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Abstract. A hallmark of object-oriented programming is the abilitygerform
computation through a set of interacting objects. A commanifestation of this
style is the notion of gackage which groups a set of commonly used classes
together. A challenge in using a package is to ensure thaeat dbllows the
implicit protocol of the package when calling its method®lations of the pro-
tocol can cause a runtime error or latent invariant viotatiorhese protocols can
extend across fferent, potentially unboundedly many, objects, and areispeéc
informally in the documentation. As a result, ensuring thatient does not vio-
late the protocol is hard.

We introducedynamic package interfaces (DPB formalism to explicitly cap-
ture the protocol of a package. The DPI of a package is a finttefsrules that
together specify how any set of interacting objects of thekpge can evolve
through method calls and under what conditions an error egpdn. We have
developed a dynamic tool that automatically computes amoappation of the
DPI of a package, given a set of abstraction predicates. Apkagyerty of DPI is
that the unbounded number of configurations of objects otkgme are summa-
rized finitely in an abstract domain. This uses the obsamdtiat many packages
behave monotonically: the semantics of a method call oveméiguration does
not essentially change if more objects are added to the aoafign. We have
exploited monotonicity and have devised heuristics toialstaccinct yet general
DPIs. We have used our tool to compute DPIs for several corymaed Java
packages with complex protocols, such as JDBC, HashSefmagList.

1 Introduction

Modern object-oriented programming practice uses packémencapsulate compo-
nents, allowing programmers to use these packages throatitdefined application
programming interfaces (APIs). While programming langsguch as Java and C#
provide a clear specification of the static APIs of a packadgerims of classes and their
(typed) methods, there is usually no specification of thditiigprotocolthat constrains
the temporal ordering of method calls orffdrent objects. If the protocol is limited to
a single object of a single class, it can be specified in forra sfate machine whose
states are the abstract states of the object and whose eggé®adnvocations of its
methods([2, 14, 16]. For example, a lock object has two st&teked and unlocked.
While in the unlocked (resp. locked) state, a call to the igekp. unlock) method takes
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it to the locked (resp. unlocked) state. Any other methobreallts in an error. The no-
tion of state-machine interfaces has been studied ex&lgsand there are many tools
to generate interfaces using static or dynamic technid@@d13[ 15]. However, exist-
ing notions of state machines on object states must be demeeravhen considering a
package. First, the internal state of an object should beidered in the context of the
internal states of other objects; e.g., in the Java Databasaectivity (JDBC) package,
aStatement object can execute safely only if its correspondiiegnection object is
open. Second, the execution of a method on an object can elthagnternal state of
other objects in the environment; e.g., calling tx&cuteQuery method on a JDBC
Statement object closes its corresponding opResultSet object. Finally, the pro-
tocol can constrain the states and transitiongrdfoundedlynany interacting objects;
e.g., considering a collection object and its iteratorsdifiying the collection directly
invalidatesall of its iterators.

The problem of generalizing interfaces from single to nplétiobjects has been
studied recently [10=12]. However, what is missing is arctiinition of what consti-
tutes an interface in the presence of unboundedly many whpecthe heap. Our first
contribution is the introduction alynamic package interfag®PI), which allows to
capture the protocol of a package in a succinct manner. ThePpackage is a set of
rules each of which specifies théfect of a method call on an object within an abstract
configurationof objects. An abstract configuration denotes an unboundetbar of
concrete configurations of objects from a package. A ruledssurceand adestina-
tion configuration, together with mappingthat specifies how the objects in the source
change to the objects in the destination.

Our first technical ingredient is a representation of alestcanfigurations using
nested graphfL7]. In a nested graph, a subgraph can be marked to be réfeaad
repetitions can be nested. Nested graphs naturally regreebounded heap configu-
rations. For example, Figuté 1 shows a (two-level) nesteglyrepresenting an open
JDBC Connection object with its many corresponding clos§datement objects,
each with many closeRlesultSet objects.

Our second ingredient is an abstract semantics of Javdalitguages over the do-
main of nested graphs that is monotonic (in fact, the abstracsition system isvell-
structured[1]): if a method can be called in a “smaller” configurationcan be also
called in a “larger” configuration, with the resulting configtions maintaining the re-
lationship. Monotonicity enables us to define the DPI rules @ackage only over
its maximalabstract configurations, letting each rule subsume infiniteany similar
“smaller” rules. We prove that the set of maximal configumas has a finite represen-
tation, and thus the DPI of a package has a finite number of [G]e

Our second contribution is a dynamic analysis techniqueotopaite an approxi-
mation of the DPI of a package directly from the source code. t0ol explores the
usage scenarios of a package by runningnaversal clientthat in each of its finite
number of steps, nondeterministically, either createsmaatgect or invokes a method
of an existing object. Each step of the universal clientltesa a rule. The universal
client can end up computing hundreds or thousands of distitkes, which makes the
resulting DPI practically not useful. The challenge is togmlize these rules to ob-
tain a compact DPI by exploiting similarity. Often, a pairrafes for the same method



are incomparable only because their sources and destisatie slightly dierent. For
example, in one rule for thelose method of theStatement class, the source config-
uration has closeResultSet objects but not an open one, and vice versa, another rule
might have an opeResultSet object but not closed ones. It makes sense, however, to
combine these two rules because tffea of the two rules are essentially the same: the
Statement object and its opeResultSet object are closed.

We have devised three heuristics that generalize a set frexirules into a smaller,
more general set. Owxtrapolationheuristic compares the configurations ofteiient
rules and deduces whether the configuration of a certaincariebe expanded by re-
peating part of it based on the repetitions observed in théguarations of other rules.
Our mergeheuristic combines two rules that are based on similar nieithvacations
into one rule. Ouexception isolatiorheuristic combines two similar exception rules
into one. While merging is similar to the union of the two lexception isolation is
closer to an intersection that isolates the root cause okegpgion. Our heuristics are
all grounded in the monotonicity property of our abstrachastics.

We have used our tool to compute the DPIs of Java packagesasu¢bBC (26
rules), HashSet (16 rules), and ArrayList (15 rules). THeswf these DPIs can be
traced to their documentation, as well as to the programmingrs discussed in on-
line discussion groups. Our tool more often than not congpthie expected number
of rules for these packages, but not all these rules are ttst gemeral ones. Our tool
never computes a rule that is not consistent with the behawiba package. This is an
indication that our heuristics aréfective.

A more formal treatment of our work can be found in the techhieports[[5,5].

2 Overview and Outline

We now explain the notion of DPI, and describe the main stbpsdur tool carries
out to compute the DPI of a package. We use Java Database @oitpdJDBC), a
package that provides database connectivity, as our rgmxiample.

We consider four commonly-used classes of JDBC and theloalst Thériver-
Manager class allows to create a new connection to a database byiimydk static
getConnection method. The string parameter of the method specifies the dfpe
database, its address, and the needed credentials to #ca®S3onnection object
can serve multiplStatement objects, each of which can be used to read or change
the content of the database. TéweateStatement method of theConnection class
creates a neWwtatement object. SQL commands and queries are executed through the
execute andexecuteQuery methods of theStatement class. Both methods accept
a string argument that is an SQL statement. #kecuteQuery method returns a new
ResultSet object, which is a collection of rows retrieved from the detse; thenext
method can be used to traverse these ronGnhection, Statement, orResultSet
object isopeninitially, but can be closed via their corresponditippse methods. In-
voking theexecuteQuery method on &tatement object causes an op@8esultSet
object that referencesiit to be closed, while creating a rmmResultSet object. If an
object, or one of the objects that it references directlyamgitively, is closed, invoking
a nonclose method on it would raise an exception.



2.1 System Input

Besides the names of classes and the signatures of theipdsetbur tool receives
a set of abstraction predicates over the attributes of thesek. A predicate is either
scalar, defined over the simple, non-reference attributes of thesels, oreference
determining which objects of a class are related to whiclkabjof another class via a
certain reference attribute. For simplicity, we assumedh@edicates are input by the
user, but standard techniques based on Boolean methodsfanehce-valued fields in
classes can be used to identify these predicatés [15].

For example, in JDBC, th8tatement class has aactive attribute that deter-
mines whether it is open or not. This attribute is a unaryaqaidedicate, but in general
a scalar predicate may read multiple fields from referendgedots. We also use the
applicationConnection field of the Statement class to define a reference predi-
cate that determines whidtatement object points to whicltonnection object. We
define similar scalar predicates for thennection andResultSet classes, which de-
termine whether their objects are open or closed. We alsoalafreference predicate
that determines whicResultSet objects reference whichtatement objects.

We require that the set of reference attributes do not creatycle when evalu-
ated over objects: i.e., when objects are considered asrardkthe true valuations of
reference attributes as directed edges, the resultindidsagcyclic. This is necessary
as some of our algorithms rely on computing the topologicdédng of heap-related
graphs. This requirement can be relaxed: it is possibleléavahe more general class
of the depth-bounded grapls [6].

2.2 Nested Object Graphs

The enabling technique that allows us to compute a sucgjeogral DPI for a package
is the ability to model deap configurationi.e., a set of concrete (e.g., Java) objects in
the heap that reference each other, agsted object graph
A nested object graph is a labeled, directed graph :
ConnectiofA]
whose subgraphs can be marked as repeatable. The nodes | ¢ open
of a nested object graph represent objects and its directed
edges represent references between the objects. The nodes -
and edges of the graph are labelled according to the input
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Repetition can be nested, and hence the name “nested ob- | ,
jectgraph.” As an example, the nested object graph in Figg. 1. A nested object graph
urel] represents all possible heap configurations corngistin
of an operConnection object with zero or more (in fact, possibly unboundedly many
closedStatement objects, each of which has zero or more cloResul tSet objects.
Repetitions are specified via “*” next to nodes or subgraphede C, for example,
which represents thResultSet objects, is marked repeatable in a nested manner:
each group of repeatabkesultSet objects is associated withStatement object,
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which itself is marked as repeatable via the “*” next to thegaph specified by the
dotted line. The repetition structure of a nested objecgplytia captured by assigning
nesting levelso the nodes of the graph. The larger the nesting level isyibie levels
of repetition it belongs td [6]. For example, the nestingelevof nodesA, B, andC in
Figurel are 0, 1, and 2, respectively.

2.3 DPIRules

The dynamic package interfacg®Pl) of a package is a set ofiles each of which
represents a family of method calls.rdle for a method call essentially specifies how
a certain family of similar method calls change the shapéeif torresponding heaps.
A rule consists of:

— A sourceand adestinationnested object graph, which represent all possible con-
crete heap configurations before and after the method call;

— A sourceand adestination cast nested object grajglach of which is a nested object
graph some of whose nodes are labelled vatbs such as “callee”, “parameté”,
and “new”; these graphs represent the heap configuratiansth directly, in the
sense that we will make clear, involved in the method call;

— An object mappingwhich maps the nodes of the source nested object graph to the
nodes of the destination nested object graph, possiblydeberministically; and

— A role mappingwhich maps the nodes of the source cast nested object gréipd t
nodes of the destination cast nested object graph; a notie thhelled by a role is
mapped deterministically, but other nodes could be mappaedeterministically.

Each tuple in the object mapping or the role mapping is anedtaith multiplicity
information that specifies how many of the concrete objezpsasented by the source
node are transferred to the destination naate=or many The semantics of the compu-
tation of object mapping and role mapping of a rule shouldiemthat a concrete object
is either mapped via the role mapping or the object mappiaignbt both.

As an example, Figufé 2 shows the rule that our system corsfrtexecuteQuery
method calls that raise no exceptions. The rule specifigsath@penResultSet is
closed when its correspondiSgatement object performsxecuteQuery; instead, a
newResultSet objectis created. Figufe 2[a) specifies the role mappinigeofle, via
dotted arrows that connect the nodes in the source castr@gtect graph to the nodes
in the destination cast nested object graph. The “called™aew” labels determine the
callee and the newly created objects, respectively. FB{@Fspecifies the object map-
ping of the rule via dotted arrows that, for the sake of bgg\abnnect the subgraphs
of the nested object graphs. While in this rule the objectpinapdoes not specify any
change in its corresponding objects, in general that ismetase. Both nested object
graphs and cast nested object graphs of the rule exhibititieps. It is this ability to
express unbounded number of concrete heap configuratiahaltbws us to compute
general, yet concise rules.

Exception RulesVhen a method call does not raise any exception, we are Igd&m
general rules with the largest possible nested object grépdcause it captures more
concrete cases). On the other hand, when a call raises gotiexcé is desirable to have
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Algorithm 1: ComputeDPI

Input: A set of classes and methods and a set of abstraction preslica
Result A set of general rulefRules each of which represents a family of method calls
Rules= 0;
while =Thresholddo
Pick a snapshot, a concrete Java object, execute one oftiteodse
Computey, the corresponding rule of the method call;
if there is no f € Rules that “covers” rthen Rules= Rulesu {r};
end
Remove any € Rulesthat is “covered” by another rule;
Extrapolate € Rulesusingr’ € Rules when possible; prune rules that are covered;by
Merge all pairs of mergeable rulesRules
Isolate all pairs of similar exception rulesRules
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the smallest rule that isolates the cause of the exceptiath&more, for exception
rules, we use a ternary logic that assigns an unknown valu&"“a predicate of an
object when the evaluation of the predicate does ffecawhether the exception will
be raised or not. These characterizations of the most gemndea for a method call
are inspired by the monotonic semantics that we have deeeélégr object-oriented
programs[[6]. For a safe method call, it should be possibleplicate its result in a
context with more objects. For a method call with an exceptioere is no context with
more objects that can avoid the exception.

Figure[3 shows the two rules that our tool computes forrteet method when
it raises theResultSet not open exception. In Figurg 3(h), the “*” values for the
s.openandc_openpredicates denote that regardless of whether the corrdsppstate-
ment or connection objects oRasultset object are open or not, the method call over
theResultset raises the exception when it is closed. Fidure]3(b) showsadke when
theResultset is actually open, but its correspondi@gnnection is not. These rules
point out succinctly the root cause of a bug discussed in athp foruntl

2.4 Computation Stages

Creating a rule from a specific method call is only the firspdi® compute a DPI.
Algorithm[d outlines the main steps that our tool takes to pgota succinct DPIs.

The first stage of the algorithm (lineH1-7) is tleploration stagein which auni-
versal clientnon-deterministically explores the behaviour of the pgekd&ach step of
the universal client is recorded using@urceand adestination snapshpéach of which
is a set of Java objects in the heap. The result of each stbp afiiversal clientis a rule.
If a new rule iscoveredby another already-explored rule, it is considered redotatad
discarded (lin€J5). Intuitively, a rulg covers ruler if r’ subsumes the behaviour of
by having “larger” elements. The exploration stage cor@suntil a maximum number
of redundant rules are encountered. After this threshalddshed, the redundant rules
in the set of explored rules are removed ([ihe 7).

lhttps://issues.apache.org/jira/browse/DERBY- 5545
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After the exploration stage, we apply three heuristics sogét of explored rules.
Our extrapolationheuristic generalizes a rule by expanding its (cast) neshgelct
graphs into more general graphs that represent more hediguwations. Oumerge
heuristic combines a pair of similar rules into one. Sinhlathe exception isolation
heuristic combines a pair of similar exception rules. THemgristics decrease the num-
ber of distinct explored rules of a DPI substantially; eig.the case of JDBC, from
about 2000 distinct rules to 26 final rules.

3 Method Calls and Rules

From a Method Call to a RuleA key step in computing a rule from a method call is to
derive the source and destination nested object graphssahdested object graphs of a
rule from the source and destination snapshots of the metdbdrhe object mapping
and role mapping of a rule are simply computed by tracking bbjects change from
the source to the destination snapshot, and ensuring ttzet dbject is mapped by
the role mapping it is not mapped by the object mapping. Thepedation of nested
object graphs is the same for source and destination sni@psioept that a destination
snapshot can have newly created objects. For the sake dfyhabelow, we assume
that we deal with the source (cast) nested object graph déa ru

The corresponding snapshot of a cast nested object gragistoaf the callee ob-
ject, actual parameter objects, and all other objects thasitively reach these objects
through their references, as well as all objects that aresitigely reached from these
objects through their references. The corresponding sioas$ a nested object graph
consists of all objects in the cast nested object graph filabjects that can reach these
objects transitively. To compute these snapshots, we eseplut reference predicates.
Next, we describe how to compute a nested object graph.

The first step is to turn the snapshot into a directed labajleghh by using the
input scalar and reference predicates. We call such a graelamgraph Figure[4(a)
shows a heap graph corresponding to 9 JDBC objects, usimgeldeates described in
Sectior 2. Each node of the graph is labelled with the namis afass, the evaluations
of its scalar predicates, as well as a unique id that is eadlosside a pair of brackets.
Each edge of the heap graph is labelled with the name of itegponding reference
predicate. Figurg 4(p) is another heap graph resulting fireerinvocation of method
executeQuery on the Java object that the node with id 4 in Fidure]4(a) repriss The
nodes with the same identifiers in the two graphs represergaime Java objects.

The second step is to reduce a heap graph to a nested objelet §hee idea is that if
an object or a pattern for a set of interconnected objectsagpnore than once, then it
is marked as repeatable. The reduction from a heap graphest@tobject graph can be
considered as a bisimulation reduction: two nodes in a hesgghaare equivalentiithey
have the same evaluations for their scalar predicates,uatiftefmore, they mimic one
another by reaching equivalent nodes following their simieference edges. Figlire 5
shows two nested object graphs that our tool computes fdrehp graphs in Figufé 4.
Repetition of a single node is denoted just by a “*” next tdligpetition of a subgraph
(not shown in this figure) is denoted by a dotted line arouedatibgraph together with a
“*": e.g., as in Figurg 2(B). The nodes of the nested objeapbs are graphically similar
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Fig. 4. Two heap graphs for invocation ekecuteQuery on object 4.

to heap graphs except that they are shown by solid rectaagtethey are labelled with
alphabetic ids. As examples of repetition, nede Figurg[5(a) is the equivalence class

for the nodes 5, 6, and 7 in Figyre 4(a), and nodie Figure[5(D) is the equivalence
class for the nodes 8 and 9 in Fig{ire 4(b).
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heap graph in Figuie 4{a). heap graph in Figuie 4{b).

Fig. 5. Two nested object graphs.

The computation of a cast nested object graph is similar.diffierence is that two
objects of the snapshot that have roles cannot be mappee $athe equivalence class.

Rule Coverage Relationn order to determine whether a rule covers another rule, we
need to compare their corresponding (cast) nested objgehgr A nested object graph,



ng, is subgraph isomorphito nested object graphg' if: (i) ngis subgraph isomorphic
to ng’ when their repetition structures are not considered;H{@&)isomorphism relation
relates only nodes that have same predicate valuationgjignidis not the case that a
nodeV of ng is not part of a repetition pattern that its correspondindenoof ngis;
i.e.,ng does not represent a heap configuration that its correspgisdbgraph img
cannot represent. We extend this definition to cast nestgdtographs by additionally
requiring that only nodes with same role labels can be r@llbygsomorphism.
Arule,r, is thencoveredby a ruler’, if: (i) they are both over the same method; (ii)
both raise either no exceptions, or the same exceptionth@ corresponding graphs of
r are pairwise subgraph isomorphic to the ones iadnd (iv) for each tupley;, v) of the
object mapping of there is a tuplel, V') in the object mapping af such thatu and
U, as well asyandv’ are isomorphic; furthermore, it is not the case that theiplidity
of the former tuple is “many” while the multiplicity of thetier tuple is “one”; and (v)
similar constraints as iv between the tuples of the role rimaggpofr andr’.

4 Generalization Heuristics

4.1 Extrapolation

Sometimes a rule could have covered many other rules ifinemtades in its source
andor destination (cast) nested graphs were marked as rejedfaly extrapolation
heuristic could mark such nodes as repeatable using themat@n in the graphs of
other rules.

To identify opportunities for extrapolation, our tool Iakor deficientnodes in
a (cast) nested object graph. A node is deficient if it is npeated and either the
role mapping or the object mapping takes it to a repeated.r@dehypothesis is that
a deficient node is not repeated because the explorationadichanage to produce
enough objects of that type. For instance, if we considergit@®hs in Figuré€l5 as
the source and destination graphs of a rufeandg, which are both mapped tm,
are both deficient nodes. Given a deficient node, our syst@horms all other rules to
find a source or a destination nested object graph into whieltorresponding nested
object graph of the deficient node can émbeddedv.r.t. the subgraph isomorphism
relation. If according to the embedding the node correspayid the deficient node in
the other graph is repeated, then the deficient node will bé&xedaas repeatable too.
In our example, our tool can find an embedding relation threddeo the extrapolation
of f. Howeverg cannot be extrapolated. Indeed, each JDR@tement object cannot
have more than one op@&esultSet object.

Repetition is propagated to all nodes pointing to the extigtpd node, in order to
ensure that there is no non-repeated node pointing to a hatlisimarked as repeatable.
Lastly, the multiplicities of mappings might need to be atial to ensure that a node
that is marked as repeatable is not mapped only once via & ‘fon#iplicity. The
extrapolation heuristic is applied to all rules after thelexation stage, and then all
redundant rules are removed.



4.2 Merging

While the extrapolation stage prunes a substantial numberdes, there may still be
a large number of rules in a DPI, e.g., thousands of rulesD&CI The reason is that
different rules for the same method might have exploré@mint instances of heaps
that have incomparable sets of objects, and there are wagxeeption cases. To fur-
ther reduce the number of the rules, we have developethtrgingheuristic, which
combine sets of related rules into one.

To check whether two rules can be merged, we compare a pdréinfcast nested
object graphs that we call thepward part. The upward part of a cast nested object
graph is its subgraph that consists of the set of nodes tkeaahelled by roles plus
the nodes that are reached from these nodes. A pair of ridasemgeabldf: (i) the
upward parts of their source and destination cast nestettioipjaphs are pairwise iso-
morphic; and (ii) their role mappings restricted to the upygarts are similar and over
isomorphic nodes. For a mergeable pair of rules, the mergastie essentially first
computes their union and then performs a reduction oveethigting source and desti-
nation nested object graphs of the resulting rule. The réoluceplaces a nested object
graph with its smallest subgraph that simulates all othegsaphs of the original graph.
This reduction is in the spirit alownward closedjraphs where a nested object graph
not only represents all heap instances arising from thetitepeof its repeatable sub-
graphs, but also represents any graph which is a subgraptosé - hence the term
“downward closed”[[5]. Finally, the role mapping and objetapping of the resulting
rule are adjusted according to the reduction. As an examapfiming that the nested
object graphs in Figurgl 5 belong to a rule, then node Figure[5(d), for instance,
would be mapped to node in Figure[2(B) during the merge operation. Similar to the
extrapolation heuristic, the multiplicities of mappinggim need to be adjusted.

4.3 Exception Isolation

While the merge heuristic corresponds to the union of a satle$, theexception iso-
lation heuristic corresponds to the intersection of a set of exaeptles. This heuristic
deals only with the cast nested object graphs; the nestegttolpjaphs are discarded.
For a pair of rules that raise the same exception and whosaested object graphs are
isomorphic when their scalar abstraction predicates arearsidered, this heuristic es-
sentially combines the corresponding nodes of the castaetject graphs of the two
rules via a ternary logic. If the values of a predicate aféedént, the unknown value,
denote by “*”", is chosen. Nested object graphs of the ruleshat useful because often
when an exception is raised the states of the correspondtiegts of these graph do
not change. Furthermore, we are interested in identifyiegmallest contexts in which
an exception can raise.

5 System

Figurel® shows the high-level architecture of our systenplémented in Java.The ar-
rows specify the high-level information communicated kestwthe components.



Package Package package Explored
. Heuristics

Abstraction :> Explorer :>

Information Rules

Fig. 6. The main components of the system.

ThePackage Abstractionoomponent provides the information about the input pack-
age. It consists of a set of classes whose methods provideathes of classes of the
package under study, their methods, and predicate ahstracThese classes use Java
reflection to obtain these information. Furthermore, theme classes that provide the
actual parameters for the method calls of the universahglibese parameters have
random values.

ThePackage Explorecomponentimplements the exploration stage of Algorfthm 1.
To implement the snapshots whose objects can be accessadtibut the exploration,
our tool maintains the corresponding trace of method dadisresulted in the snapshot.
To call a method of an object of a snapshot, our tool recregagegntire snapshot by
replaying its corresponding trace. Cloning or saving arechjin general, would not
work, as not all classes implement these methods. A rectesatapshot has similar
objects as the original snapshot, assuming that, as faeaabitraction predicates are
concerned, method calls are deterministic. To relate thectdbin a snapshot to the
objects in its replayed copy, we use a notioriagfical id for each of the objects of the
snapshots; objects that have the same logical ids aredrasteopy of one another.

To ensure that our exploration does not prematurely ideakifects as non-repeatable
in a rule, we use a repetitive object creation scheme in oploextion: if a creator
method is chosen to be executed, we invoke the methsdl number of times con-
secutively, and only after that compute the rule with respedhe snapshot before
consecutive method calls and the snapshot after that. Afser, the initial exploration
stage, to achieve a good coverage, similar to other appesd8h our system ensures
that all possible method calls on all objects of all ruleshia tepository are executed
and their corresponding rules are stored in the repository.

The Heuristics component implements the algorithms in Secfidn 4. We use the
graph data structures in the JGraphT library to implemengeoaph algorithms.

Limitations. While we expect our tool to work in a straightforward mannerpack-
ages that solely work on the heap (e.g., Java collectioospdckages that work with
external components, the Package Abstraction part is morglex, because an en-
vironment needs to be set up. Also, the feasibility of thdagpechanism should be
considered. These limitations are inherent to dynamicaguires.

6 Experiences

We have used our tool to compute the DPI of three Java packap@gs, ArrayList,
andHashSet. While our tool usually identifies the expected set of rulesthe DPI,
some of these rules could, in principle, be more general.cBmerse, however, has
never happened in our experiments. A rule computed by oliate@ys corresponded
to an actual behaviour of the package.



Table 1.Duration and number of rules afterfiirent stages in computing DPIs of three packages.
Information, except for the last column, correspond to agervalues of five runs.
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Package |Threshold # Time (min:sec) #Rules
ArrayList| 200000 [010:31000:03000:00000:0Q 57229929 15 (once 14
HashSet 200000 |168:26000:23000:01000:00114Q 503 |34 16
JDBC 1200 [032:01000:57000:04000:002465237029|26 (twice 25

Table[d shows the results of our experiments for each of thaskages. The mea-
surements for each package are for the average of five runsloalacore CPU Win-
dows 7 desktop machine with 8 GB of RAM. In all our experimewts have set JVM
options to use 5GB of physical memory. For each packagegelhipresents the time
taken and the number of rules after each stage of the conputatamely after the
exploration, extrapolation, merge, and exception isofatihases.

JDBC. In Sectior[2, we already presented some of the rules of theoDPDBC. In
our experiments, the universal client connects to a locaohp Derby database. We
use a key-value table that is manipulated through INSERT, B, and SELECT
SQL commands with random values, via JDBC. We are thus asguthat the DPI
of the JDBC package is independent of the schema of datatmasdsch it connects.
This is justified by our interest in determining the relasbip of interacting objects of
a package, and not its interaction with external componémtseasing the threshold
value to larger than 1200 would cause out-of-memory exeaptiOur tool computed
26 rules in three out of five runs; in the other two runs, it coteg 25 rules. The
missing rule in both cases was the rule for tiese method when called over an open
ResultSet that is connected to a clos€datement and a closedonnection.

ArrayList. We consider two classes @atrayList: Array and its internal clas$tr,
which implements Javaterator. Besides the methods of these classes that create
objects, we consider thedd method ofArray, and thenext and remove methods

of Itr. We provide a reference predicatier_of, to the system, denoting whiditr
object belongs to whiclArray object. We provide four scalar predicates to the sys-
tem: empty= size> 0, which determines whether atrray object is empty or not,
nextCalled= lastRet# —1, which determines whether themove method of anltr
object can be called (i.e., fiext has been calledjnover= size> cursor, which de-
termines whether aiitr has traversed all members of its correspondinggay or not,
andsync= modCount= expectedModCounivhich determines whether array ob-
jectand arl tr object agree on their version numbers (i.e., ifAlr@ay object has been
modified by anotheI tr object). Lastly, we use integers as the domaianfay.

Our tool computed 15 rules that cover all possible behawbutrrayList. It once
missed computing the rule faext when called on an iterator whose all predicates are
true and remain true after the method call. Figdre 7 showshert mapping of one of
the three rules that our tool computes for tlemove method in one of our experiments.
The role mapping, not shown here, changes onlynird@Calledpredicate of the callee



ArrayLisA]
empty= F
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Itr[C] Itr[B] Itr[D] Itr[E] Itr[F] Itr[G] Itr[H]
nextCalled= F nextCalled= F nextCalled= F | | nextCalled= T nextCalled= T nextCalled= T | | nextCalled= T
mover=T mover=T mover=T mover= F mover= F mover=T mover=T
sync=T sync=F sync=T sync=F sync=T sync=F sync=T
' / N | ’ N | | - . ' |
', many ,/one ‘. many | many »_ many | many / many .- ‘many | many | many
\ s A} ¥ * " ¥ e Y yo*
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nextCalled= F nextCalled= F nextCalled=T nextCalled= T
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sync=F sync=F sync=F sync=F
k—/ ArrayListl] 1\/_2
empty=F

Fig. 7. The object mapping of a rule fatemove method ofArrayList. “T” and “F” represent
true and f alsg respectively. For clarity, the reference edges are netlied withiter_of.

iterator object whose all scalar predicates are true. Ti&sis interesting because it
demonstrates that the object mapping of a rule can be nanrdetistic. The rule could
have been more general, however. First, in the source nebjedt graph, the object
with nextCalled= false mover= falsg andsync= falseis missing. Second, the object
mapping fromB to J could have had multiplicity “many”. And lastly, there coltidve
been an object mapping frod to L with multiplicity “many” denoting that some of
the mover, sync objects whoeextCalledis false become non-movers.

HashSetThe DPIs ofiashSet andArrayList are computed using similar predicates,
butHashSet uses élashMap class internally, instead of a resizable array. The DPIs of
two package are also somewhafffelient. The main dierence is that thedd method

of HashSet does not change the heap if its input parameter is duplitdais; there is
an extra rule that captures this behaviour. Anothffedgnce is that theoverpredicate

of anIterator object of aHashSet only correctly denotes whether it has traversed
all elements of its correspondimigshSet if its syncpredicate is true. This is because
unlike anArrayList object, whose iterator objects maintain an index of the diiohey
array of theArrayList object, the iterators of BashSet objects needs to traverse the
underlying hash table of its internghshMap object. Lastly, computing the DPI of
HashSet takes significantly longer thakrrayList’s, both because of their fierent
underlying data structures and because significantly nedtections are needed when
evaluating the abstraction predicategiabhSet.

7 Conclusion

We have introduced the notion of dynamic package interf@o@3). DPIs provide a
succinct way to describe valid usage patterns for a pacKadgeDPI of a package is a
set of rules, each of which specifies tHeeet of a method call over a general configu-
ration of a set of objects. We have developed a dynamic tabldbmputes an approxi-
mation of the DPI of a Java package automatically, given afs#istraction predicates.



The rules of such a DPI generalize the usual examples uskd otocumentation of the
Java package and can be traced to problems discussed ia torlims.

A DPI captures both thimter-object aspects of the dynamic behaviour of the classes

of a package, as well as tlirgtra-object aspects of individual classes of the package,
relative to a set of scalar and reference predicates, even wiboundedly many objects
interacf In contrast, previous dynamic techniques primarily focnse@her deriving
intra-object specifications for one object or deriving Bnitate machines that capture
the interaction pattern of a finite number of objecis 8] T18:13].
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