be multilinear extensions:
the polynomial has degree at most one in each of its variables. We

notate multilinear extensions with tildes.

3
This definition of Vi transposes the domain relative to [77, §7].



Based on the earlier sketch, we are motivated to express Ṽi−1
in terms of Ṽi . To that end, we define several predicates. The func-

tions add(·) and mult(·) are wiring predicates; they have signatures

{0, 1}3bG → {0, 1}, and implicitly describe the structure of a sub-

AC. addi (д,h0,h1) returns 1 iff (a) within a sub-circuit, gate д at

layer i − 1 is an add gate and (b) the left and right inputs of д
are, respectively, h0 and h1 at layer i . multi is defined analogously.

Note that these predicates ignore the “top bits” (the n component)

because all sub-ACs are identical. We also define the equality predi-
cate eq : {0, 1}2bN → {0, 1} with eq(a,b) = 1 iff a equals b. Notice

that these predicates admit extensions:
˜

add, ˜
mult : F3bG → F and

ẽq : F2bN → F. (We give explicit expressions in [83, Appx. A].)

We can now express Ṽi−1 in terms of a polynomial Pq,i :

Pq,i (r0, r1, r ′) ≜ ẽq(q′, r ′)

·
[
˜

addi (q, r0, r1) ·
(
Ṽi (r ′, r0) + Ṽi (r ′, r1)

)
+ ˜
multi (q, r0, r1) · Ṽi (r ′, r0) · Ṽi (r ′, r1)

]
. (1)

Ṽi−1(q′,q) =
∑

h0,h1∈{0,1}bG

∑
n∈{0,1}bN

Pq,i (h0,h1,n). (2)

The signatures are Pq,i : F
2bG+bN → F and Ṽi−1, Ṽi : FbN ×FbG →

F. Equation (2) follows from an observation of [78] applied to a

claim in [77, §7]. For intuition, notice that (i) Pq,i is being summed

only at points where its variables are 0-1, and (ii) at these points, if

(q′,q) is a gate label (rather than an arbitrary value in FbN × FbG ),
then the extensions of the predicates take on 0-1 values and in

particular eliminate all summands except the one that contains the

inputs to the gate (q′,q).
An excerpt of the protocol appears in Figure 1; the remain-

der appears in [83, Appx. A]. It begins with V wanting to be

convinced that Ṽ0 (which is the extension of the correct C(x))
is the same polynomial as Ṽy (which denotes the extension of

the purported output y).V thus chooses a random point in both

polynomials’ domain, (q′
0
,q0), and wants to be convinced that

Ṽ0(q′
0
,q0) = Ṽy (q′

0
,q0) ≜ a0. Notice that (i) Ṽ0(q′

0
,q0) can be ex-

pressed as the sum over a Boolean hypercube of the polynomial

Pq0,1 (Equation (2)), and (ii) Pq0,1 itself is expressed in terms of Ṽ1
(Equation (1)). Using a sum-check invocation, the protocol exploits

these facts to reduce Ṽ0(q′
0
,q0) = a0 to a claim: Ṽ1(q′

1
,q1) = a1. This

continues layer by layer untilV obtains the claim: Ṽd (q′d ,qd ) = ad .
V checks that assertion directly.

T13 incorporates one sum-check invocation—each of which is

2bG + bN rounds—for each polynomial Pq0,1, . . . , Pqd−1,d .

2.3 Verifiable ASICs

Giraffe’s back-end works in the Verifiable ASICs (VA) setting [82].
Giraffe also borrows evaluation metrics and some design elements

from [82]; we summarize below.

Consider some principal (a government, fabless semiconductor

company, etc.) that wants high-assurance execution of a custom

chip (known as an ASIC) [82, §1,§2.1]. The ASIC must be manufac-

tured at a trustworthy foundry, for example one that is onshore.

However, for many principals, high-assurance manufacture means

an orders-of-magnitude sacrifice in price and performance, relative

1: function Verify(ArithCircuit c, input x , output y)

2: (q′
0
, q0)

R←− FlogN × FlogG
3: a0 ← Ṽy (q′

0
,q0) // Ṽy is the multilin. ext. of the output y

4: SendToProver(q′
0
,q0)

5: d ← c.depth

6:

7: for i = 1, . . . ,d do

8: // Reduce Ṽi−1(q′i−1,qi−1)
?

= ai−1 to Pq,i (r0, r1, r ′)
?

= e
9: (e, r ′, r0, r1) ← SumCheckV(i, ai−1)
10:

11: // Below, P describes a univariate polynomial H (t),
12: // of degree logG, claimed to be Ṽi (r ′, (r1 − r0) t + r0)
13: H ← Receive from P // see [83, Fig. 14, line 47]

14: v0 ← H (0)
15: v1 ← H (1)
16:

17: // Reduce Pq,i (r0, r1, r ′)
?

= e to two questions:

18: // Ṽi (r ′, r0)
?

= v0 and Ṽi (r ′, r1)
?

= v1
19:

20: if e , ẽq(q′i−1, r
′) ·

[
˜

addi (qi−1, r0, r1) · (v0 +v1)
21: + ˜

multi (qi−1, r0, r1) · v0 · v1
]
then

22: return reject

23:

24: // Reduce the two v0,v1 questions to Ṽi (q′i , qi )
?

= ai

25: τi
R←− F

26: ai ← H (τi )
27: (q′i , qi ) ← (r

′, (r1 − r0) · τi + r0)
28:

29: SendToProver(τi )

30:

31: // Ṽd (·) is the multilinear extension of the input x
32: if Ṽd (q′d , qd ) = ad then

33: return accept

34: return reject

Figure 1: V’s side of T13 [77, §7], with an optimization [78]. V’s

side of the sum-check protocol and P’s work are described in [83,

Appx. A, Figs. 11 and 14].

to an advanced but untrusted foundry. This owes to the econom-

ics and scaling behavior of semiconductor technology. In the VA

setup, one manufactures a prover in a state-of-the-art but untrusted

foundry (we refer to the manufacturing process and hardware sub-

strate as the untrusted technology node) and a verifier in a trusted

foundry (the trusted technology node). A trusted integrator combines

the two ASICs. This arrangement makes sense if their combined

cost is cheaper than the native baseline: an ASIC manufactured in

the trusted technology node.

VA is instantiated in a system called Zebra, which implements

an optimized variant of CMT [36, 78, 81]. Zebra is evaluated with

two metrics [82, §2.3]. The first is energy (E, in joules/run), which

is a proxy for operating cost. Energy tracks asymptotic (serial) run-

ning time: it captures the number of operations and the efficiency

of their implementation. The second is area/throughput (A/T , in



mm
2
/(ops/sec)). Area is a proxy for manufacturing cost; normaliz-

ing by throughput reflects cost at a given performance level.

Furthermore, Zebra is designed to respect two physical con-

straints. The first is a maximum area, to reflect manufacturability

(larger chips have more frequent defects and hence lower yields).

The second is a maximum power dissipation, to limit heat. The first

constraint limits A (and thus the hardware design space) and the

second limits the product of energy and throughput, E ·T .
Zebra’s prover architecture consists of a collection of pipelined

sub-provers, each one doing the execution and proving work for

one layer of an AC [82, §3.1–3.2]. Within a sub-prover, there is

dedicated hardware for each AC gate in a layer. Zebra’s verifier

is also organized into layers [82, §3.5]. Giraffe incorporates this

overall picture, including some integration details [82, §4]. However,

Giraffe requires a different architecture, as we explain next.

3 PROTOCOL AND HARDWARE DESIGN

Three goals drive Giraffe’s hardware back-end:

G1: Scale to largeN without sacrificingG. V’s precomputation

scales with the size of one sub-AC (§2.2); it needs to amortize this

over multiple sub-AC copies, N . Further, we have an interest in

handling large computations (sub-ACs and ACs). This implies that

Giraffe’s design must reuse underlying hardware modules: for large

N and sub-ACwidthG , requiring a number of modules proportional

to N ·G is too costly. Zebra’s design is not suitable, since it requires

logic proportional to the amount of work in an AC layer [82, Fig. 5].

G2: Be efficient. In this context, good efficiency implies lower

cross-over points on the metrics of merit (§2.3). This in turn means

custom hardware, which is expected in ASIC designs but, for us, is

in tension with the next goal.

G3: Produce designs automatically. Ideally, the goal is to pro-

duce a compiler that takes as input a high-level description of the

computation along with physical parameters (technology nodes,

chip area, etc.; §2.3) and produces synthesizable hardware (§5). This

goes beyond convenience: a goal of this work is to understand

where, in terms of computations (G, N , etc.) and physical parame-

ters (technology nodes, chip area, etc.), an abstract algorithm (T13)

applies. To do this, we need to be able to optimize hardware for

both the computations and the physical parameters, which poses

a significant challenge: for different computations and physical

parameters, different hardware designs make sense. For example, if

N andG are small, iteratively reusing hardware might not consume

all available chip area; one would prefer to spend this area to gain

parallelism and thus increase throughput.

Giraffe answers this challenge by developing a design template
that takes as input a description of the desired computation and a

set of physical parameters, and produces as output an optimized

hardware design. The template’s “primitives” are custom hardware

structures that enable efficient reuse (serial execution) when there

are few of them, but can be automatically parallelized. To use the

design template, the designer simply specifies its inputs; design

generation is fully automatic.

In the rest of the section, we modify T13 to obtain an asymptotic

improvement in P’s work (§3.1); this contributes to Giraffe’s scala-

bility, and is of independent interest. We also describe aspects of

the hardware design template for P (§3.2). Finally, we do the same

forV , and also describe optimizations that help offset the cost of

precomputation (§3.3). Compared to prior work, these optimiza-

tions reduce V’s primary cost by nearly 3× and eliminate a log

factor from one ofV’s secondary costs; sinceV’s costs dominate,

these optimizations have a direct effect on end-to-end performance.

Notation. [a,b] denotes {a,a + 1, . . . ,b}. For a vector u, u[ℓ] de-
notes the ℓth entry, indexed from 1;u[ℓ1..ℓ2] denotes the sub-vector
between indices ℓ1 and ℓ2, inclusive. Arrays are accessed similarly,

but are indexed from 0. Vectors are indicated with lower-case let-

ters, arrays with upper-case. Define χ0, χ1 : F→ F as χ1(w) = w ,

χ0(w) = 1−w . Similarly, if s ∈ {0, 1}γ andu ∈ Fγ , χs (u) ≜
∏γ

ℓ=1
χs[ℓ](u[ℓ]).

Notice that when u comprises 0-1 values, χs (u) returns 1 if u = s
and 0 otherwise.

3.1 Making P time-optimal

This section describes an algorithmic refinement that, by restructur-

ing the application of the sum-check protocol, slashes P’s overhead.
Specifically, P’s running time drops from O(d · N · G · logG) to
O(d ·(N ·G+G ·logG)). IfN ≫ logG , P’s new running time is linear

in the number of total gates in the AC—that is, the prover has no

asymptotic overhead! Prior work [77, §5] achieved time-optimality

in special cases (if the AC’s structure met an ad hoc and restrictive

condition); the present refinement applies in general, whenever

there are repeated sub-ACs.

TheO(logG) reduction translates to concrete double digit factors
([83, Appx. D]). For example, software provers in this research

area [36, 77, 79, 81, 88] typically run with G at least 2
18
; thus, a

software T13 prover’s running time improves by at least 18×. For a
hardware prover, the A/T metric improves by approximately logG ,
as computation is the main source of area cost ([83, Appx. C], [82,

Fig. 6 and 7]). The gain is less pronounced for the E metric: storage

and communication are large energy consumers but are unaffected

by the refinement ([83, Appx. C]).

Before describing the refinement, we give some background

on sum-check protocols; for details, see [8, §8.3; 49, §2.5; 58; 76].

Consider a polynomial P inm variables and a claim that∑
(t1, ...,tm )∈{0,1}m P(t1, . . . , tm ) = L. In round j of the sum-check

protocol, P must describe toV a degree-α univariate polynomial

Fj (t∗), where α depends on P and j:

Fj (t∗) =
∑

(tj+1, ...,tm )∈{0,1}m−j
P(ρ1, . . . , ρ j−1, t∗, tj+1, . . . , tm ).

To discharge this obligation, P computes evaluations Fj (k), for α+1
different values of k . Then, at the end of round j,V sends ρ j , for
use in the next round. Notice the abstract pattern: in every round j ,
P computes α+1 sums over a Boolean hypercube of dimensionm−j .
The number of hypercube vertices shrinks as j increases: variables
that were previously summed become set, or bound, to a ρ j .

Let us map this picture to our context. There is one sum-check

run for each layer i ∈ [1, d]; P is the per-layer polynomial Pq,i
defined in Equation (1);m = 2bG + bN ; the ρ j are aliases for the
components of r0, r1, r

′
; likewise, the tj alias the components of

h0,h1,n. Also, α is 2 or 3; this follows from Equation (1), recalling

that each multilinear extension (ẽq,
˜

add, etc.) by definition has

degree one in its variables.



There are now two interrelated questions: In what order should

the variables be bound? How does P compute the α+1 sums per

round? In T13, the order is h0,h1,n, as in Equation (2). This enables

P to compute the needed sums in timeO(N ·G · logG) per-layer [77,
§7]. P’s total running time is thus O(d · N ·G · logG).

Giraffe’s refinement changes the order in which variables are

bound, and exploits that order to simplify P’s work. Giraffe’s order
is n,h0,h1. From here on, we write Pq,i (h0,h1,n) as P∗q,i (n,h0,h1);
Pq,i ≡ P∗q,i except for argument order. Below, we describe the

structure of P’s per-round obligations, fixing a layer i . This serves
as background for the hardware design (§3.2) and as a sketch of the

argument for the claimed running time. A proof, theorem statement,

and pseudocode are in [83, Appx. B].

The rounds decompose into two phases. Phase 1 is rounds j ∈
[1, bN ]. Observe that in this phase, P’s sums seemingly have the

form: Fj (k) =
∑
n[j+1..bN ]

∑
h0,h1 P

∗
q,i (r

′[1..j−1], k, n[j+1..bN ], h0, h1),
where the outer sum is over all n[j+1..bN ] ∈ {0, 1}bN −j . However,
many (h0,h1) combinations cause P∗q,i (. . . ,h0, h1) to evaluate to

0.
4
As a result, there is a more convenient form for the inner sum.

Define S
all,i ⊆ {0, 1}3bG as all layer-(i−1) gates with their layer-i

neighbors, and OPд as “+” if д is an addition gate and “·” if д is a

multiplication gate. Then Fj (k) can be written as:

Fj (k) =
∑

n[j+1..bN ]

∑
(д,дL,дR )∈Sall,i

termP1j,n,k · termP2д

· OPд(termLj,n,дL,k , termRj,n,дR,k ), (3)

where termP1 depends on j,n,k ; termP2 depends on д, and so forth;
these also depend on values of ρ from prior rounds and prior layers.

Section 3.2 makes some of these terms explicit ([83, Appx. B] fully

specifies).

Phase 2 is the remaining 2bG rounds. Here, there is only a sin-

gle sum, over increasingly bound components of h0,h1. As with
phase 1, it is convenient to express the sum “gatewise”. Specifi-

cally, for rounds j ∈ [bN + 1, bN + 2bG ], one can write Fj (k) =∑
(д,дL,дR )∈Sall,i termPj,д,k · OPд(termLj,дL,k , termRj,дR,k ).
In both phases, P can compute each sum over S

all,i with O(G)
work. Thus, per-layer, the running time for phase 1 isO(G · N /2)+
O(G ·N /4)+ · · ·+O(G) = O(G ·N ), and for phase 2 it isO(G · logG),
yielding the earlier claim of O(d · (N ·G +G · logG)).

3.2 Design of P
Consider P’s obligations in layer i , summarized at the end of the

previous section. Notice that P’s phase-2 obligations are indepen-
dent of N . This is a consequence of Section 3.1; there is no such

independence in the original variable order [77, §7]. In the current

variable order, the bulk of P’s work occurs in phase 1, and so our

description below focuses on phase 1.
5

Within phase 1, the heaviest work item is computing termL, termR

in each round. The rest of this section describes the obligation,

the algorithm by which P discharges it, and the hardware design

that computes the algorithm. P’s other obligations (computing

4
In particular, if there is no gate at layer i − 1 whose left and right inputs are h0 and
h1 , then P ∗q,i (. . . , h0, h1) = 0. This is a consequence of Equation (1) in Section 2.2,

and [83, Appx. A, Eqns. (8) and (9)].

5P’s phase-2 obligations are almost isomorphic to those of the Zebra prover, so Giraffe

implements phase 2 with a design similar to Zebra’s.

termP1j,n,k , etc.) and algorithms for discharging them are described

in [83, Appx. B].

Algorithm for computing termL,termR. Fixing a layer i , in
round j, termL and termR are:

termLj,n,дL,k ≜ Ṽi
(
r ′[1..j − 1], k, n[j+1..bN ], дL

)
termRj,n,дR,k ≜ Ṽi

(
r ′[1..j − 1], k, n[j+1..bN ], дR

)
(4)

Notice that for each k , Equation (4) refers toG ·N /2j values of Ṽ (·).
Figure 2 depicts an algorithm, EvalTermLR, that computes these

values in time O(G · N /2j ) for round j, by adapting a prior tech-

nique [77, §5.4; 82, §3.3] (see also [1–3]). EvalTermLR is oriented

around a recurrence. Let h be a bottom-bit gate label at layer i .

Then for all σ ∈ {0, 1}bN −j , the following holds (derived in [83,

Appx. B.1]):

Ṽi
(
r ′[1..j],σ ,h

)
=
(
1 − r ′[j]

)
· Ṽi

(
r ′[1..j−1], 0,σ ,h

)
+ r ′[j] · Ṽi

(
r ′[1..j−1], 1,σ ,h

)
. (5)

EvalTermLR relies on a two-dimensional arrayW , and maintains

the following invariant, justified shortly: at the beginning of every
round j,W [h][σ ] stores Ṽi (r ′[1..j − 1],σ ,h), for h ∈ [0, G−1] and
σ ∈ [0, N /2j−1−1].

Given this invariant, P obtains all of the termL, termR values

fromW (in line 7), as follows. We focus on termL. Write n[j+1..bN ]
as nj+1. Then, for k = {0, 1}, termLj,n,дL,k isW [дL][k + 2 · nj+1];
this follows from Equation (4) plus the invariant. Meanwhile, for

k = −1, termLj,n,дL,−1 = 2 · termLj,n,дL,0 + (−1) · termLj,n,дL,1.

This follows from Equations (4) and (5); k = 2 is similar. termR is

the same, except дR replaces дL . The total time cost is O(G · N /2j )
in round j: Collapse performs (N /2j−1)/2 iterations, and there are

G calls to Collapse.

The invariant holds for j = 1 because Ṽi (r ′[1..j − 1],σ ,h) =
Ṽi (σ ,h) = Vi (σ ,h), which initializes W [h][σ ] (line 3); the latter

equality holds because functions equal their extensions when eval-

uated on bit vectors. Now, at the end of j , line 16 applies Equation (5)
to all σ ∈ [0, N /2j−1], thereby settingW [h][σ ] to Ṽi (r [1..j],σ ,h).
This is the required invariant at the start of round j + 1.

ComputingEvalTermLR inhardware. To produce a design tem-

plate for P consistent with Giraffe’s goals, we must answer three

questions. First, what breakdown of P’s work makes sense: which

portions are parallelized, and what hardware is iteratively reused

in a round (G1)? Second, for iterative parts of the computation,

how does P load operands and store results (G2)? Finally, how can

this design be adapted to a range of computations and physical

parameters (G3)?

A convenient top-level breakdown is already implied by the

prior formulation ofW : since Collapse operates on eachW [h] array
independently, it is natural to parallelize work across these arrays.

Giraffe allocates separate storage structures and logic implementing

Collapse for eachW [h] array (and, of course, reuses this hardware

from round to round for each array). We therefore focus on the

design of one of these modules.

To answer the second question, we first consider two straw men.

The first is to imitate a software design: instantiate one module for

field arithmetic and a RAM to store theW [h] array, then iterate

through the σ loop sequentially, loading needed values, computing



1: // initializeW : array of G arrays of N values

2: for h = 0, . . . ,G − 1 and σ = 0, . . . ,N − 1 do
3: W [h][σ ] ← Vi (σ ,h)
4:

5: function EvalTermLR(Array-of-arraysW )

6: for j = 1, . . . ,bN do

7: look up all termL, termR inW (see text)

8:

9: r ′[j] ← Receive fromV // see [83, Fig. 15, line 19]

10:

11: for h = 0, . . . ,G − 1 do
12: Collapse(W [h], N /2j−1, r ′[j])
13:

14: function Collapse(Array A, size len, r ∈ F)
15: for σ = 0, . . . , len/2 − 1 do
16: A[σ ] ← (1 − r ) · A[2σ ] + r · A[2σ + 1]

Figure 2: EvalTermLR: a dynamic programming algorithm for com-

puting termL, termR for all rounds j . EvalTermLR adapts a prior tech-

nique [77, §5.4; 82, §3.3] [1–3].

over them, and storing the results. In practice, however, ASIC de-

signers often prefer to avoid building RAM circuits. This is because

generality has a price (e.g., address decoding imposes overheads in

area and energy), RAM often creates a throughput bottleneck, and

RAM is a frequent cause of manufacturability and reliability issues.

(Of course, RAMs are a dominant cost in many modern ASICs, but

that doesn’t mean that designers prefer RAM: often there is sim-

ply no alternative. For example, an unpredictable memory access

pattern often necessitates RAM.)

The second straw man is essentially the opposite: instantiate

a bank of registers to hold values inW [h], along with two field

multipliers and one adder per pair of adjacent registers, then create

a wiring pattern such that the adder for registers 2σ and 2σ + 1

connects to the input of register σ . This arrangement computes

the entire σ loop in parallel. This is similar to prior work [82, §3.3],

but in Giraffe O(NG) multipliers is extremely expensive when N
and G are large. It is also inflexible: in this design, the number of

multipliers is fixed after selecting N and G.
Giraffe’s solution is a hybrid of these approaches; we first explain

a serial version, then describe how to parallelize. Giraffe instantiates

two multipliers and one adder that together compute one step of the

σ loop. The remaining challenge is to get operands to themultipliers

and store the result from the adder. Giraffe does so using a custom

hardware structure that is tailored to the access pattern of the

W [h] arrays: for eachW [h], read two values, write one value, read

two values, and so on. Giraffe uses RWSRs, (“random-write shift

registers”), one for eachW [h]. Figure 3 specifies the RWSR and

shows its use for Collapse.

Compared to the first straw man, Giraffe’s design has several

advantages. First, an RWSR only allows two locations to be read;

compared to a general-purpose RAM, this eliminates the need for

most logic to handle read operations. Second, Giraffe’s RWSR need

not be “random-write”: its

s← operator (Fig. 3, line 1) can be special-

ized to the address sequence of the RWSRCollapse algorithm (Fig. 3,

line 9), making its write logic far simpler than a RAM’s, too. This

RWSR specification

• Power-of-two storage locations, K

• Only locations 0 and 1 can be read

• The only write operation is

s←. It is specified below. Informally,

it updates one location, and causes all the “even” locations to

behave like a distinct shift register (location 6 shifts to 4, etc.),

and likewise with all of the “odd” locations.

1: operator RWSR[a] s← v is

2: // Note that all updates happen simultaneously

3: RWSR[a] ← v
4: for ℓ < K , ℓ , a do

5: RWSR[ℓ] ← RWSR[ℓ + 2]
6:

7: function RWSRCollapse(RWSR R, size len, r ∈ F)
8: for σ = 0, . . . , len/2 − 1 do
9: R[len − 2 − σ ] s← (1 − r ) · R[0] + r · R[1]

Figure 3: Specification of a new hardware primitive, RWSR, used to

implement Collapse (Fig. 2) in hardware.

means that an RWSR can be implemented in almost the same way

as a standard shift register, and at comparable cost. Alternatively,

an RWSR can be implemented like a RAM, using the same data

storage circuits but dramatically simplified addressing logic. The

latter approach might reduce energy consumption compared to

implementing like a standard shift register, and it would still cost

less than using a general-purpose RAM; but it would potentially

re-introduce the above-mentioned manufacturaility and reliability

concerns associated with RAM circuits.

The remaining question is how this design can be efficiently and

automatically parallelized. Notice that the loop over σ is serialized

(because RWSRs allow only one write at a time); but what if the de-

signer allocates enough chip area to accommodate four multipliers

forW [h] instead of two? In other words, how can Giraffe’s design

template automatically improve RWSRCollapse’s throughput by

using more chip area?

To demonstrate the approach, we refer to the pseudocode of

Figure 2. First, split eachW [h] array into two arrays,W 1[h] and
W 2[h]. In place of the Collapse invocation (line 12), run two parallel
invocations onW 1[h] andW 2[h], each of half the length. Notice

that each array has increasing “empty” space as the rounds go on.

In round j, the “live values” are the first N /2j elements in each of

W 1[h] andW 2[h]; regardW [h] as their concatenation.
To see why this gives the correct result, notice that each Collapse

invocation combines neighboring values of its input array. We can

thus regard the values ofW [h] as the leaves of a binary tree, and

Collapse as reducing the height of the tree by one, combining leaves

into their parents. In this view,W 1[h] andW 2[h] represent the left
and right subtrees corresponding toW [h]. As a result, in round j =
bN ,W 1[h] andW 2[h] each have one value; to obtain the final value

of the Collapse operation, compute (1 − r ) ·W 1[h][0] + r ·W 2[h][0].
To implement this picture in hardware, Giraffe instantiates two

RWSRs, each of half the size. For even more parallelism, observe

that each RWSR corresponds to a subtree of the full computation,

and thus its work can be recursively split into two even smaller



RWSRs, each handling a correspondingly smaller subtree. Because

of this structure, different choices of parallelism do not require the

designer to do any additional design work (§5).

3.3 Scaling and optimizingV
In this section, we explain howV meets the starting design goals of

scalability, efficiency, and automation. We do so by walking through

three main costs forV , and how Giraffe handles them. Some of the

optimizations apply to any CMT-based back-end [36, 77, 79, 81, 82,

88].

Multilinear extensions of I/O. V’s principal bottleneck is com-

puting themultilinear extension of its input x and outputy (Figure 1,

lines 3 and 32). Recall (§2.2) that |x | = |y | = N ·G;V’s computation

has at least this cost. When N andG are large, this is expensive and

must be broken into parallel and serial portions. We show below

that this work has a similar form to P’s (termL, termR; §3.2).

Consider the input x and Ṽd (y and Ṽy are similar). V must

compute Ṽd (q′d ,qd ). For σ ∈ [0, N ·G − 1], Ṽd (σ ) = Vd (σ ), the σ th
component of the input (§2.2). For σ ∈ {0, 1}bN +bG−ℓ , we have

Ṽd (r [1..ℓ],σ ) = (1 − r [ℓ]) · Ṽd (r [1..ℓ−1], 0,σ )
+ r [ℓ] · Ṽd (r [1..ℓ−1], 1,σ ) . (6)

This form is very close to Equation (5) (its derivation is similar

to [83, Appx. B.1]). It follows thatV can use P’s EvalTermLR to

evaluate Ṽd (q′d ,qd ):V initializes an arrayA, settingA[σ ] to the σ th
input value, for σ ∈ [0, N ·G − 1] (cf. line 3, Fig. 2).V then invokes

the algorithm MultiCollapse shown in Figure 4 on A, setting r to
(q′d ,qd ). In total, MultiCollapse costs 2 · N ·G − 2 multiplications.

To see how, notice that the initial size of A is N · G, so the first

Collapse invocation costs N ·G multiplications; in each successive

invocation, the cost is reduced by half. Summing gives the claimed

cost.

MultiCollapse also applies to related systems, improving their

constant factors; this is significant because in practice computing

themultilinear extensions of x andy dominatesV’s costs. Allspice’s

approach to this computation has leading constant 4 [81, §5.1].

Zebra [82] reduces the constant to 3 using a hand-tuned hardware

structure; this does not meet Giraffe’s goal of producing designs

automatically. MultiCollapse reduces this constant to 2. We now

show how to reduce the constant to 1, leavingV with a 4

√
N ·G

additive overhead. For the smallest problem sizes on which Giraffe

breaks even (§6–8) this additive overhead is less than 25%; on large

computations it is negligible.

Notice that MultiCollapse describes a binary computation tree

of depth btot = bN + bG whose leaves are the inputs and whose

root is the result Ṽd (q′d ,qd ). Each node in this tree corresponds

to a single step of Collapse, namely two multiplications and one

addition (Fig. 2, line 16). The btot/2 layers of the computation tree

closest to the leaves comprise 2
btot/2 =

√
N ·G subtrees, each of

which computes the dot product between 2
btot/2

input values and

an array B[γ ] = χγ (r [1..btot/2]) ,γ ∈ {0, 1}btot/2. This can be seen by

expanding the recurrence of Equation (6) for btot/2 steps.
The key observation is that MultiCollapse repeatedly recomputes

the values of the array B when computing these dot products. This

means that each subtree costs 2 · 2btot/2 − 2 multiplications, whereas

1: // MultiCollapse costs 2 |A| − 2 multiplications; see text

2: functionMultiCollapse(Array A, r ∈ Flog |A |)
3: loglen← log |A|
4: for j = 1, . . . , loglen do

5: Collapse(A, 2loglen+1−j , r [j]) // see Figure 2, line 14

6: return A[0]

7:

8: function DotPMultiCollapse(Array A, r ∈ Flog |A |)
9: loglen← log |A|
10:

11: // B is computed using the algorithm of [83, Fig. 13, Appx. A];

12: // this costs 2 · 2btot/2 − 2 = 2

√
N ·G − 2 multiplications.

13: B ← χγ (r [1..btot/2]) ,γ ∈ {0, 1}btot/2
14:

15: // compute 2
btot/2

dot products of length 2
btot/2

;

16: // this costs N ·G multiplications

17: for j = 0, . . . , 2
btot/2 − 1 do

18: A′[j] ← ⟨B,A[j · 2btot/2..(j+1) · 2btot/2]⟩ // dot product

19:

20: // MultiCollapse on A′ costs 2 · 2btot/2 − 2 multiplications

21: return MultiCollapse(A′, 2btot/2, r [btot/2 + 1..btot])

Figure 4: MultiCollapse and DotPMultiCollapse evaluate the multi-

linear extensions of x and y with lower overhead than prior work.

the dot product costs just 2
btot/2

multiplications once B has been

computed. DotPMultiCollapse (Fig. 4) improves on MultiCollapse’s

running time by precomputing B once and amortizing that cost over

all 2
btot/2

subtrees. To see that two algorithms are equivalent, notice

that the btot/2 layers of the MultiCollapse computation tree closest to

the leaves (which correspond to the first btot/2 Collapse invocations)
compute the same 2

btot/2
dot products that DotPMultiCollapse stores

inA′ (for the reasons described above), and that the two algorithms

proceed identically thereafter. But DotPMultiCollapse costs just

N ·G + 4 · 2btot/2 − 4 = N ·G + 4
√
N ·G − 4 multiplications in total

(see comments in Fig. 4).
6

DotPMultiCollapse’s hardware design uses primitives from other

parts ofV and P. MultiCollapse reuses the same design that P uses

for EvalTermLR. The hardware for computing the array B shares

its design withV’s precomputation hardware (“Precomputation,”

below; [83, Appx. B.2]). The dot product computations are inde-

pendent of one another and thus easily parallelized using separate

multiply-and-accumulate units, which are standard.

Polynomial evaluation. The protocol requires V to evaluate

polynomials (specified by P) at randomly chosen points (specified

byV). This occurs after the sum-check invocation (Fig. 1, line 26)

and in each round of the sum-check protocol ([83, Appx. B]; [83,

Fig. 11, line 21]). Our description here focuses on the former: the

degree-bG polynomial H , evaluated at τ . Giraffe applies the same

6
We note that DotPMultiCollapse is a streaming algorithm that uses auxiliary space (for

A′ and B) totalling 2 ·2btot/2 . With slight modification, theMultiCollapse algorithm can

also be made streaming, in which case it uses log (N ·G) auxiliary space [80]. The lat-

ter modification also applies to the MultiCollapse invocation inside DotPMultiCollapse,

which improves DotPMultiCollapse’s space cost to 2
btot/2 + btot/2.



technique to the latter, namely computing F (r j ), but those polyno-
mials are degree-2 or 3, and thus the savings are less pronounced.

In the baseline approach [36, 77, 81, 82] to computing H (τ ),
P sends evaluations (meaning H (0), . . . ,H (bG )), and V uses La-

grange interpolation. (Lagrange interpolation expresses H (τ ) as∑bG
j=0 H (j) · fj (τ ); the { fj (·)} are basis polynomials.) But interpola-

tion costs O(b2G ) [55] for each polynomial (one per layer), making

it O(d log 2G) overall. Prior work [81, 82] cut this to O(d logG), by
precomputing { fj (τ )}, and not charging for that.

Giraffe observes that the protocol works the same if P describes

H in terms of its coefficients; this is because coefficients and evalua-

tions are informationally equivalent. Thus, in Giraffe, P recovers

the coefficients by interpolating the evaluations ofH , incurring cost

O(d log 2G).V uses the coefficients to evaluate H (τ ) via Horner’s
rule [55]. The cost to V is now O(bG ) per layer, or O(d logG) in
total, without relying on precomputation.

Summarizing, V shifts its burden to P, and in return saves a

factor logG. This refinement is sensible if the same operation at P
is substantially cheaper (by at least a logG factor) than atV . This

easily holds in the VA context. But it also holds in other contexts in

which one would use a CMT-based back-end: if cycles at P were not

substantially cheaper than atV , the latter would not be outsourcing

to the former in the first place.

Precomputation. V must compute P∗q,i (r
′, r0, r1, ), given claimed

Ṽi (r ′, r0) and Ṽi (r ′, r1): Figure 1, lines 20–21. The main costs are

computing
˜

addi (q, r0, r1), ˜
multi (q, r0, r1), and ẽq(q′, r ′). This costs

O(G) per layer [81], and hence O(d · G) overall. ([83, Appx. A]
describes the approach; [83, Appx. B.2] briefly discusses the hard-

ware design.) This is the “precomputation” in our context, and

what was not charged in prior work in the VA setting [82, §4]. We

note that this is not precomputation per se—it’s done alongside the

rest of the protocol—but we retain the vocabulary because of the

cost profile: the work is proportional to executing one sub-AC, is

input-independent, and is incurred once per sum-check invocation,

thereby amortizing over all N sub-ACs.

4 FRONT-END DESIGN

Giraffe’s front-end compiles a C program into one or more pieces,

each of which can be outsourced using the back-end machinery.

The front-end incorporates two program transformation techniques

that broaden the scope of computations amenable to outsourcing:

• Slicing breaks up computations that are too large to be outsourced

as a whole or contain parts that cannot be profitably outsourced.

• Squashing rearranges repeated, serial computations like loops to

produce data-parallel computations.

While squashing makes some sequential computations amenable to

execution in Giraffe’s data-parallel setting (§2.2, §3.1), slicing does

not yield data-parallel ACs; thus, outsourcing a sliced computation

requires executing multiple copies of the computation in parallel.

Slicing. One approach to handling large outsourced computations

is to break the computation into smaller pieces and then to either

outsource each piece or to execute it locally at the verifier.

This approach works as follows: a compiler breaks an input

program into slices and decides, for each slice, whether to outsource

or to execute locally (we describe this process below). The compiler

converts each slice to be outsourced into an AC whose inputs are

the program state prior to executing the slice and whose outputs are

the program state after execution. To execute a sliced computation,

the verifier runs glue code that passes inputs and outputs between

slices, executes non-outsourced slices, and orchestrates the back-

end machinery. We call this glue code the computation’s manifest.
Giraffe’s slicing algorithm takes one parameter, a cost model for

the target back-end. The algorithm’s input is a C program with the

following restrictions (commonly imposed by the most efficient

front-ends [37, 66, 84, 85]): loop bounds are statically computable,

no recursive functions, and no function pointers.

The algorithm first inlines all function calls. It then considers

candidate slices comprising consecutive subsequences of top-level

program statements. The algorithm transforms each candidate into

an AC and uses the back-end cost model to determine the cost to

outsource. Then, using a greedy heuristic, the algorithm chooses

for outsourcing a set of non-overlapping slices, aiming to maximize

savings. Finally, the algorithm handles parts of the program not

in any of the outsourced slices: it adds atomic statements (e.g.,

assignments) to the manifest for local execution, and recursively

invokes itself on non-atomic statements (e.g., the branches of if-else

statements) to identify more outsourcing opportunities.

Giraffe assumes that the same back-end is used for all sliced sub-

computations, but this approach generalizes to considering multiple

back-ends simultaneously [45, 81].

Squashing. Giraffe’s second technique, squashing, turns a deep

but narrow computation (for example, a loop) into a data-parallel

one by laying identical chunks of the computation (e.g., iterations of

a loop) side by side.
7
The result is a squashed AC. The intermediate

values at the output of each chunk in the original computation

become additional inputs and outputs of the squashed AC. P com-

municates these toV , which uses them to construct the input and

output vectors for the squashed AC. This technique also generalizes

to the case of code “between” the chunks.

Giraffe’s squashing transformation takes C code as input and ap-

plies a simple heuristic: the analysis assumes that chunks start and

end at loop boundaries and comprise one or more loop iterations.
8

Consider a loop with I dependent iterations of a computation F ,
where F corresponds to an AC of depth d and uniform widthG . The
squasher chooses N such that each chunk contains I/N unrolled it-

erations, and generates a sub-AC of widthG and depth d ′ = I · d/N ,

subject to a supplied cost model.

Putting it together. Giraffe’s front-end compiles C programs by

combining slicing and squashing. In particular, Giraffe’s front-end

applies the slicing algorithm as described above except that, when

estimating the cost of candidate slices, the front-end also tries to

apply the squashing transformation. If a candidate slice can be

squashed, the slicer uses the squashed version of the slice instead.

7
For some back-ends the chunks need not be identical. All CMT-derived back-ends [36,

81, 82] (including T13) have lower costs when working over shallow and wide ACs (vs.

narrow but deep ones), so squashing is useful even outside T13’s data-parallel regime.

8
This heuristic suffices in many cases because loops naturally express repeated subcom-

putations; more sophisticated analyses exist, e.g., automatic parallelization [28, 29, 33].



5 IMPLEMENTATION

Front-end. The front-end produces an executablemanifest in Python

plus a high-level AC description for each outsourced slice (these

are similar to the one used by Allspice [81] and Zebra). Outsourced

slices in the manifest are executed using the simulation framework

(below). The front-end comprises about 6100 lines of Scala and 300

lines of miscellaneous glue.

Back-end. Giraffe’s back-end has two components. The first is

a compiler that takes high-level AC descriptions from the front-

end along with technology node specifications, chooses P’s and
V’s hardware parallelism (§3.2; [83, Fig. 16, Appx. C]) to optimize

throughput and chip area (§6.2), and automatically produces P and

V designs in fully synthesizable SystemVerilog, The second is a

cycle-accurate simulation framework built on Icarus Verilog [86].

The back-end comprises 14 600 lines of SystemVerilog, 6800 lines

of C/C++, 3300 lines of Python, and 600 lines of miscellaneous glue.

The SystemVerilog and C/C++ borrow primitives from Zebra [4].

6 BACK-END EVALUATION

We evaluate Giraffe’s back-end by answering:

(1) When does Giraffe beat “native” (§2.3)?

(2) What is the largest computation Giraffe supports?

(3) How does Giraffe’s performance vary with computation and

physical parameters?

In [83, Appx. D] we also measure the effect of Giraffe’s protocol

improvements (§3.1). In sum, they reduce P’s cost by a logG factor.

Throughout the evaluation we assume that Giraffe is applied

to computations most efficiently expressed as a sequence of field

operations; we discuss this applicability limitation in Section 9.

6.1 Cross-over and scaling

Method. We consider a generic computation in the form of an

arithmetic circuit C with depth d , sub-AC width G, number of

parallel copiesN , and fraction of multipliers δ . The baseline is direct
evaluation of C on the same technology node asV . To measure the

energy cost for the baseline, we sum the total cost of field operations

plus the energy associated with receiving inputs and transmitting

outputs of the computation.

For Giraffe’s energy costs, we use a combination of simulation

and modeling. The simulations are cycle-accurate Verilog simu-

lations of Giraffe’s execution. From these simulations we extract

a model for energy costs, parameterized by technology node
9
(a

simplified model is given in [83, Fig. 16, Appx. C]), and we spot

check with additional simulations to check this model. Practical

considerations demand this approach: simulating Giraffe over a

broad range of parameters would be prohibitively time consuming.

We account for all costs for bothV and P: protocol execution,
V-P communication, storage, random number generation, and

the cost to receive inputs and transmit outputs. We simplify the

accounting of the protocol execution’s energy cost by counting

just the energy consumed by field operations. This approximation

neglects the energy consumed by control logic and miscellaneous

9
Speaking generally, energy and area costs grow with the cube and square of a technol-

ogy node’s critical dimension, respectively [68]. As in prior work [82], we use standard

CMOS scaling models when estimating performance versus technology node [51].
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Figure 5: Evaluation of Giraffe’s back-end. We compare Giraffe’s

costs to the native baseline, varying N . Giraffe beats native for

N ≈ 30. Fixed AC parameters are: depth d = 20; width of sub-AC

G = 2
8
; fraction of multipliers δ = 0.5; trusted technology = 350 nm;

untrusted technology = 7 nm; maximum chip area Amax = 200mm
2
;

maximum power dissipation Pmax = 150 W. Per-gate energy costs

for trusted and untrusted nodes are the same as in prior work [82,

Figs. 6–7]. In Section 6.2 we consider manufacturing costs; there, Gi-

raffe is less competitive with native.

circuitry associated with protocol execution. As in prior work [82,

§7.2], we expect these costs to be negligible; confirming this is fu-

ture work. Computations in this section are over Fp ,p = 2
61 − 1.

Costs for trusted and untrusted technology nodes (arithmetic, com-

munication, storage, random number generation, and I/O circuits)

are from prior work [82, Figs. 6–7].

Results. Figure 5 compares Giraffe with the baseline. Giraffe’s

total cost is dominated byV; P’s cost is at most a few percent of

the total. For small N ,V’s precomputation (§3.3) dominates. As N
increases,V’s multilinear extension evaluation (§3.3) dominates.

The cross-over point for savings versus native in Figure 5 is

roughly 30 copies. This value is relatively insensitive to G because

both precomputation cost and per-sub-AC savings are proportional

toG , and they offset. VaryingG and otherwise fixing the parameters

as in Figure 5, we find crossover N ranges from an extreme of ≈40
at G = 8 to ≈20 for any G > 2

10
.

For the concrete costs we consider here, Giraffe can handle about

2
16

parallel executions of a sub-AC with G = 2
8
, d = 20, or about

80 million gates total. It can also handle sub-ACs as large as≈1.5 mil-

lion gates. For a given hardware substrate, the maximum N ·G prod-

uct is nearly fixed. P’s costs increase with d ([83, Fig. 16, Appx. C]),

so maximum size shrinks as d increases. On A/T (§2.3), Giraffe is

not as competitive with the baseline (§6.2).

6.2 Parameter variation

We now explore Giraffe’s performance compared to the native

baseline on generic arithmetic circuits characterized by d , G, N ,

and δ , and on different technology nodes.

Method. In addition to energy, we now consider manufacturing

cost for a given performance level. Our metric is As/T [82]. T is

throughput. As = AV + AP/s , a weighted sum of V’s and P’s
chip area; s accounts for the difference between untrusted and

trusted manufacturing costs. We do not know the exact value of

s , as this depends on the specifics of the technology nodes being
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(b) Performance vs. G .
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(c) Performance vs. N .
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(d) Performance vs. δ .
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Figure 6: Giraffe’s overall performance (V and P costs) compared to native baseline on E and As /T metrics (§6.2), varying AC parameters and

technology nodes. In each case, we vary one parameter and fix the rest. Fixed parameters are: depth of C, d = 20; width of subcircuit G = 2
8
;

number of sub-AC copies N = 2
10
; fraction of multipliers δ = 0.5; trusted technology node = 350 nm; untrusted technology node = 7 nm;

maximum chip area Amax = 200 mm
2
; maximum power dissipation Pmax = 150W.

used; thus, we evaluate manufacturing cost over a range of values,

s ∈ {1/3, 1, 3, 10}, consistent with prior work [82].

We use the same simulations and detailed cost modeling as in

Section 6.1 to compute costs for Giraffe. As a proxy for chip area

dedicated to protocol execution, we use the area occupied by field

adder and multiplier circuits. This neglects area dedicated to control

logic and miscellaneous circuitry associated with protocol execu-

tion, but as in prior work [82, §7.2] we expect these costs to be

negligible; confirming this is future work.

For throughput, we use cycle-accurate Verilog simulations to

measure the delay of each stage of the execution and proving

pipeline ([83, Appx. C]). End-to-end throughput is given by the

inverse of the maximum delay in any stage of the computation.

Concrete costs are the same as in Section 6.1. For each experiment

we vary one parameter and fix the others; fixed parameters are

d = 20,G = 2
8
, N = 2

10
, δ = 0.5, trusted technology node = 350 nm,

and untrusted technology node = 7 nm.

For the native baseline, we optimize A/T given Amax subject to

the arithmetic circuit’s layering constraints.

Optimizing As/T in Giraffe. We optimize Giraffe’s As/T by con-

trolling the amount of hardware parallelism ([83, Appx. C]). First,

we fix V’s area equal to native baseline, which is no more than

Amax. We also limitP’s area to nomore thanAmax and fixnP,pl = d .
Then we optimize nV, io and nV,sc based on available area and rel-

ative delay of sum-check computations and multilinear extensions

of inputs and outputs. Finally, givenV’s optimal delay value, we

search for settings of nP,ea, nP,Ṽ, and nP,sc that optimize As/T .

Results. Figure 6 summarizes results. Giraffe’s operating cost (i.e.,

energy consumption) beats the baseline’s over a wide range of AC

parameters and hardware substrates.

As in Section 6.1, energy cost is dominated by V . Savings in-

crease with d (Fig. 6a) because V’s per-layer work is much less

than the native baseline’s. Similarly, as δ increases (Fig. 6d), the

native baseline’s costs increase but V’s do not. V’s savings are

insensitive to G (Fig. 6b): the cost of multilinear extensions of I/O

scales with G, balancing the increased savings in per-layer work.

Manufacturing costs are often dominated by P. As G increases

(Fig. 6b), P’s area also increases (§3.2). As N increases (Fig. 6c), P’s
storage costs increase ([83, Fig. 16, Appx. C]). In these cases, even

if Giraffe’s operating costs are better than the native baseline’s, its

manufacturing costs at a given performance level may be worse.

Finally, as the gap between the trusted and untrusted technology

nodes shrinks (Figs. 6e and 6f), P’s energy cost increases relative

to V’s, reducing overall performance versus the native baseline.

As the trusted technology node gets more advanced (i.e., smaller,

Fig. 6f),V’s throughput increases and thusP’s size must increase to

avoid becoming a bottleneck. As the untrusted technology node gets

less advanced (i.e., bigger, Fig. 6e), P’s area grows and throughput

decreases, making As/T worse.



// x1 and x2 are inputs
// y1 and y2 are outputs
y1 = F1(x1);
y2 = F2(x2);

(a) Slicing: a simple computation.
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(b) Simple slicing vs. δ1.

// x1 and x2 are inputs
// y is output
if (pred) y = F1(x1);
else y = F2(x2);

(c) Slicing: conditionals.
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(d) Conditional slicing vs. δ1.

// y is output, x is input
y = x;
for (i = 0; i < I; i++)

y = F1(y);

(e) Squashing: dependent iterations.
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(f) Squashing vs. number of iterations.

Figure 7: Evaluation of Giraffe’s front-end. Higher is better. F1 and F2 are computations corresponding to arithmetic circuits with N = 2
10
,

G = 2
8
, d = 20. δ1 and δ2 are the fraction of multipliers in F1 and F2, respectively; we fix δ2 = 0.05. Figures 7a and 7c show inputs to Giraffe’s

slicing transformation. In Figures 7b and 7d, we vary δ1, which changes whether F1 is amenable to outsourcing. We compare the efficacy of

outsourcing the full computation and of first applying the slicing transform; when outsourcing would not result in savings, Giraffe executes

the computation natively. Figure 7e is a deep loop with dependent iterations. Giraffe converts this to a data-parallel computation that can be

outsourced, saving compared to native execution.

7 FRONT-END EVALUATION

This section answers the following questions:

(1) Howdoes slicing result in savings compared to full outsourcing

and native execution?

(2) For deep loops with dependent iterations, how effective is

squashing at extracting parallelism?

Setup and method. We create a sequence of programs written

in C, each containing two generic blocks, F1 and F2, consisting of

purely arithmetic computations. Among the programs, these blocks

vary in the fraction δ1 and δ2 of multipliers, width of computation

(G1,G2 respectively), the depth of the computation (d1,d2 respec-
tively), and number of parallel instances N . Unless specified, we fix

N = 2
10
, G1 = G2 = 2

8
, d1 = d2 = 20, δ2 = 0.05.

We consider two baselines: native execution and full outsourcing.
The cost of native execution is defined as in the prior section: the

cost of computation in the same technology node asV . We estimate

the cost of full outsourcing by applying Giraffe’s back-end to the

raw program, without Giraffe’s front-end transformations (§4).

To compute costs for Giraffe, we apply the selected transforma-

tion to produce a manifest (§4), then evaluate the total cost of exe-

cution, as dictated by that manifest. We use the model of Section 6

to determine the cost of the outsourced portions of the manifest.

For local computations, we sum the cost of all field operations, as

in the native baseline.

Slicing. We consider a simple case and then conditionals.

Warmup. Consider the computation of Figure 7a. We vary δ1
from 0 to 1. The front-end decides for F1 and F2 either to outsource

or to execute locally. Note that F1’s amenability to outsourcing

depends on δ1: native execution cost increases with δ1 (multiplies

aremore expensive than adds) whileV’s protocol costs depend only

on AC size. Because δ2 = 0.05, F2 is not amenable to outsourcing:

it native execution cost is less than the cost to outsource. For full

outsourcing we generate a sub-AC that combines F1 and F2, which

is conservative because it saves on precomputation.

Figure 7b plots the performance of executing the slicer’s manifest

and of outsourcing the entire computation, normalized to native

execution. Giraffe’s front-end never outsources F2 because native

execution is cheaper. F1 is amenable to outsourcing when δ1 > 0.2.

In contrast, full outsourcing pays extra costs for F2 compared to

native execution. Thus, slicing always beats full outsourcing.

Conditionals. In Figure 7c we consider a similar setup, but with

a conditional. We assume that pred evaluates to true, so F1 is the

desired branch. Naively converting this program to an AC results

in a computation that materializes both F1 and F2, and selects the

result based on pred. In essence, part of the work is useless.

Figure 7d plots the performance of executing the slicer’s manifest

and the performance of outsourcing the entire computation, nor-

malized to the performance of native execution. The manifest never

invokes F2 because that branch is never taken. When δ1 > 0.2, F1

is amenable to outsourcing and Giraffe’s performance is better than

native. Full outsourcing, meanwhile, evaluates an AC that incurs

the cost for both branches. For large enough δ1, though, the savings
from F1 offsets the useless work and full outsourcing beats native.

Squashing. We also experiment with a loop comprising I itera-
tions of F1 (Fig. 7e). Parameters are as above, δ1 = 0.5, and we

vary I . This is deep (I · d1) and narrow (G1), and not data parallel.

The squasher (§4) chooses N . Effective depth is d ′ = I · d/N for

each chunk, balancingV’s I/O cost against the per-layer cost. This

happens when depth and |x | + |y | are within a constant factor, i.e.,

N ·G = d ′ = O

(√
I
)
(overall cost is the sum). Figure 7f shows the

results: as I goes from 2
11

to 2
14
, performance improves by ≈ 3×.
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Figure 8: Energy cost of Giraffe, native baseline (§8.1), and Zebra [82,

§8.2] versus number of copies of Curve25519 subcircuit. Each subcir-

cuit computes 20 parallel evaluations of five sequential double-and-

add steps. Untrusted technology node = 350 nm; trusted technology

node = 7 nm; Amax = 200 mm
2
; Pmax = 150 W. Zebra’s scaling is lim-

ited to about 1150 parallel evaluations. Giraffe scales to more than

500×more parallel computations for the same chip area. Because of

Giraffe’s refinements (§3), its improvement versus native is greater

than Zebra’s. But Giraffe must amortize precomputation, while Ze-

bra assumes it is free; thus, Giraffe needs larger N to break even.

8 APPLICATIONS

8.1 Curve25519

Curve25519 is a high-performance elliptic curve used in crypto-

graphic protocols [5, 25]. This section compares three implementa-

tions of the point multiplication operation on this curve: a baseline,

Zebra, and Giraffe. This operation takes as inputs a 255-bit scalar

value v and a curve point Q , and computes the point R = [v]Q via

255 double-and-add steps [11], one for each bit of v . Our algorithm
employs a Montgomery ladder, as is standard [11, 25, 63]. Double-

and-add is naturally expressed as an AC over Fp , p = 2
255 − 19,

with d = 7 and G ≈ 8.

Zebra. This implementation [82, §8.2] groups 5 Montgomery

ladder steps into a block and requires 51 (= 255/ 5) iterations of this

block per operation. Zebra uses a special mux gate for efficiency,

requiring all double-and-add operations in a protocol run to use

the same scalar input v . This restriction is acceptable in some ap-

plications [82, §8.2].

Baseline implementation. Consistent with published hardware

implementations of point multiplication on Curve25519 [70, 71]

and the implementation from Zebra, our baseline directly executes

5 Montgomery ladder steps.

Giraffe. In Giraffe there are two degrees of freedom: L, the num-

ber of parallel double-and-add steps in a sub-AC (which deter-

mines G); and N . Each copy of the sub-AC uses the same L scalars,

{v1, . . . ,vL}; this is because wiring predicates are reused across the
N sub-ACs. In our experiment, we fix L = 20, and vary N ; larger

values of L are also possible.

Results. We compute energy for Giraffe and the native baseline as

in Section 6.1. For Zebra, we use published results [82, §8.2]. We set

the untrusted technology node = 350 nm, the trusted technology

node = 7 nm, and Amax = 200 mm
2
, the same as in Zebra.

Figure 8 shows the results. Giraffe breaks even when N ≈ 30,

or at about 600 parallel double-and-add operations, while Zebra

breaks even for about 100 such operations. But Giraffe pays the cost
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Figure 9: Energy cost of Giraffe and native baseline (§8.2) versus

number of parallel image pyramidmatching evaluations. Each eval-

uation matches 16-word needles against 128-word haystacks for a

two-level image pyramid (§8.2). Words are represented as elements

in Fp, p = 2
61 + 219 + 1. Untrusted technology node = 350 nm; trusted

technology node = 7 nm; Amax = 200 mm
2
, Pmax = 150 W. Giraffe

breaks even for ≈ 30 parallel searches.

of precomputation, whereas Zebra assumes that precomputation is

free. Meanwhile, Zebra handles at most 1150 parallel copies for the

given chip area, whereas Giraffe can accommodate roughly 32,000

parallel operations corresponding to roughly 100M AC gates, about

500× more than Zebra, for the same technology nodes.

8.2 Image pyramid

An image pyramid is a data structure for image processing [6] that

holds multiple copies of an image at different resolutions. The “base”

of the pyramid is a full resolution image and higher “layers” summa-

rize the image at progressively lower resolutions. One application

of an image pyramid is fast pattern matching. In the first step, a

coarse pattern is matched against the coarsest layer (top) of the

pyramid. Guided by the results, a finer pattern is matched against

a small part of the next layer until eventually a portion of the full

resolution image is matched against the finest pattern.

We use a convolution-based matching algorithm [35] where the

pattern may contain “don’t care” symbols that match any input.

If the text is t = t0t1 . . . tn and the pattern is p = p0p1 . . .pm ,

then the matching algorithm uses convolutions to compute ci =∑m
j=0 pj (pj − ti+j )2, i ∈ {1, . . . ,n}, and reports a match at i if ci = 0.

In our implementation, the input consists of a two-layer image

pyramid, a coarse pattern, and a fine pattern. The bottom layer

of the pyramid has 2
7 × 2

7
words, and the top layer has 1 × 2

7

words. Both patterns comprise 2
4
words. Words are represented

over Fp ,p = 2
61 + 219 + 1, and we implement convolution using

the number theoretic transform over Fp . The entire application

processes N instances in parallel; each instance specifies its own

input and pattern. The application is written as a C program.

Baseline implementation. In our baseline implementation, each

convolution is implemented using the direct iterative implemen-

tation of the number theoretic transform (NTT) and its inverse.

Energy costs are accounted as in the baseline of Section 6.

Giraffe.We apply Giraffe’s front-end to process our C program

into a manifest; the local computation selects the needed portion

of the next layer. We compute energy consumption of the result-

ing manifest as in Section 7. Our results reflect fully automated

compilation on a realistic application with no hand optimizations.



Results. Figure 9 compares the cost of executing the manifest to

the cost of the native baseline. Trusted and untrusted technology

nodes andAmax are as in Section 8.1. Giraffe needs roughly 30 paral-

lel evaluations to break even, after which it uses 5× less energy than
the baseline. Giraffe can scale to handle 32,000 parallel instances

within the area constraint, or about 100 million AC gates.

9 DISCUSSION AND LIMITATIONS

To understand Giraffe’s results, it is useful to provide context about

the limitations of other implemented systems for verifiable out-

sourcing. All such systems (including Giraffe) are reasonable only

when the computation to be outsourced is naturally expressed as an

AC. Otherwise, translating the computation to an AC entails such

steep overheads compared to native execution that (asymptotic)

savings do not kick in for reasonable computation sizes [82, §9].

Moreover, all systems built on the interactive proofs of GKR and

CMT (including Giraffe) require the AC to be layered.

Another limitation of all built systems concerns their overheads

and break-even points. As an example we consider SNARKs [26,

47]. Before continuing, we note that SNARKs apply more widely,

for example to cryptocurrencies [18, 38] and beyond [39, 64]. In

those contexts, which exploit SNARKs’ zero knowledge property,

overheads are less relevant. Thus, the following discussion should

be understood to cover only the proposed application of SNARKs

to verifiable outsourcing [27, 47, 66].

Careful examination of the SNARK literature indicates that veri-

fier overhead is so high that very large computations are required

to break even: millions of AC gates per instance [21; 66, §5.3; 84, §2;

85]. Furthermore, the required number of instances is large: even

on the best-case problem of matrix multiplication, Pinocchio [66]

requires more than 6,000 instances, and BCTV [20, 22] requires

more than 90,000 instances to break even [85, Fig.4]. (Note that we

have not even discussed keeping track of prover overhead; even for

small ACs, these provers take minutes on stock hardware.)

In contrast, Giraffe’s performance (keeping track of prover costs)

has only a weak dependence on computation size, even for ACs

of only a few hundred gates (Figs. 6a and 6b, §6.2). Moreover, the

number of parallel copies required to amortize is small, ≈ 30 (§6,

§8). The maximum instance size for a Giraffe sub-AC is around 1.5

million gates (§6.1); this is largely a function of the constraints im-

posed by hardware. These numbers are very encouraging (although

we note that Allspice [81] achieves similar break-even points).

Of course, SNARKs have distinct advantages:
10

precomputation

amortizes indefinitely in the non-interactive setting (eliminating

the requirement for data-parallel computations), the communica-

tion costs are much lower, and a broader class of computations

can be handled (there is no requirement that ACs be layered, and

computations can accept non-deterministic input).

Since Giraffe is largely focused on the hardware setting, it is also

worthwhile to contrast with Zebra [82]. On the one hand, Zebra

does not impose the requirement for data-parallel computations

(to amortize precomputation), and its break-even points are lower.

On the other hand, Zebra achieves these things by not paying

for computation (and making a fanciful assumption about daily

10
These advantages apply to the software regime; SNARKs do not seem easily imple-

mentable in hardware, an issue discussed in detail in [82, §9].

delivery of trusted precomputations [82, §4]). Giraffe, by contrast,

can break even despite paying for precomputation. Furthermore,

Zebra is limited to approximately 500,000 AC gates total, whereas

Giraffe supports 1.5 million gates per sub-AC and N scales to about

50 in this case (§6.1); Giraffe is thus two orders of magnitude better

than Zebra in total size (this is also demonstrated in §8.1). And, as

the image pyramid example (§8.2) shows, Giraffe can be practical

in situations where Zebra or Giraffe simply cannot outsource the

entire computation.

To be sure, Giraffe has serious limitations. The price of verifica-

tion remains high; evaluation shows that the overall win is ≈3–5×
(Fig. 5, §6; Figs. 8–9, §8). Given the prover overhead, Giraffe still

requires a large technology gap between the P andV technology

nodes to be practical (§6.2), though there are scenarios when this

holds [82, §1]. And finally, the regime of applicability is fundamen-

tally narrow (as noted in the introduction).

10 RELATEDWORK

Probabilistic proofs. Giraffe relates to the extensive body of re-

cent work on verifiable outsourced computation [14, 15, 17–19,

21, 22, 32, 34, 36, 37, 39, 40, 42, 45, 47, 56, 64, 66, 72–75, 77, 79,

81, 82, 84, 88]; see [85] for a comparatively recent survey. Specifi-

cally, Giraffe descends from the GKR [49] interactive proof line [36,

77, 79, 81, 82]. This line has historically imposed certain limita-

tions: a more restricted class of computations, and deterministic

ACs. In work done concurrently with and independently of Giraffe,

vSQL [88] has demonstrated how to support non-deterministic ACs,

by composing GKR-derived protocols with polynomial commit-

ment schemes [24, 41, 53, 65]. The result is exciting, and for some

application lowers prover costs relative to the argument protocols,

discussed below. However, the resulting prover is still much more

costly than native computation; applying Giraffe’s protocol refine-

ments (§3.1) would reduce this overhead. Indeed, vSQL and Giraffe

are complementary: future work is to combine them, and thereby

handle non-deterministic ACs in Giraffe’s operating model.

Another line of work uses argument protocols, both interac-

tive [73–75] and non-interactive [14, 21, 26, 47, 56, 66] (“SNARK”

refers to the latter). However, these protocols seem incompatible

with hardware implementation (as discussed in prior work [82,

§9]) and impose cryptographic assumptions (strong ones in the

non-interactive setting). These protocols also have higher precom-

putation costs (which can be tamed asymptotically, but at very

high concrete cost [21, 22, 34]—for example, the prover is two [22]

to six [21, 34] orders of magnitude worse). On the other hand,

non-interactive arguments can support zero knowledge (zkSNARK)

protocols; this enables applications that are not possible otherwise.

Much of thework in the area fits into the cost framework outlined

in the introduction: precomputation, verifier overhead, and prover

overhead, with native execution as a sensible baseline. There are

a few exceptions. In the zkSNARK setting, the cost assessment

depends on the premium that one is willing to pay for otherwise

unachievable functionality [14, 18, 39]. Also, two works in the

verifiable outsourcing setting do not require precomputation. The

first is CMT [36, 79] (and [77]) when applied to highly regular

wiring patterns; however, such wiring patterns substantially limit

applicability. The second is SCI [17], which aims to be general



purpose. SCI is, roughly speaking, an argument protocol built atop

“short PCPs” [23], and is an exciting development. But inspection

of SCI reveals that some of its costs, most notably the verifier’s, are

orders of magnitude higher than in other works.

PL techniques in cryptographic protocols. Squashing (§4) is

related to but distinct from Geppetto’s [37] optimizations for loops.

At a high level the goals are similar (use loop transformations to

adapt a computation to a protocol), but they differ in particulars be-

cause each technique leverages features of its respective back-end.

In settings where they are both relevant, we believe the two ap-

proaches are complementary. (Giraffe pursues automatic inference

for this optimization, which is discussed but not explored in [37].)

Our work on slicing is in the tradition of a great deal of work

adapting PL techniques to implementing cryptographic protocols.

In the verifiable outsourcing literature, there are a handful of exam-

ples (e.g., Buffet [84] uses sophisticated loop unrolling techniques

to optimize loop handling, and Geppetto analyzes conditionals to

minimize evaluation of “dead code”).

More generally, the secure multi-party computation literature

has seen a great deal of work using program analysis and transfor-

mation techniques to produce optimized protocols, starting with

Fairplay [59] and notably including the line of work represented

by [87]. There has also been relevant work in the Oblivious RAM

community, for example [57] uses PL techniques to partition vari-

ables to ensure obliviousness. Another area in which these tech-

niques are used is in automatic compilation for secure distributed

programming [44]. Perhaps most similar to our slicing protocol

are the various compilers for zero knowledge proofs of knowl-

edge [7, 16, 61], most notably ZQL and ZØ [43, 45]. The latter

weaves together explicitly annotated zero knowledge regions with

ordinary code, and does automatic inference for assigning function-

ality to tiers in client-server applications (see also [60] for automatic

tier partitioning). Giraffe is distinguished by performing automatic

inference for slicing using a cost model, without explicit annotation.

11 CONCLUSION

We have described a number of techniques that are relevant to

verifiable outsourcing generally: an improvement to the T13 proof

protocol that yields an asymptotically optimal prover and reduces

concrete costs by an order of magnitude or more; algorithmic re-

finements for the verifier that improve its main bottleneck by ≈3×
and apply to any CMT-based protocol; and two program transfor-

mations that increase the range of suitable applications: squashing,

which applies to any CMT-based protocol, and slicing, which applies

throughout the research area. We have also developed hardware

primitives tailored to the proof protocol and a design template that

automatically generates optimized hardware designs across a wide

range of computations and physical substrates. And we have used

all of these to build Giraffe, a system for Verifiable ASICs. For a

range of computations, Giraffe meets or exceeds the performance

of a chip built by a trusted manufacturer, while accounting for all
costs: prover, verifier, and precomputation. Although the regime in

which Giraffe applies is narrow, it is the first system to apply such

a strict cost accounting—and win.
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