
Finding Minimum Type Error Sources

Zvonimir Pavlinovic
New York University
zvonimir@cs.nyu.edu

Tim King
New York University
taking@cs.nyu.edu

Thomas Wies
New York University

wies@cs.nyu.edu

Abstract
Automatic type inference is a popular feature of functional
programming languages. If a program cannot be typed, the
compiler typically reports a single program location in its
error message. This location is the point where the type in-
ference failed, but not necessarily the actual source of the
error. Other potential error sources are not even consid-
ered. Hence, the compiler often misses the true error source,
which increases debugging time for the programmer. In this
paper, we present a general framework for automatic local-
ization of type errors. Our algorithm finds all minimum er-
ror sources, where the exact definition of minimum is given
in terms of a compiler-specific ranking criterion. Compil-
ers can use minimum error sources to produce more mean-
ingful error reports, and for automatic error correction. Our
approach works by reducing the search for minimum er-
ror sources to an optimization problem that we formulate
in term of weighted maximum satisfiability modulo theories
(MaxSMT). The reduction to weighted MaxSMT allows us
to build on SMT solvers to support rich type systems and
at the same time abstract from the concrete criterion that is
used for ranking the error sources. We have implemented an
instance of our framework targeted at Hindley-Milner type
systems and evaluated it on existing OCaml benchmarks for
type error localization. Our evaluation shows that our ap-
proach has the potential to significantly improve the quality
of type error reports produced by state-of-the-art compilers.

Categories and Subject Descriptors D.2.5 [Testing and
Debugging]: Diagnostics; F.3.2 [Semantics of Program-
ming Languages]: Program analysis

Keywords Type Errors, Diagnostics, Satisfiability Modulo
Theories
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1. Introduction
In functional programming languages such as OCaml [31]
and Haskell [18], programmers are not obliged to provide
type annotations. Nevertheless, these languages guarantee
strong static typing by automatically inferring types based
on how expressions are used in the program. Unfortunately,
the convenience of type inference comes at a cost: if the pro-
gram cannot be typed, the compiler-generated error message
often does not help to fix the error. Confusing error mes-
sages increase the debugging time and make it more difficult
for novice programmers to learn the language [24]. In this
paper, we present a general framework for producing more
meaningful type error messages.

Typical type inference algorithms report type errors on
the fly. If the inferred type of the current program expression
conflicts the inferred type of its context, the inference algo-
rithm immediately stops and reports an error at the current
program location. Although fast in practice, this approach
also produces poor error diagnostics. In particular, it might
be the case that the programmer made a mistake with the
previous usages of the offending expression, or with some
other related expressions. For example, consider the follow-
ing simple OCaml program taken from the student bench-
marks in [24]:

1 type ’a lst = Null | Cons of ’a * ’a lst

2 let x = Cons(3, Null)

3 let _ = print_string x

The standard OCaml compiler [31] reports a type mis-
match error for expression x on line 3, as the code before
that expression is well typed. However, perhaps the pro-
grammer defined x incorrectly on line 2 or misused the
print string function. As x is defined just before the error
line, it seems more likely that the error is caused by a misuse
of print string. In fact, the student author of this code
confirmed that this is the real source of the error. This sim-
ple example suggests that in order to generate useful error
reports compilers can consider several possible error causes
and rank them by their relevance. Hence, there is a need
for an infrastructure that can supply compilers with error
sources that best match their relevance criteria. In this work,



we propose a general algorithm based on constraint solving
that provides this functionality.

Approach. Unlike typical type inference algorithms, we
do not simply report the location of the first observed type
inconsistency. Instead, we compute all minimum sets of
expressions each of which, once corrected, yields a type
correct program. Compilers can then use these computed
sets for generating more meaningful error reports or even for
providing automatic error correction. The considered notion
of minimum is controlled by the compiler. For example, the
compiler may only be interested in those error causes that
require the fewest changes to fix the program.

The crux of our approach is to reduce type error local-
ization to the weighted maximum satisfiability modulo the-
ory (MaxSMT) problem. Specifically, our algorithm builds
on existing work that rephrases type inference in terms of
constraint solving [1, 32, 38]. Each program expression is
assigned a type variable and typing information is captured
in terms of constraints over those variables. If an input pro-
gram has a type error, then the corresponding set of typing
constraints is unsatisfiable. We encode the compiler-specific
ranking criterion by assigning weights to the generated typ-
ing constraints. A weighted MaxSMT solver then computes
the satisfiable subsets of the constraints that have maximum
cumulative weight. As constraints directly map to program
expressions, the complements of these maximum sets rep-
resent minimum sets of program expressions that may have
caused the type error.

The use of SMT solvers has several additional advan-
tages. First, it allows support for a variety of type systems
by instantiating the MaxSMT solver with an adequate rea-
soning theory. Typing constraints for Hindley-Milner type
systems [19, 29] can be encoded in the theory of inductive
data types [4]. More complex type systems such as liquid
types [34] may involve additional reasoning theories (e.g.,
arithmetic). Second, the framework does not introduce a sub-
stantial implementation overhead since the SMT solver can
be used as a black box.

Implementation. We have implemented an instance of our
framework targeted at Hindley-Milner type systems. Our im-
plementation builds on top of the EasyOCaml [14] system,
the SMT solver CVC4 [2], and the SAT solver Sat4j [23],
which also supports weighted partial MaxSAT. We have
evaluated our implementation on existing OCaml bench-
marks [24] for type error localization. Our experiments sug-
gest that our approach can produce minimum sources of type
errors subject to useful ranking criteria. Also, we evaluated
the effectiveness of our algorithm in identifying the true er-
ror source by comparing it against the error diagnostics of
the OCaml type checker. Already with the relatively simple
ranking criterion that we used in our experiments, we ob-
served that our algorithm yields a better detection rate than
OCaml’s type checker.

Related Work. Previous work on localization of type errors
has mainly focused on designing concrete systems for gener-
ating quality type error messages. Existing approaches range
from showing a relevant portion of a failed type inference
trace [12, 41], a program slice involved in the error [15, 39],
to specially crafted type systems [7, 8, 30]. More closely re-
lated to our approach is the Seminal [24] tool, which com-
putes several possible error sources by repeated calls to the
type checker. However, the search for error causes is based
on heuristics and provides no formal guarantees that all error
sources are found, respectively, that they are ranked accord-
ing to some criterion. Zhang and Myers [42] encode typ-
ing information for Hindley-Milner type systems in terms of
constraint graphs. The generated graphs are then analyzed to
find most likely error sources by using Bayesian inference. It
is unclear how this approach would support more expressive
type systems. On the other hand, the proposed technique is
designed for general diagnosis of static errors, whereas we
focus specifically on diagnosis of type errors. Previous ap-
proaches based on constraint solving [17, 37] produce min-
imal but not minimum error sources and consider specific
ranking criteria for specific type systems. Our approach is
in part inspired by the Bug-Assist tool [20], which uses a
MaxSAT procedure for fault localization in imperative pro-
grams. However, the problem we are solving in this paper is
quite different.

Contributions. Our contributions can be summarized as
follows:

• We present a novel framework for producing quality type
error diagnostics. Given a supplied ranking criterion, the
framework generates minimum type error sources.
• By reducing type error localization to SMT constraint

solving, our framework supports a variety of type sys-
tems without introducing substantial complexity to exist-
ing language implementations.
• We have implemented our algorithm for Hindley-Milner

type systems and applied it to the OCaml benchmarks
used in [24].

2. Overview
In this section, we provide an overview of our approach and
explain it through several illustrative examples.

The high-level execution flow of our constraint-based
type error localization is shown in Figure 1. The frame-
work can be viewed as a compiler plug-in. When type in-
ference takes place, our algorithm starts by generating typ-
ing assertions for the given input program. The constraint
generation incorporates a compiler-specific ranking criterion
by appropriately assigning weights to the assertions. After
the constraint generation finishes, the produced annotated
assertions, constituting a typing constraint, are passed to a
weighted MaxSMT solver. If the input program has a type
error, the generated constraint is unsatisfiable. In this case,
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Figure 1. High-level overview of constraint-based type er-
ror localization. Thick arrows represent a looping interaction
between a compiler and the SMT solver.

the MaxSMT solver finds all error sources that are minimum
subject to the specified ranking criterion. The compiler can
then iteratively interact with the solver to further rank and
filter the error sources to generate an appropriate error mes-
sage. This way, our framework can support interaction with
the programmer. In particular, the compiler can take feed-
back from the programmer and pass it to the solver to guide
the search for the error source the programmer needs. In the
following, we describe the actual algorithm in more detail
and highlight the main features of our approach.

2.1 Minimum Error Sources
First, let us make the notion of minimum error source more
precise. An error source is a set of program locations that
need to be fixed so that the erroneous program becomes well
typed. Usually, not all error sources are equally likely to
cause the error, and the compiler might prefer some error
sources over others. In our framework, the compiler provides
a criterion for ranking error sources by assigning weights
to program locations. Our algorithm then finds the error
sources with minimum cumulative weight. As an example,
consider the following OCaml program:

1 let f x = print_int x in

2 let g x = x + 1 in

3 let x = "hi" in

4 f x;

5 g x

Note that the program cannot be typed since the functions
f and g expect an argument of type int, but both are ap-
plied to x whose type is string. The program has several
possible error sources. One error source is the declaration of
x. Namely, changing the declaration of x to, say, an integer
constant would make the program well typed. Another er-
ror source is given by the two function applications of f and
g. For example, replacing both f and g by print string
would yield another well-typed program.

Now consider a ranking criterion that assigns each pro-
gram location equal weight 1. Then the cumulative weight
of the first error source is 1, while the weight of the second
error source is 2. Our algorithm would therefore report the

first error source and discard the second one. This simple
ranking criterion thus minimizes the number of program lo-
cations that need to be modified so that the program becomes
well typed. Later in this section, we discuss more elaborate
ranking criteria that are useful for error localization.

2.2 Reduction to MaxSMT
Next, we show how the reduction to weighted MaxSMT
works through an example. Consider the following OCaml
program:

let x = "hi" in not x

Clearly, the program is not well typed as the operation not
on Booleans is applied to a variable x of type string.

Our constraint generation procedure takes the program
and generates a set of typing assertions using the OCaml
type inference rules. This set of assertions constitutes a typ-
ing constraint. A formal description of the constraint gener-
ation can be found in Section 4.1. For our example program,
the constraint generation produces the following set of as-
sertions:

αnot = fun(bool, bool) [Def. of not] (1)

αapp = fun(αi, αo) not x (2)

αapp = αnot not (3)

αi = αx x (4)

αx = string x = "hi" (5)

The constraint encoding preserves the mapping between as-
sertions and associated program locations. That is, each as-
sertion comes from a particular program expression shown
to the right of the assertion. The assertion (1) is generated
from the definition of the function not in OCaml’s standard
library [25]. It specifies the type αnot of not as a function
type from bool to bool. The assertions (2) to (4) specify the
types of all subexpressions of the expression not x in the
program. Finally, the assertion (5) specifies the type of x,
according to its declaration.

The generated typing constraint is interpreted in the the-
ory of inductive data types, which is supported by many
SMT solvers [2, 11, 13]. In this theory, the terms αapp , αi,
αo, αnot , and αx stand for type variables, while the terms
bool and string are type constants. The function fun is a
type constructor that maps an argument type αi and a result
type αo to a function type from αi to αo. The theory inter-
prets fun as an injective constructor. Hence, the assertions
(1) to (3) together imply αi = bool. Type constants such as
bool and string are interpreted as pairwise distinct values.
The assertions (4) and (5) imply αi = string, we conclude
bool = string together with the assertions (1) to (3) – a con-
tradiction. Consequently, the generated typing constraint is
unsatisfiable, confirming there is a type error.

As in the previous example, we first assume a ranking
criterion that assigns each program location equal weight 1.



The problem of finding the minimum error sources in the
program is then encoded into a weighted MaxSMT prob-
lem by assigning weight 1 to each assertion in the generated
constraint. The weighted MaxSMT solver computes all sub-
sets of assertions in the typing constraint that are satisfiable
and have maximum cumulative weight. Thus, the comple-
ments of those sets encode the minimum error sources. In
Section 4.2, we discuss the weighted MaxSMT procedure
that we use in our implementation in detail.

For the running example, there are altogether five com-
plement sets of maximum satisfiable subsets, each consist-
ing of a single assertion (1)-(5). Removing any single as-
sertion leaves the remaining assertions satisfiable. In other
words, by fixing the program expression associated with the
removed assertion, the input program becomes well typed.
For example, consider the assertion (3). Removal of that as-
sertion can be interpreted as using a different function in-
stead of not in the application not x. Removal of the asser-
tion (1) can be seen as changing the internals of not so that it
applies to string values. Hence, the meaning associated with
removing a certain assertion can be utilized for suggesting
possible error fixes.

2.3 Ranking Criteria
Not all error sources are equally useful for fixing the type
error. In the previous example, it is unlikely that the true
error source is located in the implementation of the func-
tion not, since it is part of the standard library. Compilers
might want to eliminate such error sources from consider-
ation. Similarly, the error source corresponding to the re-
moval of assertion (2) implies that the programmer should
use some other expression than not x in the program. This
error source seems less specific than the remaining error
sources, so compilers might want to rank it as less likely.
In general, compilers might want to rank error sources by
some definition of usefulness. In our framework, such rank-
ings are encoded by assigning appropriate weights to pro-
gram locations, and hence assertions in the generated typing
constraint.

Hard Assertions. One way of incorporating ranking crite-
ria is to specify that certain assertions must hold, no matter
what. Such assertions are commonly referred to as hard as-
sertions. Assertions that the MaxSMT solver is allowed to
remove from the assertion set are called soft. The compiler
may, for instance, annotate all assertions as hard that come
from the definitions of functions provided in the standard
library. This would encode that all type error sources must
be located in user-defined functions. If we apply this crite-
rion to our previous example, we annotate the assertion (1)
as hard. This eliminates the error source implying that the
implementation of not must be modified. Other assertions
that might be considered hard are assertions that come from
user-provided type annotations in the program.

Weighted Clauses. Our approach supports more sophisti-
cated ranking criteria than distinguishing only between hard
and soft assertions. Such criteria are encoded by assigning
weights to assertions. Going back to our running example,
compilers might favor error sources consisting of smaller
program expressions. For instance, each assertion can be as-
signed a weight equal to the size of the corresponding ex-
pression in the abstract syntax tree. This way, not x in our
previous example is not reported, as desired.

To demonstrate the power of weighted assertions, we con-
sider another example from the student benchmarks in [24],
which served as the motivating example for the type error
localization technique presented in [42]:

1 let f(lst:move list):

2 (float*float) list = ...

3 let rec loop lst x y dir acc =

4 if lst = [] then

5 acc

6 else

7 print_string "foo"

8 in

9 List.rev

10 (loop lst 0.0 0.0 0.0 [(0.0,0.0)] )

The standard OCaml compiler reports a type error in the
shaded expression on line 10. However, the actual error
cause lies in the misuse of the print string function on
line 7, as reported by the authors of [42]. The technique of
Zhang and Myers [42] correctly reports the expression on
line 7 as the most likely error cause. With the ranking criteria
that we introduced so far, our algorithm generates two error
sources that both have minimum weight. These error sources
can be interpreted as follows:

1. Replace the function print string on line 7.

2. Replace the function loop on line 10.

However, the second error source is not likely the actual
cause of the error: using some other function than loop on
line 10 would mean that the loop function is not used at all
in the program. In fact, the OCaml compiler would generate
a warning for the fixed program.

The compiler can thus analyze the produced error sources
and find those sources that correspond to the removal of
entire functions from the program. Assertions associated
with such error sources can then be set as hard. In the
running example, the solver will then produce just a single
error source, indicating the actual error cause.

This additional ranking criterion can also be encoded
directly in the typing constraint without a second round of
interaction with the solver. Suppose the program contains a
user-defined function f whose type is described by a type
variable αf . Suppose further that f is used n times in the
program and for i, 1 ≤ i ≤ n, let the type variable αi

indicate the type imposed on f by the context of the i-th



1 class p x_init =

2 object

3 val mutable x = x_init

4 method get = x

5 method move y = x <- x +. y

6 end

7

8 class ap x_init =

9 let origin = x_init / 10 * 10 in

10 object

11 val mutable x = x_init

12 method get = float_of_int x

13 method offset = x - origin

14 method move y = x <- x + (y mod 10)

15 end

16

17 let coerce x = (x: ap :> p)

18

19 let x = new ap 10.0

20 let _ = (coerce x)#move 4.5

Figure 2. OCaml program with invalid subtype coercion

usage of f. Then we can add the following additional hard
assertion to the typing constraint: α1 = αf ∨· · ·∨αn = αf .
This assertion expresses that f needs to be used at least once,
effectively encoding the additional criterion.

2.4 Supporting Expressive Type Systems
One of the advantages of our algorithm compared to exist-
ing type localization techniques is that it generalizes to more
expressive type systems. All we need to do is augment the
MaxSMT solver with the appropriate reasoning theories to
support richer typing constraints. We discuss one such ex-
tension in more detail.

Subtyping. All of the examples that we have considered so
far belong to the Caml subset of the OCaml language. This
subset supports polymorphic higher-order functions, tagged
unions, and records, but no classes and objects. The theory
of inductive data types is sufficient for expressing the typing
constraints for Caml. To support the object-oriented features
of OCaml, we can incorporate additional reasoning theories.

As a motivating example, consider the OCaml program
shown in Figure 2. The program declares two classes: a
class p representing a point on a continuous line, and a class
ap that represents a point on a line adjusted to the closest
multiple of 10. Each class implicitly defines an object type
of the same name as the class. An object type associates each
method of an object with the type of that method. The object
type p is

<get:float , move:float ->unit >

and the object type ap is

<get:float , offset:int , move:int ->unit >

OCaml uses structural subtyping to relate object types. That
is, an object type s is a subtype of an object type t iff (1) s
has all the methods of t and (2) for each method m of t, the
type of m in s is a subtype of the type of m in t. Method
subtyping is defined as expected. In particular, for a -> b
to be a subtype of c -> d, the type c must be a subtype of a
and the type b must be a subtype of d. For non-object types,
the subtype relation reduces to type identity. For example, in
the previous program, the object type ap is not a subtype of
p because the argument type of ap’s move method expects
an int instead of a float.

In OCaml, subtyping cannot be used implicitly. Instead
it must be enforced explicitly via subtype coercion. In our
example program, such a coercion can be seen on line 17.
This coercion is invalid since ap is not a subtype of p. As
we show below, our algorithm can report several locations
as possible error sources.

Subtyping Assertions. For brevity, we focus on the as-
sertions that are generated from the coercion constraint on
line 17 as well as the relevant assertions that come from the
two class declarations:

{get, move} ⊆ {get, offset, move} [line 17] (6)

βap#get :> βp#get [line 17] (7)

αp#move :> αap#move [line 17] (8)

ρap#move :> ρp#move [line 17] (9)

βp#get = float [line 4] (10)

βap#get = float [line 12] (11)

αp#move = float [line 5] (12)

ρp#move = unit [line 5] (13)

αap#move = int [line 14] (14)

ρap#move = unit [line 14] (15)

The encoding uses pairwise distinct constants get, offset,
and move to represent the method identifiers. The assertions
(6)-(9) encode the coercion constraint on line 17. The re-
maining assertions come from the indicated method decla-
rations. Assertion (6) states the first subtyping requirement
that all methods of p must also be provided by ap. The asser-
tions (7)-(8) encode the second requirement of the subtyping
relation. The relation :> is interpreted in the theory of partial
orders. In particular, it is assumed to be reflexive and transi-
tive. Most SMT solvers do not natively support the theory of
finite sets and the theory of partial orders, which we use to
express the above assertions. However, these theories can be
encoded in various ways using more primitive theories that
are directly supported. For example, the assertion (6) could
simply be expanded into an equivalent conjunction of two
assertions consisting of pure equalities:

(get = get ∨ get = offset ∨ get = move) ∧
(move = get ∨ move = offset ∨ move = move)



The conjunction of the assertions (6)-(15) is unsatisfiable.
One possible error source corresponds to dropping asser-
tion (8). This error source tells the programmer that the co-
ercion constraint is invalid. It also identifies which part of
the definition of structural subtyping is violated. Another,
more useful, error source corresponds to dropping asser-
tion (14). This error source instructs the programmer to
change the use of variable y on line 14, e.g., by replacing
it with int_of_float y.

Other Type Systems. There is evidence that our approach
can also be applied to a language such as Scala: recent work
by Gvero et al. [16] proposes a technique for type-based
auto-completion of Scala expressions. This approach relies
on a constraint encoding of Scala’s type system [10] into
first-order logic. Scala supports type inference for declara-
tions in local scopes but uses nominal subtyping. That is, the
encoding of the subtyping assertions would be simpler than
for OCaml, since one only needs to state the direct subtyping
relationships that are explicitly provided by the inheritance
tree (plus additional axioms to encode variance of generics).
There are other type inference algorithms for specific type
systems that are formulated in terms of constraint solving
problems [35, 40]. Here, the remaining challenge is to devise
an actual SMT encoding of the typing assertions. Support for
even more expressive type systems requires additional work.
For example, type checking for refinement types as in [34]
reduces to checking validity of FOL constraints rather than
satisfiability. However, the problem of how to convert such
validity queries to satisfiability queries can be addressed by
using techniques from [20].

2.5 Interaction with the Programmer
It is not uncommon to utilize the programmer’s feedback
when localizing type errors [7, 36]. Our approach can be
easily extended to support such interactions with the pro-
grammer.

Given a compiler provided-ranking criterion and an in-
put program, our approach produces an error source that is
minimum with respect to the given criterion, which is then
presented to the programmer. What if the programmer wants
to disregard the computed error source? The simplest form
of interaction is for the programmer to ask for the next best
minimum error source with respect to the same ranking cri-
terion. This can be easily supported in our framework, e.g.,
by adding a blocking clause to the computed typing con-
straints that rules out the previously computed error source.
The solver then computes the next best error source and
presents it to the programmer. Many SMT solvers support
an incremental mode that preserves the state of the solver
across a sequence of satisfiability queries. We can use in-
cremental solving to enumerate the minimum error sources
efficiently.

An advantage of our approach is that the underlying
algorithm for computing minimum error sources abstracts

from the concrete criterion that is used for ranking the error
sources. We can therefore support more interesting forms of
user interaction where the programmer’s feedback is used to
modify the ranking criterion on the fly. For example, con-
sider the following scenario which is quite common in prac-
tice. Suppose the program consists of two OCaml modules A
and B with B depending on A. Now suppose that the program-
mer modifies B, introducing a type error that propagates to
A. The programmer knows that module B is still well-typed
and that the source of the type error must be located in A.
Our framework can easily utilize this information to look
for the error source in module A only. The typing assertions
generated from module B are simply set as hard, meaning
that all the error sources coming from that module should be
disregarded, as desired. In fact, we envision a form of inter-
action where the programmer can tell the system to look for
the error source in program parts that are more specific than
just modules, e.g., individual functions and let bindings. As
program expressions directly map to typing assertions, this
form of interaction can be easily supported by adjusting the
weights of the corresponding assertions. In general, we be-
lieve that the clean separation between the ranking criterion
and the constraint solving algorithm that our approach pro-
vides enables the systematic study of novel sophisticated
type error localization systems.

3. Problem Definition
We now formally define the problem of computing minimum
error sources for a given ranking criterion.

Language. For exposition purposes, we base our formal
presentation on an idealized language: a lambda calculus
with ML-style let polymorphism, named λ⊥ for conve-
nience. The syntax of λ⊥ is defined as follows:

Expressions e ::= x variable

| v value

| e e application

| if e then e else e conditional

| let x = e in e let binding

Values v ::= n integers

| b Booleans

| λx. e abstraction

| ⊥ hole

In addition to the usual constructs of the lambda calculus,
our language supports conditional branching and let binding.
Specifically, let bindings can be used to define polymorphic
functions. Values include integer constants, n ∈ Z, Boolean
constants, b ∈ B, and lambda abstractions. The special value
⊥ is called hole. We will use holes to define error sources
and explain their role in more detail below. Variables x are
drawn from an infinite set that is disjoint from all other



syntactic constructs. An expression e in which no variables
occur free is called a program.

We do not define the semantics of λ⊥ expressions, as it
is irrelevant for our discussion. The reader may assume the
expected semantics.

Types. The types of our language are as follows:

Monotypes τ ::= bool | int | α | τ → τ

Polytypes σ ::= τ | ∀α.σ

Monotypes τ include the base types bool and int, type vari-
ables α, which are drawn from an infinite set disjoint from
the other types, and function types τ → τ . A monotype in
which no type variables occur is called ground. A polytype
∀α.σ represents the intersection of all types obtained by in-
stantiating the type variable α in σ by a ground monotype.
That is, ∀α.σ binds α. We write ∀~α.τ as a shorthand for
∀α1. . . .∀αn.τ where ~α = α1, . . . , αn. We further denote
by fv(σ) the set of free type variables in type σ. Finally, we
write σ[~β/~α] for capture-avoiding substitution of free occur-
rences of the type variables ~α in σ by the type variables ~β.

As for other Hindley-Milner type systems, type inference
is decidable for λ⊥. Expressions therefore do not require
explicit type annotations. Typing judgments take the form
Γ ` e : τ . Here, Γ is a typing environment that maps vari-
ables to types. We write ∅ for the empty typing environment
and extend the function fv to typing environments in the ex-
pected way. We say that a program p is well typed iff there
exists a type σ such that ∅ ` p : σ.

The actual typing rules are shown in Figure 3. The rules
are standard, with the exception of the rule [HOLE], which
we describe in more detail. The value ⊥ has the polytype
∀α.α. Therefore, the typing rule [HOLE] assigns a fresh
unconstrained type variable to each usage of ⊥. Intuitively,
⊥ is a placeholder for another program expression. It can
be safely used in any context without causing a type error.
Changes to hole expressions in an ill-typed program cannot
make the program well typed1.

Minimum Error Sources. Let e be a λ⊥ expression. We
call a path ` ∈ N∗ in the abstract syntax tree representation
of e a location of e. We denote the set of all locations of
e by Loc(e). A location ` ∈ Loc(e) uniquely identifies a
subexpression of e. We denote this subexpression by e(`).
Now, let mask be the function that maps an expression e and
a location ` ∈ Loc(e) to the expression obtained from e by
replacing e(`) with ⊥. We extend mask to sets of locations
in the expected way.

Definition 1 (Error source). Let p be a program. A set of
locations L ⊆ Loc(p) is an error source of p if

1. mask(p, L) is well typed

1 A similar concept was previously used in [24] where a hole in an OCaml
program is represented by an expression that raises an exception.

2. for all strict subsets L′ of L, mask(p, L′) is not well
typed.

A ranking criterion allows the compiler to favor er-
ror sources of particular interest by assigning appropri-
ate weights to locations. Formally, a ranking criterion is
a function R that maps a program p to a partial function
R(p) : Loc(p) ⇀ N+. The locations in Loc(p)\dom(R(p))
are considered hard locations, i.e., R disregards these loca-
tions as causes of type errors. We extend R(p) to a set of
locations L ⊆ Loc(p) by defining

R(p)(L) =
∑

`∈dom(R(p))∩L

R(p)(`) .

Minimum error sources are error sources that minimize the
given ranking criterion.

Definition 2 (Minimum error source). Let R be a ranking
criterion and p a program. An error source L ⊆ Loc(p) is
called minimum error source of p subject toR if for all other
error sources L′ of p, R(p)(L) ≤ R(p)(L′).

We are interested in the problem of finding a minimum
error source for a given program p subject to a given ranking
criterion R, respectively, finding all such minimum error
sources.

4. Algorithm
In this section, we present our algorithms for computing
minimum error sources based on weighted MaxSMT.

4.1 Reduction to Weighted MaxSMT
We first formally define the weighted MaxSMT problem and
then explain the actual reduction.

Weighted MaxSMT. The MaxSAT problem takes as input
a finite set of propositional clauses C and finds an assignment
that maximizes the number of clauses K that are simultane-
ously satisfied [26]. MaxSAT can alternatively be viewed as
finding the largest subset C′ of clauses C such that C′ is sat-
isfiable and C′ is a maximum satisfiable subset, |C′| = K.
Partial MaxSAT partitions C into hard and soft clauses. The
hard clauses CH are assumed to hold and the goal is to find
a maximizing subset C′ of the soft clauses such that C′ ∪ CH
is satisfiable. Weighted Partial MaxSAT, for simplicity re-
ferred to as only weighted MaxSAT, adds an integer weight
wi = w(Ci) to each soft clause Ci and asks for a satisfiable
subset C′ that maximizes the weighted score:∑

Ci∈C′
wi subject to CH ∪ C′ is satisfiable. (16)

The MaxSMT problem generalizes MaxSAT from work-
ing over propositional clauses to a set of assertion formulas
A where each assertion belongs to a fixed first-order the-
ory T . Most concepts directly generalize from MaxSAT to
MaxSMT: satisfiability is replaced by Satisfiability Modulo



x : ∀~α.τ ∈ Γ ~β new

Γ ` x : τ [~β/~α]
[VAR] Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2
[APP] b ∈ B

Γ ` b : bool
[BOOL]

Γ.x : τ1 ` e : τ2
Γ ` λx.e : τ1 → τ2

[ABS]
Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ

Γ ` if e1 then e2 else e3 : τ
[COND] n ∈ Z

Γ ` n : int
[INT]

Γ ` e1 : τ1 Γ.x : ∀~α.τ1 ` e2 : τ2 ~α = fv(τ1) \ fv(Γ)
Γ ` let x = e1 in e2 : τ2

[LET] α new
Γ ` ⊥ : α

[HOLE]

Figure 3. Typing rules for λ⊥

Theories [3], partial MaxSMT has hard and soft assertions
(AH and AS), weighted partial MaxSMT assigns an inte-
ger weight to each soft assertion. We represent weighted
MaxSMT instances as tuples (w,AH ,AS) where w is the
weight function assigning the weights to the soft assertions.

Theory of Inductive Data Types. Our reduction to the
weighted MaxSMT problem generates a typing constraint
from the given input program. This constraint is satisfiable
iff the input program is well typed. The constraint is then
passed to the MaxSMT solver, which computes the mini-
mum error sources. The generated typing constraint hence
needs to be expressed in terms of assertions that are inter-
preted in an appropriate first order theory. We use the theory
of inductive data types [4] for this purpose. In this theory,
we can define our own inductive data types and then state
equality constraints over the terms of that data type. For our
encoding, we define an inductive data type Types that repre-
sents the set of all ground monotypes of λ⊥:

t ∈ Types ::= int | bool | fun(t, t)

Here, the term constructor fun is used to encode the ground
function types.

The terms in Types are interpreted in the models of the
theory of inductive data types. A model of this theory is a
first-order structure that interprets the type constructors such
that the following axioms are satisfied:

int 6= bool

∀α, β ∈ Types. fun(α, β) 6= int ∧ fun(α, β) 6= bool

∀α, β, γ, δ ∈ Types. fun(α, β)= fun(γ, δ)⇒ α=γ ∧ β=δ

That is, the term constructor fun must be interpreted by an
injective function, and the interpretation of the terms int and
bool is distinct from the interpretation of all other terms.
Hence, the axioms exactly encode the equality relation on
ground monotypes of λ⊥. For the type systems of actual
languages such as OCaml, we extend Types with additional
type constructors, e.g., to encode user-defined algebraic data
types in OCaml programs.

Overview of the Reduction. Next, we describe the actual
reduction to weighted MaxSMT. In the following, let p be
the program under consideration and let R be the ranking
criterion of interest.

At the heart of our reduction is a constraint generation
procedure that traverses p and generates a set of assertions
in our theory of Types. These assertions encode the typing
rules shown in Figure 3. The constraint generation procedure
can produce multiple assertions associated with a single
location ` of p. Suppose R considers a location ` to be
soft. That is, while searching for minimum error sources the
solver must consider two possibilities. If ` is in the minimum
error source, then none of the assertions generated from the
expression p(`) need to be satisfied. If on the other hand
` is not in the minimum error source, then the type of the
expression p(`) must be consistent with its context. That is,
all the assertions directly associated with ` must be satisfied
simultaneously. However, some of the assertions generated
from subexpressions of p(`) may be dropped because the
corresponding locations may still be in the minimum error
source. Thus, to properly encode the problem of finding
minimum error sources, we need to link the assertions of
location ` together so that the solver considers them as a
single logical unit. Also, we need to capture the relationship
between the locations according to the structure of p. For this
purpose, we associate a propositional variable T` with every
location `. By setting T` to true, the solver decides that T`

is not in the minimum error source. That is, each assertion
associated with a location `o takes the following form:

T`n ⇒ · · · ⇒ T`1 ⇒ T`0 ⇒ t1 = t2 (17)

Here, `1, . . . , `n are the locations that are reached along the
path to `0 in p (i.e., all proper prefixes of `0). The terms
t1 and t2 are terms in our theory of Types. These terms
may include logical variables that need to be unified by the
MaxSMT solver. Note that the assertion (17) ensures that
if any of the T`i

is set to false (i.e., `i is in the minimum
error source), then all the assertions that depend on `0 are
immediately satisfied. In order to simplify the presentation
in Section 2, we have omitted the additional propositional
variables in our discussion of the examples.



The assertions that encode the typing rules are consid-
ered hard. To reduce the problem of finding minimum er-
ror sources to weighted MaxSMT, we add to these hard
assertions an additional set of clauses, each of which con-
sists of one of the propositional variables T`. For each `,
if R(p)(`) is defined, the clause T` is soft with associated
weight R(p)(`). Otherwise, T` is hard. Each solution to this
weighted MaxSMT instance then yields a minimum error
source by taking all locations ` whose clause T` is not in the
solution set.

We now explain these steps in more detail, starting with
the generation of the assertions that encode the typing rules.

Assertion Generation. We build on existing work for
constrained-based type checking [1, 32, 38] and adapt it
for our purposes.

We formalize the assertion generation in terms of a con-
straint typing relation A,Γ ` p : α. Here, A is a set of
typing assertions of the form (17). The rules that define the
constraint typing relation are given in Figure 4. They are de-
fined recursively on the structure of expressions. To relate
the generated typing assertions to p’s locations, we assume
that every expression is annotated with its location ` in p.
Note that for a set of assertions A, we write T` ⇒ A to
mean {T` ⇒ A | A ∈ A}.

We focus on the rules [A-LET] and [A-VAR] as they
are the most complex ones. The [A-LET] rule handles let
bindings let x = e1 in e2 by first computing a set of typing
assertions A1 for e1. The assertions in A1 encode all typing
assertions imposed by e1 under the current environment
Γ. In particular, they capture the assertions on the type of
e1 itself, which is described by a fresh type variable α1.
To compute the typing assertions A2 for e2, the variable
x is added to the typing environment Γ. The type of x is
described by a typing schema of the form:

∀~α.(A1 ⇒ α1)

The typing schema is needed to properly handle polymor-
phism. It remembers the set of assertions A1 along with the
type variable α1 that represents the type of e1 and x. Note
that the schema quantifies over all type variables ~α that have
been freshly introduced when analyzing e1 (including α1).
Whenever x is used inside the body e2 of the let binding, the
[A-VAR] rule instantiatesA1 by replacing the type variables
~α with fresh type variables ~β. The instantiated copy is then
added to the other generated assertions. The fresh instances
ofA1 ensure that each usage of x in e2 is consistent with the
typing assertions imposed by e1.

The following lemma states the correctness of the con-
straint typing relation.

Lemma 1. Let p be a program, L ⊆ Loc(p), A a set of
typing assertions, and α a type variable such that A, ∅ ` p :
α. Then mask(L, p) is well typed iff A ∪ {T` | ` /∈ L } is
satisfiable in the theory of Types.

(let f = ... in ...)`0

(λxy. y x)`1

(λy.y x)`2

(y x)`3

y`4 x`5

(f 1 0)`6

(f 1)`7 0`8

1`10f `9

Figure 5. Labeled abstract syntax tree for the program p

The proof of Lemma 1 closely follows that of [38, Lemma
2], modulo reasoning about the auxiliary propositional vari-
ables.

Computing Minimum Error Sources. To compute mini-
mum error sources, we generate a weighted MaxSMT in-
stance I (p,R) = (w,AH ,AS) as follows. Let A be a set of
assertions such that A, ∅ ` p : α for some type variable α.
Then define:

AH = A ∪ {T` | ` /∈ dom(R(p)) }
AS = {T` | ` ∈ dom(R(p)) }

w(T`) = R(p)(`), for all T` ∈ AS

Let S be a solution of I (p,R). Then define E(S) = { ` ∈
Loc(p) | T` /∈ S }. The following theorem states the correct-
ness of our reduction.

Theorem 1. Let p be a program and R a ranking criterion.
Then L ⊆ Loc(p) is a minimum error source of p subject
to R iff there exists a solution S of I (p,R) such that L =
E(S).

Example. We conclude the presentation of our algorithm
with another example that demonstrates how our approach
deals with polymorphic functions. To this end, let p be the
following program:

let f = λx y. y x in f 1 0

This program is not well typed. The most general type that
can be inferred for f from its defining expression is

f : ∀αβ. α→ (α→ β)→ β .

However, the type of 0 is int and not a function type. Hence,
applying 0 as second argument to f in the body of the let
violates the typing rules.

Figure 5 shows the abstract syntax tree of the program
p with each node labeled by its location. Applying the con-
straint generation rules from Figure 4 then yields the follow-
ing set of assertions A:



A,Γ.x : α ` e : β γ new

T` ⇒ ({γ = fun(α, β)} ∪ A),Γ ` (λx.e)` : γ
[A-ABS]

A1,Γ ` e1 : α A2,Γ ` e2 : β γ new

T` ⇒ ({α = fun(β, γ)} ∪ A1 ∪ A2),Γ ` (e1 e2)` : γ
[A-APP]

A1,Γ ` e1 : α A2,Γ ` e2 : β A3,Γ ` e3 : γ δ new

T` ⇒ ({(T`1 ⇒ α = bool), (T`2 ⇒ β = δ), (T`3 ⇒ γ = δ)} ∪ A1 ∪ A2 ∪ A3),Γ ` (if e`1
1 then e`2

2 else e`3
3 )` : δ

[A-COND]

α new
∅,Γ ` ⊥ : α

[A-HOLE]
b ∈ B α new

{T` ⇒ α = bool},Γ ` b` : α
[A-BOOL]

x : ∀~α.(A ⇒ α) ∈ Γ ~β, γ new

T` ⇒ ({γ = α[~β/~α]} ∪ A[~β/~α]),Γ ` x` : γ
[A-VAR]

n ∈ Z α new
{T` ⇒ α = int},Γ ` n` : α

[A-INT]
A1,Γ ` e1 : α1 A2,Γ.x : ∀~α.(A1 ⇒ α1) ` e2 : α2 ~α = fv(α) \ fv(Γ) ~β, γ new

T` ⇒ ({γ = α2} ∪ A1[~β/~α] ∪ A2),Γ ` (let x = e1 in e2)` : γ
[A-LET]

Figure 4. Rules defining the constraint typing relation for λ⊥

T`0 ⇒ {α0 = α6, Cf (α′′
1 , α

′′
2 , α

′′
3 , α

′′
4 , α

′′
5 , β

′′
1 , β

′′
2 ),

T`6 ⇒ {α7 = fun(α8, α6),
T`7 ⇒ {α9 = fun(α10, α7),

T`8 ⇒ α8 = int,
T`9 ⇒ {α9 = α′′

1 ,
Cf (α′

1, α
′
2, α

′
3, α

′
4, α

′
5, β

′
1, β

′
2)}

},
T`10 ⇒ α10 = int}}

where

Cf (α1, α2, α3, α4, α5, β1, β2) ≡
T`1 ⇒ { α1 = fun(β1, α2),

T`2 ⇒ { α2 = fun(β2, α3),
T`3 ⇒ { α4 = fun(α5, α3),

T`4 ⇒ α4 = β2,
T`5 ⇒ α5 = β1}}}

Note that we introduced a predicate Cf to serve as a short-
hand for the instantiated assertions that are associated with
the bound variable f .

The assertions in A are satisfiable in Types if one of the
following location variables is assigned false: T`4 , T`8 , T`9 ,
or any other T`i

where `i is on the path to one of the locations
`4, `8, or `9.

Now consider the ranking criterion R that defines `9 hard
and all other locations `i soft with rank R(p)(`i) = ni,
where ni is the number of nodes in the subtree of the AST
whose root `i identifies. Solving the weighted MaxSMT
instance I (p,R) yields two minimum error sources, each of
which contains one of the locations `4 and `8.

4.2 Solving Weighted MaxSMT
Finally, we present our algorithm for solving the weighted
MaxSMT instances that we generate.

Our algorithm relies on the computation of unsat cores.
An unsat core U is an unsatisfiable subset of a set of clauses
(respectively, assertions). The maximal satisfying subsets of
a set of clauses are closely related to unsat cores [28]. If all
strict subsets of U are satisfiable, then U is minimal.

Our algorithm is shown in Figure 6. Is inspired by the
approach given in [9]. This approach uses an off-the-shelf
partial weighted MaxSAT solver to generate a candidate
weighted MaxSAT assignment, called S, on propositional
abstractions of A. An SMT solver is used to check whether
the candidate assignment S is theory feasible (line 6). If so,
then S is a weighted MaxSMT answer (line 7). Otherwise,
the algorithm learns an unsat core, U , that blocks the candi-
date (line 8). Let ¬U be a shorthand for the formula repre-
senting the negation of the unsat core:

¬U ≡
∨

a∈U

¬a .

The negation of an unsat core is always theory valid. (¬U is
always true in the theory.) This new theory valid lemma is
accumulated in a set of lemmas, L, that are passed through-
out the execution (line 9). The propositional abstraction of
L is then added as new hard constraints to the weighted
MaxSAT solver (line 10). The weighted MaxSAT solver is
then asked for a new candidate answer (line 10), and the
process repeats until a weighted MaxSMT answer is found
(line 11). To ensure the WMSMT loop terminates, we begin by
checking that AH is satisfiable (line 2). To find a solution to
the weighted MaxSMT problem, the implementation starts
by guessing that all soft assertions can be satisfied S = AS

(line 3).
In principle, the procedure UnsatCore could return the

trivial unsat core, AH ∪ L ∪ S, and MaxSMT would still
be correct and terminating. However, the trivial unsat core
is unlikely to be minimal and the MaxSAT solver may end
of having to enumerate all subsets of AS in this scheme.
To accelerate the search, we use a naive implementation
of Junker’s QuickXplain algorithm [21] for finding a min-
imal unsat core, U . QuickXplain uses a divide-and-conquer
approach to identify assertions that must belong to U us-
ing only satisfiability checks. If the sizes of |U | = k and
|A| = n, then QuickXplain finds U inO(k · log(n

k )+k) sat-



1 WMaxSMT(w, AH ,AS) =

2 if SMT.Solve(AH ) = unsat then ∅
3 else let S,L = WMSMT(w,AH ,AS ,[],AS) in

4 S

5 WMSMT(w,AH , AS , L, S) =

6 if SMT.Solve(AH ∪ L ∪ S) = sat
7 then S, L
8 else let U = UnsatCore(AH ∪ L ∪ S) in

9 let L′ = (¬U )::L in

10 let S ′ = WMaxSAT(w,AH ∪ L′,AS) in

11 WMSMT(w,AH ,AS ,L′,S ′)

Figure 6. Weighted MaxSMT using unsat cores

1 AllWMaxSMT(w,AH , AS) =

2 let S,L = WMSMT(w,AH ,AS ,[],AS) in

3 AWMSMT(w,AH , AS , w(S), L, [])

4 AWMSMT(w,AH , AS , W , L, acc) =

5 let S, L′ = WMSMT(w,AH ,AS ,L,AS) in

6 if w(S) < W then acc

7 else let acc ’ = S::acc in

8 let A′
H = (¬S)::AH in

9 AWMSMT(w,A′
H , AS , W , L′, acc ’)

Figure 7. Enumerating all weighted MaxSMT solutions

isfiability checks. Note that as each member ofL is valid, the
set L may safely be dropped in both the SMT.Solve (line 6)
and UnsatCore (line 8) calls.

This procedure is a minor modification of [9] where
Lemma Lifting (the SMT.GetTLemmas function in [9]) is
replaced by UnsatCore. Lemma Lifting requires special-
ized support from the SMT solver, and currently MathSAT
is the only SMT solver that explicitly supports this. Our ap-
proach uses the SMT solver as a black box, and any SMT
solver that supports the theory of inductive data types may
be used.

Building upon the MaxSMT code, all solutions to the
given MaxSMT instance can be enumerated with repeated
calls to MaxSMT and blocking clauses. The AllMaxSMT al-
gorithm (Fig. 7) computes a single MaxSMT solution to de-
termine the maximum weight W (line 2). While the algo-
rithm can find a MaxSMT solution S of weight W , S is
accumulated into acc, and is blocked from being a future
solution using a new hard constraint (line 7- 9). If the next
candidate solution is smaller (w(S) < W ), all MaxSMT so-
lutions are in acc (line 6).

Preliminary empirical results given in Section 5 show
that this “quick-and-dirty” implementation of weighted
MaxSMT and unsat core computation is already sufficiently
fast to be responsive. A more mature implementation can
take advantage of native SMT support for unsat cores.

5. Implementation and Evaluation
We have implemented our algorithm for the Caml subset of
the OCaml language and evaluated it on the OCaml bench-
mark suite from [24]. The tool is available from the follow-
ing URL: http://cs.nyu.edu/~zvonimir/minerrloc.
tar.gz.

The vanilla implementation of our algorithm was able to
find a minimum error source for 98% of the benchmarks
in a reasonable time using a typical ranking criterion. Fur-
ther, our approach was able to enumerate all minimum error
sources on a sizable majority of the benchmarks. While the
benchmark programs are quite modest, we find these initial
experimental results promising for the overall approach. In
addition to our vanilla implementation, we also discuss three
optimizations that sacrifice completeness for efficiency by
focusing the search to certain parts of the input program.

5.1 Implementation
Our implementation builds on top of the EasyOCaml [14]
system, the SMT solver CVC4 [2], and the SAT solver
Sat4j [23]. We use EasyOCaml to generate the weighted
MaxSMT instances, and a loose combination of CVC4 [2]
and Sat4j [23] to solve the generated instances.

Assertion Generation. EasyOCaml implements the type
error localization approach described in [17] for a subset of
the OCaml language. Similar to our approach, EasyOCaml
uses constraint solving for error localization. We tapped
into the corresponding code of EasyOCaml and modified
it to produce the weighted MaxSMT instances from the in-
put program. The implementation begins by running Easy-
OCaml on the input program. EasyOCaml produces typing
assertions, which we annotate with the locations of the cor-
responding program expressions in the input source code.
These assertions only encode the typing relation. In addi-
tion, we output the structure of the input program in terms
of its abstract syntax tree edges where the nodes are the lo-
cations associated with the typing assertions. This informa-
tion is sufficient to generate the final typing constraint as
described in Section 4.1. In our evaluation, we used a fixed
ranking criterion that is defined as follows: (1) all assertions
that come from expressions in external libraries are set as
hard; (2) all assertions that come from user-provided type
annotations are set as hard; and (3) all remaining assertions
have a weight equal to the size of the corresponding expres-
sion in the abstract syntax tree. We encode the generated as-
sertions in an extension of the SMT-LIB 2 language [5] to
handle the theory of inductive data types.

Solving the Weighted MaxSMT Instances. Our weighted
MaxSMT solver, which we use to solve the generated in-
stances, directly implements the algorithm presented in Sec-
tion 4.2. The implementation is a thin wrapper of approx-
imately 530 lines of Java code around an SMT solver and
a weighted MaxSAT solver. In particular, we use CVC4 to



implement the SMT.Solve function, and Sat4j to implement
the WMaxSat function.

Preemptive Cutting. The first optimization of our basic al-
gorithm that we considered is preemptive cutting. Here, we
run EasyOCaml’s inbuilt type checker alongside the con-
straint generation procedure. As soon as the type checker
detects a type error, we stop the constraint generation and
analyze only those assertions that have been generated up
to this point and in the remainder of the enclosing function
definition. This approach reduces the number of generated
assertions and thus execution time of the solver. The down-
side of this approach is that the reported expressions might
not constitute a minimum error source for the full program.

Constraint Slicing. Both the basic implementation of our
algorithm and the optimization with preemptive cutting take
into account all typing assertions that EasyOCaml generates
for the considered program portion. We developed an addi-
tional optimization that slices the typing constraint by re-
stricting the computed assertions to a cone of influence of a
known type error location. That is, we first run the OCaml
type inference on the input program to obtain a source code
location ` that is involved in a type error. Next, we compute a
subset of the set of typing assertions that we generate for the
program as follows. The computed subset is the least fixed
point of the function F on sets of typing assertionsA, where
an assertion a is in F (A) iff either a is directly generated
from the expression at location `, or fv(a)∩ fv(A) 6= ∅, or a
belongs to a set of assertions that is associated with a poly-
morphic function and that has a variable from one of its in-
stantiations appearing in fv(A). The latter case ensures that
if a usage of a polymorphic function affects the type error,
then the assertions from all usages of the function as well
as the function definition appear in the slice. That way, we
still consider other potential type errors caused by the wrong
usage of the function.

The rationale behind this optimization is as follows. The
input program may be large, but a type error is usually
tied to a small part of the program logic. The typing asser-
tions that are not involved in any type error are not needed
for finding minimum error sources. Constraint slicing over-
approximates the set of relevant typing assertions for a spe-
cific type error, weeding out a potentially large number of ir-
relevant assertions and thereby decreasing the running time
of the solver. The downside of this approach is that there are
no guarantees that the sources of all type errors are reported,
since there can be multiple independent type errors.

5.2 Evaluation
We evaluated our implementation on the OCaml benchmarks
used in [24]. The benchmark suite consists of OCaml pro-
grams that have been written by students. The programs ex-
hibit various kinds of errors that are statically detected by
the compiler. We considered a subset of the original bench-
mark set consisting of 356 programs. Most of these pro-

grams exhibit type mismatch errors, with a few exceptions
of programs where a function is called with too many argu-
ments or where the programmer attempted to write to a non-
mutable field of a record. The original benchmark suite con-
tains many more programs. However, these other programs
do not exhibit type errors but errors that are inherently lo-
calized, such as the use of an unbounded value or type con-
structor. The size of the programs is moderate. The largest
program has 397 lines of code, comments included. All of
our experiments were conducted on an Intel(R) Xeon(R)
machine with eight 3.60GHz cores. However, our implemen-
tation currently utilizes only a single core.

Quality of Computed Minimum Error Sources. In our
first experiment, we assessed how good the produced min-
imum error sources are at pinpointing the true error source.
To this end, we chose 20 programs from the benchmark suite
at random, identified the true error source in each program,
and compared it against the first minimum error source that
was computed by our implementation. As mentioned ear-
lier, we used the ranking criterion that favors error sources
of smaller code size and that excludes possible errors sources
coming from external functions and type annotations. To
identify the true error source we used additional informa-
tion that was provided by the benchmark suite. Namely, the
benchmark suite does not consist of individual programs.
Instead, it consists of sequences of modified versions of
programs. Each such program sequence was recorded in
a single session of interactions between a student and the
OCaml compiler. By comparing subsequent program ver-
sions within one sequence, we can identify the changes that
the student made to fix the reported type errors and thereby
infer the true error sources. In the experiment, we used the
vanilla implementation without preemptive cutting and con-
straint slicing.

We classified the result of the comparison as either “hit”,
“close”, or “miss”. Here, “hit” means that the computed min-
imum error source exactly matches the true error source, and
“miss” means that there is no relationship between the two.
A “close” result means that the locations in the computed
minimum error source were close enough to the true error
locations so that a programmer could easily understand and
fix the type error. For example, if the minimum error source
reported the function in a function application instead of the
argument of the application (or vice versa), then we consid-
ered the result to be close to the true error source.

We then repeated the same experiment but this time using
OCaml’s type checker instead of our implementation. For
each program, we recorded the result of the two experiments.
Figure 8 shows the number of obtained result pairs, aggre-
gated over the 20 benchmark programs. As can be seen, on
the randomly chosen programs, our approach identifies the
true error source more often than the OCaml type checker,
even though we were using a rather simplistic ranking crite-
rion. Specifically, our approach missed the true error source



in only three programs, whereas OCaml did so in six pro-
grams. Despite the subjective nature of true error sources,
we believe that this experiment shows the potential of our
approach to providing helpful error reports to the user.

Assertion generation. The next experiment we conducted
was measuring the time spent on generating the typing con-
straints. For the versions without constraint slicing, this in-
cludes the time spent on generating typing assertions in
EasyOCaml and the time taken by our post-processing pro-
cedure to convert EasyOCaml’s output into the final SMT
constraints. Recall that in the version with preemptive cut-
ting, we stop the constraint generation as soon as Easy-
OCaml detects a type error. When slicing is used, we ad-
ditionally include the time taken by OCaml’s type checker
as well as the time taken to compute the slice using the in-
formation provided by OCaml’s error report. Figure 9 shows
the correlation between the measured time and the number
of produced assertions for all four versions of our imple-
mentation. As it can be seen, the overall time needed for
the constraint generation is reasonably small. This is to be
expected as the input programs are of moderate size. Note,
however, that the additional constraint slicing step does not
significantly increase the constraint generation time.

It can be seen from Figure 9 that the number of assertions
gets large for some programs. Figure 10 provides a more
detailed correlation between program size and the number
of generated assertions. In general, the number of generated
assertions gets bigger as programs do. The number of as-
sertions depends on the number of usages of polymorphic
functions since each use of a polymorphic function results
in copying the associated set of assertions. This explains
the difference in the number of generated assertions for pro-
grams of similar size. Also, this explains why the number of
generated assertions for some programs is large even if we
use the cutting and slicing optimizations.

Computing minimum error sources. The last experiment
we performed had the goal of measuring the time spent com-
puting the minimum error sources. We broke the benchmark
suite of 356 programs into 8 groups according to their size
in the number of lines of code. The first group includes pro-
grams consisting of 0 and 50 lines of code, the second group
includes programs of size 50 to 100, and so on as shown in
the first column of Figure 11. The numbers in parenthesis
indicate the number of programs in each group.

In the first experiment, we measured the time spent com-
puting a single minimum error source for the whole in-
put programs. We expect the computation of a single error
source to be the main use case in practice. Compilers in gen-
eral might want to avoid burdening the programmer with
multiple error sources and only show a single one instead.
Also, the purpose of ranking criteria is to favor a few spe-
cific error sources of high quality, rather than getting a large
number of possible candidates.

AST size criterion OCaml # of outcomes
hit miss 3
hit close 2
hit hit 4

close miss 1
close close 6
close hit 1
miss miss 2
miss close 1
miss hit 0

Figure 8. Quality of AST ranking criterion compared to
OCaml’s type checker in pinpointing the true error source
in 20 benchmark programs

The results of the experiment are shown in Figure 11. The
table shows statistics about the execution time, the weight
of the minimum error sources, as well as the number of
assertions passed to the solver. Note that the number of
these assertions is smaller than the number of generated
assertions. This is because we conjoined all assertions that
are generated for each location to a single assertion. The
main reason for doing so is that when a variable appears
in a small number of assertions, the solver needs to do
less internal handling of such variables, thus gaining better
performance. For all three measured values, the minimum,
median, and maximum values are given for each family. As
it can be seen, the execution times are reasonably small.
However, for some programs the framework spends a couple
of minutes computing the solution. The slowdown in our
implementation mostly occurs in the cases where a huge
number of constraints has been generated.

In some cases we observed that QuickXplain [21] unsat
core computation caused a significant slowdown. This algo-
rithm makes only black-box satisfiability queries, not relying
on specialized support from the solver. We expect special-
ized techniques to make fewer satisfiability queries. Addi-
tionally, we observed that the QuickXplain algorithm is sen-
sitive to the ordering of the assertions. For instance, the order
where the assertions for the location variables came before
the actual typing assertions performed better than the order
where typing assertions came first. The former is the order
we use in our implementation.

In addition to computing a single minimum error source,
we conducted a separate experiment where we computed
all minimum error sources. We report the number of mini-
mum error sources as well as the total computation time. Not
surprisingly, computing all error sources takes more time.
We observed that in this experiment the running time for
computing all error sources appears to grow sublinear with
the number of error sources. We hypothesize that our al-
gorithm takes advantage of the capabilities of incremental
solvers. That is, the algorithm in Figure 7 for computing all
MaxSMT solutions remembers the set of computed lemmas
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Figure 9. Constraint generation execution time correlated with constraint size

across subsequent calls to the MaxSMT solver, reducing the
running times of these calls. However, computing all mini-
mum error sources can be significantly more expensive than
computing a single error source if a program has multiple in-
dependent type errors. In this case, the solver finds all min-
imum error sources for each individual type error and then
enumerates all possible combinations between those. This
means that the number of minimum error sources may grow
exponentially with the number of independent errors. In our
future work, we plan to address this issue by isolating error
sources one from another.

We repeated the same experiments using the slicing op-
timization. The results of these experiments are shown in
Figure 12. The slicing optimization performs better, as ex-
pected. Likewise, we repeated the experiments with preemp-
tive cutting (Figure 13) and with both preemptive cutting
and constraint slicing (Figure 14). The cutting optimization
further improves the running times. The execution times for
the version with preemptive cutting are comparable to those
achieved with the approach due to Zhang and Myers [42],
who used the same benchmarks in their evaluation and also
use the cutting optimization.

Further Performance Improvements. There are a num-
ber of opportunities for further improving the performance
of our implementation and to reduce the overall execution

time. The implementation of our MaxSMT solver is quite
simplistic. We plan to improve our MaxSMT solver by tak-
ing advantage of more mature algorithms for computing un-
sat cores and by incorporating advanced techniques such as
lemma lifting. However, the main bottleneck of our current
implementation is that the set of generated assertions can
grow very large. As can be seen in Figure 10, the number of
generated assertions grows exponentially with the program
size, even if we use the cutting and slicing optimizations.
We next explain in more detail the source of this exponential
explosion and discuss how we intend to address it.

6. Taming the Exponential Explosion
The constraint typing relation that is at the heart of our re-
duction suffers from one major drawback: the size of the
generated assertion set can grow exponentially in the size of
the program. The reason for this behavior is the interplay be-
tween the rules [A-LET] and [A-VAR] in Fig. 4. These rules
govern the handling of let-bound polymorphic variables: for
each use of a let-bound variable x in the body of the let ex-
pression, the rule [A-VAR] adds a fresh instance of the typ-
ing constraint that is associated with x by rule [A-LET] to
the set of assertions. Hence, the number of generated asser-
tions grows exponentially with the nesting depth of let bind-
ings in the program.
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Figure 10. Constraint size correlated with program size

The exponential worst-case complexity of the constraint
generation cannot be avoided in general, as the type check-
ing problem for Hindley-Milner type systems is EXPTIME-
complete [22, 27]. This complexity carries over to the prob-
lem of finding minimum error sources. Nevertheless, actual
implementations of type checkers for OCaml and other lan-
guages that are based on the Hindley-Milner type system
achieve good performance in practice. This raises the ques-
tion whether one can achieve comparable performance with
our approach by avoiding unnecessary instantiation of asser-
tions during constraint generation. We propose two possible
solutions to this problem that we will explore in future work.

Lazy Quantifier-Based Instantiation. Our first solution
exploits that all instantiated copies of a set of assertions
share the same structure. We can thus introduce an auxil-
iary predicate symbol as a shorthand for the assertion set.
The auxiliary predicate symbol is defined using a univer-
sally quantified axiom. This axiom is passed to the MaxSMT
solver as an additional hard assertion. Whenever we need to
instantiate the assertion set associated with a let-bound vari-
able in the [A-VAR] rule, we instead instantiate the predicate
associated with that variable. We have already used this idea
implicitly in the example at the end of Section 4.1, where
we introduced the predicate Cf to represent the assertion set
that describes the type of the polymorphic function f . The

improved constraint typing relation is obtained by modifying
the rule [A-LET] as shown in Figure 15.

When the MaxSMT solver solves the assertions, it will
generate the copies of the assertion sets lazily by instantiat-
ing the appropriate axioms. Note that the defining axioms of
the auxiliary predicates satisfy stratification restrictions that
ensure the underlying satisfiability problem remains decid-
able. That is, the defining axioms of the auxiliary predicates
may mutually depend on each other, but these dependencies
are not cyclic. In the worst case, the SMT solver will trigger
as many axiom instantiations as there are instances gener-
ated by the naive constraint typing rules.

The advantage of this solution is that it can be easily im-
plemented by using an SMT solver that provides a quantifier
instantiation engine. Also, we only need a single MaxSMT
query to compute the minimum error sources. The disadvan-
tage is that the solver may still consider many unnecessary
instantiations during its search.

Lazy Unification-Based Instantiation. In actual compil-
ers, the exponential blow-up of type inference is tamed by
computing the principal type of the defining expression of
each let-bound variable x. The principal type of an expres-
sion is a type such that all other types for this expression
are an instance of the principal type. For Hindley-Milner
type systems, principal types correspond to most general



Single minimum error source All minimum error sources

Group Constraints Error source weight Time (sec) # of sources Time (sec)
min med max min med max min med max min med max min med max

0-50 (47) 15 220 524 1 1 10 0.06 0.29 8.86 1 2 12 0.06 0.33 10.95
50-100 (102) 33 519 1130 1 1 14 0.06 0.71 10.02 1 2 20 0.08 0.84 11.23

100-150 (65) 520 968 1805 1 1 81 0.26 1.75 82.27 1 2 87 0.27 2.31 83.77
150-200 (57) 1109 1504 2002 1 1 12 0.49 4.66 24.53 1 1 19 0.59 4.79 26.38
200-250 (53) 1067 1732 2091 1 1 17 0.92 6.50 58.80 1 2 10 1.08 8.25 121.97
250-300 (28) 1497 2401 2911 1 1 24 0.84 4.79 153.50 1 2 4 0.98 5.72 218.73
300-350 (3) 2277 2445 3273 2 4 4 9.68 16.71 86.71 4 12 16 10.91 37.75 93.63
350-400 (1) 2657 2657 2657 1 1 1 11.06 11.06 11.06 8 8 8 23.76 23.76 23.76

Figure 11. Statistics for framework execution for whole programs without constraint slicing
Single minimum error source All minimum error sources

Group Constraints Error source weight Time (sec) # of sources Time (sec)
min med max min med max min med max min med max min med max

0-50 (47) 15 125 473 1 1 8 0.06 0.21 8.17 1 2 12 0.06 0.24 10.99
50-100 (102) 18 261 1067 1 1 14 0.06 0.40 9.87 1 2 20 0.06 0.49 11.11

100-150 (65) 15 616 1787 1 1 81 0.05 1.35 81.82 1 2 87 0.05 1.39 82.61
150-200 (57) 106 819 1871 1 1 12 0.08 1.98 20.45 1 1 19 0.12 2.58 29.87
200-250 (53) 28 1230 1855 1 1 17 0.05 5.54 40.15 1 1 10 0.06 5.50 62.92
250-300 (28) 96 1501 2778 1 1 24 0.11 3.24 108.14 1 2 4 0.12 3.68 114.25
300-350 (3) 1617 1753 2503 2 2 4 8.71 9.76 80.16 4 4 12 9.78 24.15 85.83
350-400 (1) 2415 2415 2415 1 1 1 10.05 10.05 10.05 8 8 8 22.24 22.24 22.24

Figure 12. Statistics for framework execution for whole programs with constraint slicing
Single minimum error source All minimum error sources

Group Constraints Error source weight Time (sec) # of sources Time (sec)
min med max min med max min med max min med max min med max

0-50 (47) 15 177 518 1 1 6 0.06 0.13 1.65 1 2 10 0.06 0.16 3.57
50-100 (102) 18 341 986 1 1 8 0.07 0.34 6.13 1 1 8 0.06 0.37 10.01

100-150 (65) 85 755 1595 1 1 81 0.12 0.94 26.61 1 2 29 0.15 1.21 36.15
150-200 (57) 106 1030 1841 1 1 12 0.09 0.92 10.95 1 1 19 0.08 1.22 26.14
200-250 (53) 52 1138 2042 1 1 17 0.08 0.96 23.23 1 1 10 0.08 1.12 28.00
250-300 (28) 1023 1734 2896 1 1 24 0.58 2.45 49.35 1 2 4 0.61 3.39 61.26
300-350 (3) 1040 2193 3203 1 2 4 0.84 8.39 9.96 1 4 16 0.99 8.25 21.42
350-400 (1) 762 762 762 1 1 1 0.94 0.94 0.94 8 8 8 2.13 2.13 2.13

Figure 13. Statistics for framework execution for preemptive cutting without constraint slicing
Single minimum error source All minimum error sources

Group Constraints Error source weight Time (sec) # of sources Time (sec)
min med max min med max min med max min med max min med max

0-50 (47) 9 70 406 1 1 6 0.05 0.10 1.04 1 2 10 0.05 0.12 3.43
50-100 (102) 18 120 816 1 1 8 0.05 0.16 3.81 1 1 8 0.05 0.18 9.82

100-150 (65) 15 320 1592 1 1 81 0.05 0.45 27.04 1 2 29 0.05 0.56 34.06
150-200 (57) 13 287 1763 1 1 12 0.05 0.33 21.46 1 1 19 0.05 0.34 22.75
200-250 (53) 28 501 1826 1 1 17 0.06 0.61 10.49 1 1 10 0.06 0.62 12.77
250-300 (28) 23 1206 2369 1 1 24 0.05 1.64 48.56 1 2 4 0.06 1.97 51.53
300-350 (3) 55 516 1599 1 2 2 0.09 0.33 8.95 1 4 4 0.11 0.34 12.47
350-400 (1) 630 630 630 1 1 1 0.85 0.85 0.85 8 8 8 1.81 1.81 1.81

Figure 14. Statistics for framework execution with preemptive cutting and constraint slicing

unifiers (mgu) of the generated typing constraints and can
be computed efficiently using Robinson’s unification algo-
rithm [33]. The principal type of x can then be substituted
in at each place where x is used in the body of the let ex-
pression. This eliminates the repeated analysis of x’s typing
constraints for each usage of x.

A first attempt to apply this idea to the problem of com-
puting minimum error sources is to replace the instantiated
typing assertions of a bound variable’s defining expression
by the entailed mgu. This approach would yield an equisatis-
fiable typing constraint and avoid the exponential blow-up of
the constraint size in practice. Unfortunately, this approach



A1,Γ ` e1 : α1 A2,Γ.x : ∀~α.({Cx(~α)} ⇒ α1) ` e2 : α2 ~α = fv(α)− fv(Γ) ~β, γ new

T` ⇒ ({γ = α2} ∪ {∀~α.Cx(~α)⇒ A1} ∪ Cx(~β) ∪ A2),Γ ` (let x = e1 in e2)` : γ
[A-LET]

Figure 15. Modified rule [A-LET] that avoids an exponential explosion in the size of the generated assertion set

also potentially eliminates minimum error sources from the
solution set: the minimum error source of a type error that
becomes manifest in the use of a let-bound variable may
be in the defining expression of that variable. However, we
can use most general unifiers to conservatively approximate
the instantiated typing assertions in the body of each let ex-
pression. To ensure that minimum error sources are not lost,
we guarantee that the weight of the mgu is smaller or equal
to the weight of any propositional variable in the approxi-
mated assertions. This approximation is then iteratively re-
fined by instantiating the constraints for let-bound variables
lazily, guided by the computed minimum error sources, until
a fixpoint is reached.

We describe this algorithm in more detail. During con-
straint generation, for each let-bound variable x defined at
some location `x, unify the generated constraints Ax for x.
If unification fails, proceed as in the basic algorithm, i.e,
instantiate Ax at all locations where x is used. If unifica-
tion succeeds, let ∀~α.τ be x’s mgu. Then, at each location `
where x is used, add a constraint

A` ≡ T` ⇒ T`x
⇒ α = τ [~β/~α]

where α is the type imposed by the context of `i and ~β are
fresh type variables. Assign to T`x

the minimum weight of
all locations that the defining expression of x recursively
depends on.

Solve the current weighted MaxSMT instance for a so-
lution S. For every let-bound variable x, if T`x

/∈ S, then
instantiate Ax by replacing the constraint A` with

A` ≡ T` ⇒ T`x
⇒ Ax[~β′/~α′]

for each ` where x is used. Here ~α′ are the free variables
of Ax that are unconstrained by the environment and ~β′ are
fresh. Set the weight of T`x

back to its original value. This
process is repeating until a solution S is found such that
all of the locations not included in S are fully instantiated.
This algorithm avoids the instantiation of constraints for let-
bound variables that are not involved in the type error.

In practice, even in large programs only few let-bound
variables actually contribute to a type error. This suggests
that the algorithm outlined above should perform well. We
plan to implement this algorithm in our future work.

7. Conclusion
We have presented a general framework for localization of
type errors based on constraint solving. What makes our ap-
proach unique is its support for ranking criteria that enable
compilers to control which error sources should be preferred

in the search. Our algorithm then guarantees to find min-
imum error sources subject to the given ranking criterion.
By reducing the problem of finding minimum error sources
to weighted MaxSMT, the algorithm can be easily adapted
to support rich type systems. We reported on results ob-
tained for type error localization in OCaml programs using
a naive implementation of our basic algorithm. Our exper-
iments suggest that the approach is effective at identifying
minimum error sources and has the potential to significantly
improve the quality of type error reports.
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