
FlexPRICE:
Flexible Provisioning of Resources in a Cloud Environment

Thomas A. Henzinger Anmol V. Singh Vasu Singh Thomas Wies Damien Zufferey
IST Austria

A-3400 Klosterneuburg, Austria
{tah,anmol.tomar,vasu.singh,thomas.wies,damien.zufferey}@ist.ac.at

Abstract—Cloud computing aims to give users virtually
unlimited pay-per-use computing resources without the burden
of managing the underlying infrastructure. We claim that, in
order to realize the full potential of cloud computing, the user
must be presented with a pricing model that offers flexibility
at the requirements level, such as a choice between different
degrees of execution speed and the cloud provider must be
presented with a programming model that offers flexibility
at the execution level, such as a choice between different
scheduling policies. In such a flexible framework, with each
job, the user purchases a virtual computer with the desired
speed and cost characteristics, and the cloud provider can
optimize the utilization of resources across a stream of jobs
from different users.

We designed a flexible framework to test our hypothesis,
which is called FlexPRICE (Flexible Provisioning of Resources
in a Cloud Environment) and works as follows. A user presents
a job to the cloud. The cloud finds different schedules to execute
the job and presents a set of quotes to the user in terms of
price and duration for the execution. The user then chooses
a particular quote and the cloud is obliged to execute the
job according to the chosen quote. FlexPRICE thus hides the
complexity of the actual scheduling decisions from the user,
but still provides enough flexibility to meet the users actual
demands. We implemented FlexPRICE in a simulator called
PRICES that allows us to experiment with our framework. We
observe that FlexPRICE provides a wide range of execution
options —from fastand expensive to slow and cheap— for the
whole spectrum of data-intensive and computation-intensive
jobs. We also observe that the set of quotes computed by
FlexPRICE do not vary as the number of simultaneous jobs
increases.

I. INTRODUCTION

Computing services that are provided by datacenters
over the internet are now commonly referred to as cloud
computing. Cloud computing promises virtually unlimited
computational resources to its users, while letting them pay
only for the resources they actually use at any given time.
We question that the existing cloud computing solutions
can effectively deliver on this promise. Cloud computing
services such as Amazon EC2 [1] and Google App En-
gine [2] are built to take advantage of the already existing
infrastructure of their respective company. This development
leads to non-optimal user interfaces and pricing models for
the existing services. It either puts an unnecessary burden
on the user or restricts the class of possible application.

For instance, Amazon EC2 exposes a low-level interface to
its datacenters where the user needs to decide which and
how many virtual machines she should rent to execute a
given job. This does not only pose a high burden on the
user, but also leads to non-optimal utilization of the cloud:
once a user rents a virtual machine, the cloud cannot run
other computation on that machine. Similarly, the existing
pricing models are too rigid to foster good utilization. For
instance, both Amazon EC2 [1] and Microsoft Windows
Azure [3] charge fixed prices for compute usage, storage,
and data transfer. Recently Amazon added the possibility
to bid for instances whose price depends on supply and
demand [4]. Therefore, a flexible pricing model that, for
example, discounts compute usage during non-peak hours
seems adequate.
Motivation. Our goal is to build the next generation of
resource management in cloud computing. We propose
“Flexible Provisioning of Resources in a Cloud Environ-
ment” (FlexPRICE) where the cloud (provider) and the
users build a symbiotic relationship. Instead of renting a
set of specific resources, the user simply presents the job
to be executed to the cloud. The cloud has an associated
pricing model to quote prices of the user jobs executed.
In FlexPRICE we assume that each computation node has
a computation price and possibly an initial setup price.
Additionally, each link may have an associated data transfer
price. The pricing models in FlexPRICE also allow to
discount delayed execution of jobs. The cloud works out
multiple possibilities to execute the job, then presents to
the user a price curve which is a relation between time
and price. A fast computation, which can be due to high
end processors or highly parallelized computation, may price
more than slow or delayed computation. The user observes
the price curve and chooses a point on the curve according
to her requirements on the latest completion time of the
job (deadline) and the maximum price she is willing to
pay (budget). After the user expresses her requirement, the
cloud is bound to schedule the job such that the users’
requirements are satisfied.

The design of FlexPRICE is motivated by the following
principles:
• A simpler view of the cloud to the user. Today’s cloud

services vary in the abstraction presented to the user.
On the one hand, services like Amazon EC2 provide the
users with complete freedom to control and configure
the entire software stack and thus do not limit the
type of applications that can be hosted. On the other
hand, Google App Engine, Force.com provide highly
application-specific cloud services. Thus, the user is
either left with a responsibility to optimize execution as
in the first case, or is limited in the type of applications
she can run on the cloud as in the second case.
We advocate a method where a user submits a user
program, called a job, to the cloud for execution. A
job corresponds to what has to be done, and a schedule,
which is computed by the cloud, corresponds to how
the job is done. The cloud generates multiple schedules,
where each schedule has a corresponding finish time
and a price. In other words, letting the cloud optimize
the computing resources allows the user to transparently
view an abstraction of the cloud.

• Optimization of resource allocation by the cloud. Many
jobs of different users are simultaneously executed in a
cloud. A cloud is in a position to optimize the allocation
of computing resources depending upon the current
utilization. A cloud can choose from a range of different
pricing models and scheduling policies as required at
a particular time. This enables the cloud to adapt itself
to the incoming stream of jobs from all users. For
example, in peak hours, the cloud can postpone the
execution of a job to later periods as long as it satisfies
the requirements of the user. Even at the individual user
level it is unrealistic to expect a user to make optimal
choice in term of resources allocation. Since one of the
selling point of cloud computing is hiding the inner
complexity of a datacenter the information necessary
to make optimal choices are not provided.

Simulation results. Based on these principles, we develop
“Simulator for Provisioning resources in a Cloud Environ-
ment” (PRICES). We use PRICES to extensively study
FlexPRICE. We study how a mix of different scheduling
heuristics find the intuitive schedules for a range of data
intensive and computation intensive jobs. We show that a
cloud using FlexPRICE helps the users and the cloud. We
conduct preliminary studies on the effect of pricing models
of the resources on the economic advantage of a cloud.
Based on our study, we draw the following conclusions.

• FlexPRICE discovers a range of scheduling possibili-
ties. We consider common patterns of data intensive and
computation intensive jobs. In a data intensive MapRe-
duce job, the data is first processed independently at
many locations (mappers), and later the results are
merged together at one location (reducer). We study the
set of quotes that a cloud using FlexPRICE gives to the
user. We observe that while the mappers always execute

in parallel at locations where the initial data sits, the
location of the reducer is sensitive to the completion
time that the user expects.

• FlexPRICE creates robust price curves. Given a job to
be executed on a cloud, we say that the price curve is
robust if it does not change if the cloud is running more
jobs simultaneously. In our simulation experiments we
model the choice of users as a normal distribution. We
compare the flexible scheduling and static scheduling.
The results for varied number of jobs showed that a
flexible scheduling generated a more robust price curve.

II. THE FORMAL MODEL

We give a formal description of our model. We start with
a description of a cloud infrastructure. Then, we formalize
user programs (jobs) and schedules of jobs on the cloud
infrastructure.

Cloud.: A cloud is a term used broadly for the infras-
tructure of a datacenter – cpus, network, and other peripher-
als. In our model, we represent a cloud as a fully connected
graph of networked computation nodes. We assume that
there exists a communication link between each pair of
nodes. We also assume that each link has an individual
bandwidth and the data transfer on one link does not affect
the other links. This assumption allows us to separate the
orthogonal issue of distribution of total bandwidth across
the links from our work.

We model a datacenter infrastructure as a set of cpu nodes.
A node n corresponds to a computing entity like a physical
or a virtual machine. An edge e is a communication link
between two nodes. Formally, we define a cloud as C =
〈N,E, S,B, π〉 where N is the set of cpu nodes, E = N×N
is the set of communication links between the cpu nodes, the
function S : N → N represents the speed of the nodes in the
cloud, the function B : E → N represents the bandwidth of
every edge in the cloud, and the pricing model π determines
how users are charged for using the cloud. The pricing model
if formally defined later.
Example. Figure 1 shows an example of a cloud. The
cloud is depicted by the graph in the upper part of the
figure. The numbers on the edges represent the bandwidth
of communication links. The nodes contain an identifier and
their respective speed.

Job.: Users submit jobs to be executed on the cloud.
We describe a job as a graph consisting of independent tasks
as nodes and data transfers between them as edges.

Formally, a task t corresponds to a piece of computation
in a user program. An object o is a piece of data that is
transfered from one task to another. A job is a directed
acyclic graph (DAG) J = 〈T,O,D,Z, data〉 where

• T = Td ∪ Tc is the set of tasks, where Td is a set of
data tasks Tc is a set of computation tasks,

• O ⊆ T × T is the set of objects between the tasks,

10

5 10

n1, 2

n3, 4n2, 4

π : cc(t)(n) = D(t) · S(n)
tc(o)(e) = 0
sc(n) = 0
df (σ) = 1

Figure 1. An example cloud Ce.

5

5

5

10

In Out

t1

t2

T D data(C)
In - n1

t1 12 -
t2 24 -

Out - n2

Figure 2. A job Je. The data tasks are shown in circles and computation
tasks in squares.

• D : Tc → N gives the computation duration of a given
task on a unit cpu in time units,

• Z : O → N gives the size of a given object in terms of
the unit data size.

• data : C → Td → N takes as input a cloud, and gives
a mapping of data tasks to the nodes in the cloud.

Intuitively, the data function captures the constraints of
executing the persistent reads and writes of a job at specific
nodes in the cloud.
Example. Figure 2 shows an example of a job Je. The
numbers on the edges represent the size of the objects. The
adjacent table lists the duration of the computation tasks
and the data constraints of the data tasks with respect to the
cloud Ce shown in Figure 1.

Schedule: A schedule maps the set of tasks in a job to
nodes and time intervals of execution on the nodes. Formally,
given a job J and a cloud C, a schedule σ : T → N ×Q+

assigns tasks of J to the nodes in C, at specific intervals.
In general, a job can be executed on a cloud with many

different schedules. Let Σ be the set of all schedules of the
job J on cloud C. We define a scheduling algorithm by
the function A : C × J → 2Σ. Intuitively, a scheduling
algorithm takes a cloud and a job, and returns a set of
possible schedules.

A well formed schedule is one in which the following
hold: each task is scheduled exactly once, each task is
scheduled for a duration not less than its computation
duration on the given cpu, and all task dependencies (which
may be a partial order) are respected.

The execution time of a schedule is given by the function
duration D : Σ → Q+. The duration of a given schedule
can be derived from the duration of each task in the job, the

size of each object, and the bandwidth of each link.
Pricing Model: A pricing model π of a cloud C

determines how a user is charged for executing a schedule
on the cloud. Formally, π is a tuple 〈cc, tc, sc, td〉 where
• the function cc : T → N → Q determines the

computation cost for executing a given task on a given
node,

• the function tc : O → E → Q computes the data
transfer cost for transferring a given object over a given
communication link.

• the function sc : N → Q determines the setup cost for
each node

• the function td : Σ → Q denotes the time discount
factor for a given schedule.

Example. The lower part of Figure 1 shows the pricing model
of cloud Ce. The computation costs of a task on a node are
linear in the duration of the task, scaled by a constant node-
dependant factor. There are no transfer, no setup costs, and
no time discounting.

Given a pricing model π, we define a function price
Pπ : Σ → Q that gives the price incurred by the cloud for
executing a schedule for a given job J = 〈T,O,D,Z, data〉.
The price of a schedule is given by the sum of its total
computation costs, total data transfer costs, and total setup
costs, scaled by the time discount factor. Formally, the
function Pπ is defined as follows:

Pπ(σ) = td(σ) · P ′π(σ)
where

P ′π(σ) =
∑
t∈T

cc(t)(σ(t)#1)

+
∑

(t1,t2)∈O

tc((t1, t2))(σ(t1)#1, σ(t2)#1)

+
∑

n∈un(σ)

sc(n)

Here x#i denotes projection of a tuple x to its i-th compo-
nent. The set of used nodes un(σ) of a schedule σ is defined
by un(σ) = {σ(t)#1 | t ∈ T}.
Example. Figure 3 shows some sample schedules of the job
Je on cloud Ce with their associated durations and prices.

Price Curve: Different schedules have different com-
pletion times and different prices. We say that two sched-
ules σ1 and σ2 are equivalent if Pπ(σ1) = Pπ(σ2) and
D(σ1) = D(σ2). Given two schedules σ1 and σ2, we say
that σ2 is worse than σ1 if σ1 is not equivalent to σ2,
Pπ(σ1) ≤ Pπ(σ2), and D(σ1) ≤ D(σ2). Let Σ be a set
of schedules of a given job on a given cloud. We define
a function mono such that given a set Σ of schedules, the
function Σ′ = mono(Σ) gives the largest subset of schedules
in Σ such that for every two schedules σ1 and σ2 in Σ′, σ1

is not worse than σ2.
We now make formal our notion of a price curve. The

main purpose of the price curve is to hide the details about

T1

T2n3

n2

n1

D(σ1) = max(5
5 + 12

4 ,
5
10 + 24

4 + 10
10)

= max(4, 7.5) = 7.5

Pπ(σ1) = (12× 4) + (24× 4)

= 48 + 96 = 144

(a) Schedule σ1

T1

T2n2

n3

n1

D(σ2) = max(5
10 + 12

4 + 5
10 ,

5
5 + 24

4)

= max(4, 7) = 7

Pπ(σ2) = (12× 4) + (24× 4)

= 48 + 96 = 144

(b) Schedule σ2

n2

n3

n1 T2T1

D(σ3) = (12
2 + 24

2 + 5
10)

= 18.5

Pπ(σ3) = (12× 2) + (24× 2)

= 24 + 48 = 72

(c) Schedule σ3

Figure 3. Some possible schedules for the job Je on the cloud Ce. The calculation of the price and the duration of the schedules is given.

the scheduling process and the internal working of the cloud
from the user, but still offer the user some control over the
execution of her job.

Let C be a cloud and J be a job. Let further Σ be a set of
(monotonic) schedules for J on C and let be tmin the duration
of the fastest schedule in Σ. A price curve for the set Σ is a
function f : (tmin;∞)→ Q+. A price curve has the property
that for any price p the user is willing to pay, there is a
schedule in Σ that can meet the corresponding time f−1(p).
For pragmatic reasons the curve should be monotonically
decreasing, because the user expects to pay more only if
the quality of service increases. The concrete choice of the
shape of a price curve is more of an economic decision than
an engineering one. We therefore do not further constrain the
price curve in our formal model. In section III we discuss
how we obtain a price curve from a given set of monotonic
schedules.

III. SIMULATION FRAMEWORK

We develop a simulator PRICES to study our model.
PRICES provides a simple syntax to create clouds and
jobs. PRICES also allows to randomly generate clouds and
jobs, to schedule jobs and sequences of jobs on clouds
according to different user distributions, and to compare
different pricing models.

Workflow of the Simulator.: A typical work flow for
using our simulator is as follows. One first randomly gen-
erates a cloud of specified size and heterogeneity. Then one
randomly generates a sequence of jobs that are released
according to a Poisson process of a given rate. The size and
density of the jobs’ task graphs follow a Pareto distribution.
The simulator then simulates the execution of the generated
job sequence on the cloud according to a chosen pricing
model and user distribution.

The execution of a job on the cloud is simulated as
follows. The simulator first computes a set of possible
schedules with respect to the current state of the cloud, i.e.,

taking into account all jobs that have already been scheduled.
The candidate schedules are computed by sampling schedule
algorithms that produce different schedules depending on a
free parameter such as a user-specified deadline or maximal
cost. Each computed schedule σ induces a point in the
time/price plane that is given by the duration of the schedule
and its price according to the chosen pricing model. The
simulator then constructs a price curve that fits the computed
set of points. The simulator then chooses a point on the
constructed price curve corresponding to the chosen user
distribution. Then the schedule from the sampled set of
schedules that is closest to the chosen point on the price
curve is selected and executed on the cloud.

Scheduling Heuristics.: Most of the optimization prob-
lems in the domain of scheduling are NP-hard. For example,
finding time-optimal, respectively, cost-optimal schedules,
and finding the cheapest schedule for a given deadline,
respectively, the fastest schedule for a given budget are
all shown to be NP-hard problems. Instead of computing
optimal schedules we therefore employ scheduling heuristics
that produce good approximations of the optimal schedules.
Based on the existing literature on scheduling heuristics, we
developed the following schedulers: (i) a greedy scheduler
which takes two tuning parameters α and β and at every
step chooses the node which minimizes the sum of α times
the price of the assignment and β times the duration of the
assigned task. Tuning the parameters α and β gives a whole
spectrum of greedy schedules from fast expensive schedules
to slow cheap schedules (ii) a clustering scheduler based on
the Dominant Sequence Clustering (DSC) algorithm [5] for
scheduling task DAGs on multiprocessors, (iii) a deadline
division scheduler [6] which takes a deadline as a parameter
and applies a distribution of the deadline over task partitions,
where a partition is a set of connected tasks in the job, (iv)
a genetic scheduler which takes as input a budget and finds
schedules with price less than the budget.

Constructing a Price Curve.: In order to construct the
price curve from the computed set of sample schedules,
we first remove all schedules from the set that violate
the monotonicity property. We then fit a price curve of a
predefined shape to the points that are determined by the
remaining set of schedules Σ. The price curves we use in
our simulation framework have the following shape:

f(t) = a(t− tmin)−b where a, b > 0

Here tmin is the minimal duration of all schedules in Σ. The
curves of this shape have two important properties: (1) they
converge to ∞ for t → tmin, (2) they converge to 0 for
t → ∞. Property (1) enforces that the user cannot choose
a deadline that is not met by the fastest schedule. Property
(2) comes from the observation that the computing power
has been steadily increasing over the years. Thus, in the
limit, computation is free. The parameters a, b are chosen
such that the distance between the resulting curve f and the
given sample points is minimized subject to the condition
that for all schedules σ ∈ Σ, f(D(σ)) ≥ Pπ(σ). The price
curve that our simulator constructs is thus a conservative
approximation of the actual prices that can be guaranteed
for the chosen pricing model.

User Distributions.: A user in our simulator is a
random variable in the [0; 1] interval. The random variable
determines a point on the line connecting the points cor-
responding to the fastest and the cheapest schedules in the
sample set. This point is projected on the constructed price
curve to determine the actual choice of the user. A user
value close to 1 will choose a high-priced fast schedule,
while a user value close to 0 will choose a low-priced slow
one. Our simulation of the user behavior ensures that the
user distribution is independent of the shape of the price
curve. The following user distributions are implemented in
our simulator: (1) Normal distribution where most users
will pick points close to the middle of the price curve.
(2) ‘Inverse’ normal distribution which is the inverse of
the normal distribution, i.e., most users will pick either
very cheap and slow or very expensive and fast schedules.
It is suitable for scenarios where most jobs can either be
planned far in advance or are unexpected jobs that need to
be executed quickly at a potentially much higher price. (3)
Uniform distribution over [0; 1]. (4) Hasty distribution which
model users who always return 1, i.e., the distribution is a
Dirac delta at 1. The purpose of the hasty user distribution
is to simulate a scenario with the extreme behavior where
all users want a fast execution of their jobs. (5) Greedy
distribution which is similar to the hasty distribution, but
returns always 0. This distribution models the extreme case
where all users prefer low-priced slow schedules.

IV. EXPERIMENTS

We now describe our experiments using PRICES.

Analysis of Schedules.: We construct jobs which model
different scenarios that exist in practice. We want to show
that our scheduling heuristics give reasonable and intuitive
schedules. We model scenarios which are data or com-
putation intensive. We describe our observations with the
data intensive jobs. We consider a cloud with nine nodes
n1 . . . n9. The bandwidth of all edges is 5. The nodes n1 to
n4 have a speed of 1, nodes n2 to n8 have a speed of 2, and
node n9 has a speed of 3. The pricing model consists of a
computation price per unit time equal to the speed on the
nodes, and a transfer price on the edges per unit time equal to
the bandwidth of the edges. We consider a MapReduce job
as shown in Figure 4(a). The tasks t1 . . . t4 are the mappers,
and the task t5 is the reducer. While the original data resides
on different nodes, the final result has to be put at a specific
node in the cloud. Note that the objects read by the mappers
are of large size compared to the objects produced by the
mappers. We observe that in all schedules, every mapper task
is executed at the place where the initial data resides. This is
because the mappers read large objects, and hence moving
the data is both time-consuming and expensive. Note that
if the pricing model does not include transfer cost, then the
cheapest schedule would execute all mappers sequentially on
the node with the lowest price. The fastest schedule executes
the reducer on the fastest node (n9). The cheapest schedule
schedules the reducer on one of the cheapest nodes (n1). An
intermediate schedule, which is nearly as fast as the fastest
schedule but much less expensive, schedules the reducer on
node n5 where the output is finally expected. This saves
both transfer time and cost. For data intensive scenarios, we
obtain schedules which minimize the transfer of data from
one node to another, as long as the data transfer helps to
parallelize computation and the user is willing to pay the
price for the fast computation.

Benefit of FlexPRICE to Users and the Cloud.:
Conventional resource allocation schemes do not provide
a choice on the price curve to the user. For example, a
fastest execution scheme would minimize the finish time
of a job, and a cheapest execution scheme would minimize
the price of a job. Given a job to be executed on a cloud,
our framework returns a range of schedules as described by
the price curve. We model the specific choice of a user by
different distributions on the range of prices in the price
curve. The cloud available for the next job depends on the
choice of the first user. Intuitively, as the cloud becomes
more constrained, the number of possible schedules for a
given job reduces. This, in turn, leads to a shift in the price
curve. The shift in the price curve can be thought of as
interference to the price a user has to pay for a job in
the presence of other jobs. In other words, a cloud offers
robust price curves if the shift in the price curve with respect
to the price curve of the empty cloud is small. We show
that FlexPRICE gives robust price curves. Note that robust
price curves imply that a cloud can meet stringent deadlines

In4

In1

In2

In3

Out

50

50

50

50

5

5

5

5

t1

t2

t3

t4

t5
10

T D data(C)
In1 - n1

In2 - n2

In3 - n3

In4 - n4

Out - n5

t1 10 -
t2 10 -
t3 10 -
t4 10 -
t5 20 -

(a) Map reduce job
(b) Price curve for data intensive MapReduce job

(c) The fastest schedule (d) The cheapest schedule (e) An intermediate schedule

Figure 4. Analysis of a MapReduce job

(a) Hasty: 20 jobs (b) Normal: 20 jobs (c) Inverse normal: 20 jobs

(d) Hasty: 80 jobs (e) Normal: 80 jobs (f) Inverse normal: 80 jobs

Figure 5. Price curve shifts

and thus satisfy more users. We create a random cloud
using PRICES. We execute a sequence of 100 randomly
generated jobs. For each job, we find the price curve if
the job is executed on the empty cloud. We compare this
price curve with the price curve obtained if all previous
jobs are scheduled according to a fixed policy which always
chooses the fastest schedule. We then compare the empty
price curve where the user chooses a point on the price
curve using two different distributions: normal and inverse
normal. Figure 5 shows the shift in the price curve with
respect to the price curve on the empty cloud after 20 and
80 jobs. We observe that under the hasty execution scheme,
the price curve drastically shifts to the right as the number
of jobs increases. On the other hand, the price curves under
normal and inverse normal distributions gradually shift both
in price and in time. The flexibility offered by these user
distributions regulates the shift of the price curve.

V. CONCLUDING REMARKS

Scheduling is fundamental to the achievement of high
performance in parallel and distributed systems. The classic
work on multiprocessor scheduling dates back to 1977 [7],
where the problem of scheduling a directed acyclic graph
of tasks to two processors is solved using network flow
algorithms. As multiprocessor scheduling of directed task
graphs to find an optimal schedule is an NP-complete
problem, heuristics in scheduling have been employed. In
utility computing and grid computing, scheduling optimiza-
tion problems with given user requirements of deadline and
budget have been studied [6], [8].

Various programming models for data oriented and
computation oriented programs have also been developed.
Data oriented programming models include the MapReduce
framework [9], [10]. These models minimize the transfer
of data, and maximize the parallel execution of indepen-
dent tasks. The MapReduce model has been widely stud-
ied. Similar models which extend or present alternatives
to MapReduce include DryadLINQ [11], Pig Latin [12],
Sawzall [13]. Systems that improve the performance of
the original MapReduce implementation have been devel-
oped [14]. While MapReduce and its derivatives are widely
used in Internet-scale tasks, these models are not applica-
ble to scientific tasks, which are inherently computation
intensive. A plethora of programming languages, includ-
ing Chapel [15], Fortress [16], and X10 [17] have been
built for scientific computing. These languages have built-
in constructs for parallelizing loops, asynchronous calls and
parallel data structures. These languages are together called
the High Performance Computing (HPC) languages [18]. In
an effort to unify these programming models, our work is
partly inspired by these models. However, our work focuses
on allocation of resources across tasks using scheduling
heuristics. The question of creating a job from a given user
program remains to be answered.

Although in its inception, the cloud computing research
has gained momentum recently. There are various platforms
and technologies available which differ in the services
made available to the users. Amazon EC2 [1], Google App
Engine [2], Microsoft Azure [3], and Force.com [19] are
few popular services. Cloudera [20] offers commercial sup-
port to Hadoop enterprise-level users. The various research
perspectives in this direction can be observed in Microsoft’s
workshop on declarative datacenter [21]. A perspective of
the current trends in cloud computing was also studied
by Armburst et al. [22]. All these efforts study datacenter
management as a programming problem and related issues.
This paper presents a flexible and transparent pricing model
such that the burden of price optimization and scheduling
is taken off the user, and the cloud resources are efficiently
utilized.

We have motivated a vital requirement of a suitable
abstraction between the users of the cloud and the cloud
provider. This transparency establishes a symbiosis between
the cloud and its users. We introduced a novel framework
FlexPRICE which achieves this transparency. We also de-
signed and implemented a simulation framework PRICES
in which we model clouds, the pricing models and the user
jobs. We validate the usefulness of our proposal across var-
ious experiments representing realistic and plausible scenar-
ios. In particular, we used our simulation framework to study
the robustness of price curves in a scenario where a cloud
executes many simultaneous jobs. Our simulation results
have encouraged us to start implementing FlexPRICE in
an actual system.

REFERENCES

[1] “Amazon Elastic Compute Cloud,” http://aws.amazon.com/
ec2.

[2] “Google App Engine,” http://code.google.com/appengine/.

[3] “Windows Azure Platform,” http://www.microsoft.com/
windowsazure.

[4] “Amazon EC2 Spot Instances,” http://aws.amazon.com/ec2/
spot-instances.

[5] T. Yang and A. Gerasoulis, “DSC: Scheduling parallel tasks
on an unbounded number of processors,” IEEE Transactions
on Parallel and Distributed Systems, pp. 951–967, 1994.

[6] J. Yu, R. Buyya, and C. K. Tham, “Cost-based scheduling of
scientific workflow application on utility grids,” in Interna-
tional Conference on e-Science and Grid Computing. IEEE
Computer Society, 2005, pp. 140–147.

[7] H. S. Stone, “Multiprocessor scheduling with the aid of
network flow algorithms,” IEEE Transactions on Software
Engineering, pp. 85–93, 1977.

[8] J. Yu and R. Buyya, “A budget constraint scheduling of work-
flow applications on utility grids using genetic algorithms,” in
Workshop on Workflows in Support of Large-Scale Science,
2006.

[9] J. Dean and S. Ghemawat, “MapReduce: Simplified data
processing on large clusters,” Communications of the ACM,
pp. 107–113, 2008.

[10] “Apache Hadoop,” http://wiki.apache.org/hadoop.

[11] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K.
Gunda, and J. Currey, “DryadLINQ: A system for general-
purpose distributed data-parallel computing using a high-
level language,” in USENIX Symposium on Operating Systems
Design and Implementation, 2008, pp. 1–14.

[12] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins,
“Pig Latin: A not-so-foreign language for data processing,”
in ACM SIGMOD Conference, 2008, pp. 1099–1110.

[13] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan, “Inter-
preting the data: Parallel analysis with Sawzall,” Scientific
Programming, pp. 277–298, 2005.

[14] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and
I. Stoica, “Improving MapReduce performance in heteroge-
neous environments,” in USENIX Symposium on Operating
Systems Design and Implementation, 2008, pp. 29–42.

[15] B. L. Chamberlain, D. Callahan, and H. P. Zima, “Parallel
programmability and the Chapel language,” International
Journal of High Performance Computing Applications, pp.
291–312, 2007.

[16] G. L. Steele, “Parallel programming and parallel abstractions
in Fortress,” in IEEE PACT, 2005, p. 157.

[17] P. Charles, C. Grothoff, V. A. Saraswat, C. Donawa, A. Kiel-
stra, K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: An
object-oriented approach to non-uniform cluster computing,”
in ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, 2005, pp. 519–
538.

[18] M. Weiland, “Chapel, Fortress and X10: Novel languages for
HPC,” http://www.hpcx.ac.uk/research/hpc/technical reports/
HPCxTR0706.pdf, 2007.

[19] “Enterprise cloud computing,” http://www.salesforce.com/
platform.

[20] “Cloudera,” http://www.cloudera.com/.

[21] K. Bhargavan, A. Gordon, T. Harris, and P. Toft, “The
Rise and Rise of the Declarative Datacentre,” Microsoft
Research, Tech. Rep. MSR-TR-2008-61, 2008, available at:
http://research.microsoft.com/pubs/70575/tr-2008-61.pdf.

[22] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H.
Katz, A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin,
I. Stoica, and M. Zaharia, “Above the Clouds: A Berke-
ley View of Cloud Computing,” University of California
at Berkeley, Tech. Rep. UCB/EECS-2009-28, 2009, avail-
able at: http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/
EECS-2009-28.html.

