
Error Invariants for Concurrent Traces

Andreas Holzer1 ?, Daniel Schwartz-Narbonne2??, Mitra Tabaei Befrouei3 ? ? ?,
Georg Weissenbacher3? ? ?, and Thomas Wies4 †

1 University of Toronto
2 Amazon
3 TU Wien

4 New York University

Abstract. Error invariants are assertions that over-approximate the reachable
program states at a given position in an error trace while only capturing states
that will still lead to failure if execution of the trace is continued from that po-
sition. Such assertions reflect the effect of statements that are involved in the
root cause of an error and its propagation, enabling slicing of statements that do
not contribute to the error. Previous work on error invariants focused on sequen-
tial programs. We generalize error invariants to concurrent traces by augmenting
them with additional information about hazards such as write-after-write events,
which are often involved in race conditions and atomicity violations. By pro-
viding the option to include varying levels of details in error invariants—such
as hazards and branching information—our approach allows the programmer to
systematically analyze individual aspects of an error trace. We have implemented
a hazard-sensitive slicing tool for concurrent traces based on error invariants and
evaluated it on benchmarks covering a broad range of real-world concurrency
bugs. Hazard-sensitive slicing significantly reduced the length of the considered
traces and still maintained the root causes of the concurrency bugs.

1 Introduction

Debugging is notoriously time consuming. Once a program failure has been observed,
the developer must identify a cause-effect chain of events that led to it. This task is
complicated by the fact that the underlying failing execution trace can contain a large
number of events that do not contribute to the failure.

Error invariants [6, 2, 22] are (automatically generated) annotations of a given fail-
ing execution trace that can support the developer in his endeavor to narrow down the
statements involved in the failure. Error invariants provide, for each point in the trace,
an over-approximation of the reachable states that will produce a failure if execution of
the trace is continued from that point (cf. Definition 7). Consequently, two subsequent

? Funded by the Erwin Schrödinger Fellowship J3696-N26 of the Austrian Science Fund (FWF).
?? Research was performed at NYU.

? ? ? Supported by the Austrian National Research Network S11403-N23 (RiSE), the LogiCS doc-
toral program W1255-N23 of the Austrian Science Fund (FWF) and by the Vienna Science
and Technology Fund (WWTF) through grant VRG11-005.

† Funded in part by the National Science Foundation under grant CCF-1350574.



Code fragment-Deposit: T1

...
acquire `;...

L1: bal := balance;
release `;
if (bal+a[i]≤MAX)

bal = bal+a[i];
acquire `;

L2: balance := bal;...
release `;...

Code fragment-Withdrawal: T2

...
acquire `;...

L′
1: bal := balance;

release `;
if (bal-a[j]≥MIN)

bal = bal-a[j];
acquire `;

L′
2: balance := bal;...

release `;...

Fig. 1: Non-atomic update of bank account balance

error invariants in an erroneous execution reflect the relevance of the interjacent state-
ment to the observed failure. Statements that leave the error invariant unchanged do not
contribute to the failure and can be safely ignored during the failure analysis [22].

Intuitively, failure analysis with error invariants can be understood as a variant of
dynamic slicing [28] that takes the semantics of the failure into account. Existing dy-
namic slicing techniques are based on data- and control-flow dependencies and remove
statements which can not impact the failing state via any chain of dependencies. How-
ever, compared to error invariants the precision of these syntax-based slicing techniques
is limited by the fact that the semantics of the erroneous trace is not taken into account.

Error invariants have been successfully deployed for constructing semantics-aware
slices in sequential software. The enabling techniques for the automated generation
of error invariants and slicing are unsatisfiable cores and interpolation. An error trace
translated into an unsatisfiable first-order logical formula yields a proof of unsatisfia-
bility from which interpolants can be extracted. These interpolants which correspond to
assertions representing the error invariants can be used to construct a slice of the error
trace that abstracts from the irrelevant statements and explains the faulty behavior. This
approach produces a slice of the original trace annotated with assertions (the obtained
error invariants) showing the relevant values and variables to the failure.

Error Invariants for Concurrent Traces. While error invariants faithfully reflect se-
quential control- and data-flow, concurrency aspects are ignored entirely. Consequently,
a naive application of error invariants to concurrent traces leads to undesirable slices.

Consider, for example, the code fragments in Figure 1. At locations L2 and L′2, re-
spectively, threads T1 and T2 update the balance of a bank account which is stored in
the shared variable balance. The array a contains the sequence of 5 amounts to be trans-
ferred, partitioned into three deposits (1 ≤ i ≤ 3) and two withdrawals (4 ≤ j ≤ 5)
executed by thread T1 and T2 in parallel, respectively. Figure 2 shows the suffix of a
failing interleaved execution in which the third deposit is lost because of an atomicity
violation. After three successful transactions (two deposits and one withdrawal) thread
T2 stores the current balance in a thread-local variable bal. At this point, T1 interferes
and updates the value of balance by performing the third deposit. Thread T2, then,
proceeds with the now stale value stored in bal and stores the result of the last with-

2



T2 T1

...
L′

1: bal := balance
release `
{bal ≤ a[1] + a[2]− a[4]}

acquire `
L1: bal := balance

...
bal = bal+a[3];

L2: balance := bal
release `...

{hb(L′
1, L2) ∧ hb(L2, L

′
2) ∧ (bal ≤ a[1] + a[2]− a[4])}

bal = bal-a[5];
acquire `

L′
2: balance := bal
{bal ≤ a[1] + a[2]− a[4]− a[5]}
...

Fig. 2: Error trace with hazard-sensitive error invariants

drawal transaction in balance. Consequently, the execution results in a discrepancy of
the expected and the actual balance on the account.

The problem is that the final value of balance depends on the sequence (or timing)
of concurrently executed statements, i.e., the program contains a data hazard. As the
statements are not executed in the order expected by the programmer, the hazard results
in an erroneous state, which propagates to the end of the program where it surfaces as
a failure. In this setting, the fault the programmer is looking for is the above-mentioned
data hazard, in particular the write-after-write dependency between L2 and L′2.

The gray assertions in Figure 2 represent error invariants computed using the ap-
proach we propose in this paper. The assertion after L′1 states that the local variable
bal reflects at most two deposits and one withdrawal. At this point, the fault has not
been triggered yet. The last conjunct in the error invariant after the context switch in-
dicates that the value of bal is unchanged. The error invariants produced by previous
techniques [6, 2, 22] track only the state information captured by this final conjunct.
Therefore they would slice away all the statements of thread T1 since the error invari-
ants before and after the context switch would be identical. Thus, the resulting slice
would not reflect the data hazard and not even the relevant interleaving.

To address this shortcoming, we lift interpolation-based slicing techniques to a con-
currency setting by taking into account control and data dependencies between threads.
The second assertion in T2 (after the context switch) already reflects this adaptation:
the expression hb(L′1, L2) ∧ hb(L2, L

′
2) indicates that the statement at L′1 happened

before the statement at L2, which in turn happened before the one at L′2. This specific
order is crucial to the failure. A slicing algorithm taking this information into account
cannot safely slice the statement at L2 in thread T1 anymore. Note that, unlike previous
techniques, error invariants in our approach not only reflect a set of states but also the
execution order of critical statements via the happens-before relation (cf. Section 3.2).

Inter-thread data dependencies enable us to isolate (among other bugs) race condi-
tions and atomicity violations which constitute the predominant class of non-deadlock

3



concurrency bugs [18]. Contrary to other concurrency debugging tools [5, 25, 8, 9, 23,
24] which target specific kinds of bugs, we provide a general framework for concur-
rency bug explanation. We applied an implementation of our approach to error traces
generated from concurrent C programs using the directed testing tool ConCrest [7].
We evaluate our approach on benchmarks that contain bugs found in real-world soft-
ware such as Apache, GCC, and MySQL [17]. On average, our slices yield a significant
reduction of the number of variables and the length of the considered traces while main-
taining information that is crucial to understand the underlying concurrency bug.

2 Preliminaries

Syntax of Concurrent Programs. A concurrent program comprises multiple threads
each represented by its control-flow graph (CFG) [21, §7].

Definition 1 (Control-Flow Graph). A CFG 〈N,E〉 comprises nodes N and edges
E. Each node n ∈ N corresponds to a single programming construct from a simple
imperative language comprising assignments x:=e and conditions R.

Nodes representing conditional statements have two outgoing edges labeled Y and
N, respectively, corresponding to the positive and negative outcome of the condition. All
other nodes – except the exit node, which has no successors – have out-degree one.

If a node m is control dependent on a node n and n represents a condition, its
outcome can determine whether m is reached:

Definition 2 (Dominators and Control Dependency). A node m post-dominates a
node n if all paths to the exit node starting at n must go through m. Node m is control
dependent on n (where n 6= m) if m does not post-dominate n and there exists a path
from n to m such that m post-dominates all nodes (other than n) on that path.

Based on Definition 2, we introduce our notion of a scope:

Definition 3 (Scope). A node m is in scope of the condition at node n if m is control
dependent on n or in scope of a condition that is control dependent on n.

A CFG is in Static Single Assignment (SSA) form [3] if each variable is assigned ex-
actly once. The standard mechanism to translate CFGs into SSA form is to subscript
each definition of a variable with a unique version number; consequently, each defini-
tion is uniquely identified by the corresponding SSA variable. Conflicting definitions at
a control-flow merge point m in a CFG are resolved by introducing an arbiter node n
(with sole successor m) to which we divert the incoming edges of m. The arbiter node
n is annotated with a φ-function which switches between the definitions from differ-
ent incoming paths (see Figure 3). Algorithms to convert a program into SSA form are
described in [3] and [21, §8.11].

Definition 4 (Program Path). Let 〈Nt, Et〉 be a CFG representing a thread t. A path
Pt of thread t is a sequence n1, 〈n1, n2〉, n2, . . . , 〈nk−1, nk〉, nk of nodes ni ∈ Nt
and edges 〈ni, ni+1〉 ∈ Et. A program path P def

= n1, 〈n1, n2〉, n2, . . . , 〈nk−1, nk〉, nk

4



corresponds to an interleaving of paths of threads (starting at their respective initial
nodes) such that for each i with 1 ≤ i < k either ni, ni+1 ∈ Nt and 〈ni, ni+1〉 ∈ Et
for some thread t, or ni and ni+1 belong to different threads and 〈ni, ni+1〉 is an inter-
thread edge representing a context switch.

x0 < 0

x1 :=1 x2 :=2

x3 :=φ(x1, x2)n

y1 :=x3m

Y N

Fig. 3: SSA form of:
if (x<0) then x:=1 else

x:=2; y:=x

Given a (program) pathP , let [ni, nj ] denote the sub-
path ni, 〈ni, ni+1〉, ni+1, . . . , nj−1, 〈nj−1, nj〉, nj of
P including the nodes ni and nj and (ni, nj) the sub-
path 〈ni, ni+1〉, ni+1, . . . , nj−1, 〈nj−1, nj〉 excluding
the nodes ni and nj . We use P �t to denote the projec-
tion of a program path P to thread t in which only nodes
ni ∈ Nt and edges 〈ni, ni+1〉 ∈ Et are retained and
any sub-path (ni, nj) with ni, nj ∈ Nt and nl /∈ Nt for
i < l < j is replaced with the edge 〈ni, nj〉, i.e., P �t
is a path of the thread t. Consequently, for each program
path P , P �t is either empty (if P does not visit thread t)
or a path of thread t starting at the initial node of t. Finally, P �N and P �E denote the
projection of P to the sequence of nodes N and edges E in P , respectively.

Semantics, Feasible Executions and Error Traces. The variables of a program are
partitioned into global and thread-local variables. A state s maps each variable to a
value, and s(e) denotes the value of expression e in state s.

A program path P corresponds to a sequence of statements. We require that each
statement refers to at most one global variable, and hence statements execute atomically.

Definition 5 (Execution). An execution of a path P corresponds to an execution of
the statements of P in order (starting in an initial state). We use stmtP (ni) to denote
the statement represented by node ni in a path P . In particular, if node ni represents
the condition R, let t be such that ni ∈ Nt and let 〈ni, nj〉 be the first edge in P �t
succeeding ni. Then stmtP (ni) is R if 〈ni, nj〉 is labeled Y, ¬R if the edge is labeled
N. If ni is the last node of a thread t, then stmtP (ni) = true.

The execution of one statement in the current program state s is defined as follows:
– If stmtP (ni) is the assignment x:=e, the successor state of s is updated such that
x evaluates to s(e) and all other variables are unchanged.

– If ni is a conditional statement R, the execution proceeds iff s(stmtP (ni)) is true.

A path P is feasible if there exists an initial state s for which the execution of P
is not blocked by a condition which is false. Given a path P , we use stmtsP to denote
the sequence of statements represented by P . Abusing our notation, we sometimes call
stmtsP a path and will use P and stmtsP interchangeably.

We use stmtsP [i] to denote the ith statement stmtP (ni) of a path P , and stmtsP [i, j]
to denote the sub-path stmtsP [i]; . . . ; stmtsP [j] ([ni, nj ], respectively). We drop the
subscript P if it is clear from the context.

A state sj is reachable from a state si−1 via a sub-path stmtsP [i, j] if an execution
of stmtsP [i, j] starting in si−1 does not block and results in state sj .

We assume that the correctness of a path is determined by an assertion ψ expected
to hold after the execution of the path. Error traces which result in the violation of ψ are
defined as:

5



Definition 6 (Error Trace). A path P is an error trace for the assertion ψ if P is
feasible and always results in a state s such that s(ψ) is false.

Intuitively, an error trace is an execution of a failing test case that does not satisfy the
specification ψ. We assume (w.l.o.g.) that path P in Definition 6 reaches the end of the
main thread, where ψ is asserted. Consequently, ψ is not in scope of any condition.

3 Error Explanation

In this section, we first recall the interpolation-based slicing approach presented in [6,
2] for sequential software. We then explain how we extend it to concurrent executions.

3.1 Interpolation-based Slicing for Sequential Traces

Ermis et al. [6] and Christ et al. [2] use error invariants to identify statements that do
not contribute to the assertion violation in sequential traces.

Definition 7 (Error Invariant). Given an error trace P of length k for assertion ψ, an
error invariant for position i (with i ≤ k) is a set of states E such that
(a) E contains (at least) all states reachable from an initial state via stmtsP [1, i], and
(b) every feasible execution of stmtsP [i + 1, k] starting from a state in E results in a

state in which ψ is false.
An error invariant E is recurring5 for positions i ≤ j if E is an error invariant for i as
well as for j.

Intuitively, an error invariant E represents an over-approximation of the states that
are reachable via the path stmts[1, i] such that stmts[i + 1, k] if executed from a state
in E still results in failure. According to [6, 2], statements between a recurring error
invariant are “not needed to reproduce the error.”

Error invariants can be derived using Craig interpolation (defined below) and a sym-
bolic encoding of a path P [6, 2]. In the following, we derive a symbolic encoding
enc(P ) similar to the one in [6] from a straight-line program in SSA form, which rep-
resents the path P to be encoded. This straight-line program is obtained by traversing
the CFG along P . If a node is visited repeatedly (via a cycle in one of the CFGs), a
new version of the variable is introduced; for straight-line programs (which do not con-
tain control-flow merge points) it suffices to increase the version number of a variable
each time it is assigned and refer to the latest version of each variable in conditions and
right-hand sides of assignments.

Given a path P in SSA form as described above, the formula enc(P ) is a conjunc-
tion

∧k
i=1 encP (ni) of the encodings of the individual statements:

encP (ni)
def
=

{
(xi = e) if stmtP (ni) is xi := e
stmtP (ni) if stmtP (ni) is a condition (1)

5 To avoid confusion with inductive interpolant sequences (Definition 8), we replace the notion
of inductive error invariants [6, 2] with recurring error invariants.

6



Variable assignments that satisfy formula enc(P ) correspond to executions; note
that if all variables in P are initialized before being used, enc(P ) has only one unique
satisfying assignment. In this context, interpolants (as defined in [19]) are a symbolic
representation of sets of states. Let Var(A) be the set of (free) variables occurring in a
formulaA. An interpolant I is a predicate that encodes all states s for which s(I) is true.
We define states(I)

def
= {s | s(I) = true}. The following definition is a generalization

of interpolants as defined in [19] under the assumption that all non-logical symbols in
A and B are interpreted:

Definition 8 (Inductive Interpolant Sequence). LetA1, . . . ,An be a sequence of first-
order formulas whose conjunction is unsatisfiable. Then I0, . . . In is an inductive inter-
polant sequence if

– I0 = true and In = false,
– for all 1 ≤ i ≤ n, Ii−1 ∧Ai ⇒ Ii, and
– for all 1 ≤ i < n, Var(Ii) ∈ (Var(A1 ∧ . . . ∧Ai) ∩Var(Ai+1 ∧ . . . ∧An)).

Given a path P def
= n1, 〈n1, n2〉, n2, . . . , 〈nk−1, nk〉, nk in SSA form, a sequence inter-

polant I0, . . . , Ik+1 derived from the formulas encP (n1), . . . , encP (nk), ψ is inductive
in the sense that states(Ii) contains all states reachable from states(Ii−1) via stmt(ni)
(and potentially more) [20, 22]. Moreover, Ik ∧ ψ is not satisfiable, i.e., all states rep-
resented by Ik violate assertion ψ. If Ii represents an error invariant for positions i
and j (i.e., states(Ii) is an error invariant for j and Ii implies Ij) then Ii is inductive
with respect to the sub-path stmtsP [i+ 1, j]. Accordingly, slicing [ni+1, nj ] away (i.e,
replacing it with an edge 〈ni+1, nj〉) preserves the assertion violation.

A trace obtained by removing statements between recurring error invariants from P
is sound in the sense of Definition 9 below:

Definition 9 (Sound Slice). A slice of path P of length k is a path Q of length m with
stmtsQ[1] = stmtsP [i1], stmtsQ[2] = stmtsP [i2], . . . , stmtsQ[m] = stmtsP [im] with
1 ≤ i1 < i2 < . . . < im ≤ k. Given an error trace P for ψ, a slice Q of P is sound if
Q is also an error trace for ψ.

3.2 Interpolation-based Slicing for Concurrent Traces

In the following, we enhance and extend the interpolation-based slicing technique dis-
cussed in Section 3.1 to take control dependency as well as concurrency into account.

Control Dependencies. The following example shows that the encoding enc(stmts)
fails to capture control dependence (Definition 2).

Example 1. Figure 4a shows the statements of a path P (in SSA form) and a corre-
sponding interpolant sequence on the right. The example is a sequential variation of the
bank account example which fails if the required minimum balance MIN is larger than
zero. The resulting slice (indicated in bold) contains only the last assignment to bal and
the assertion ψ. It does not reflect the fact that the Y-branch of the conditional statement
has to be taken for the failure to occur.

7



bal1:=MIN;
a1:=− 100;
if(bal1 + a1 ≤ MIN)

bal2:=0;
assert(bal2 ≥ MIN);

{true}
{true}
{true}
{true}
{bal2 = 0}
{false}

(a) Control-insensitive slice

bal1:=MIN;
a1:= − 100;
if(bal1 + a1 ≤ MIN)

bal2:=0;

bal3:=φ(bal2);
assert(bal3 ≥ MIN);

{true}
{bal1 ≤ MIN}
{bal1 + a1 ≤ MIN}
{bal1 + a1 ≤ MIN}{

(bal1 + a1 ≤ MIN)
∧(bal2 = 0)

}
{bal3 = 0}
{false}

(b) Control-sensitive slice

Fig. 4: Slicing sequential trace with Error Invariants

We present a (modular) extension to the encoding defined in Section 3.1 that en-
ables the inclusion of control dependencies. Unlike prior work [2], which addresses
this problem using a custom-tailored control-sensitive encoding, our technique is based
on the SSA representation. As in Section 3.1, the starting point of our approach is a
straight-line representation of the error trace P . Unlike before, however, we include the
φ-nodes from the SSA presentation of the program in P :

φ-functions at n ∈ Nt for a variable x, take as parameters the subscripted variable
versions representing definitions of x in thread t that reach n.

Consequently, when generating the straight-line presentation of P , we include all φ-
nodes of the SSA presentation of the program that are traversed by P . As we are encod-
ing a single path P , however, φ takes only one parameter, since only one definition of
each variable x reaches n in P . Our extension csenc(stmts) of the encoding enc(stmts)
is based on assignments xi:=φ(xj), which make control dependencies in an error trace
P explicit. In order for xi to take the value of xj , the outcomes of the conditional state-
ments preceding the assignment of xj in P have to permit the assignment to be executed.

Let stmt(nj) be the statement assigning xj , and note that control dependency coin-
cides with our notion of a scope (as defined in Definition 3). We define

guard(nj)
def
=
∧
{enc(ni) |nj is in scope of ni} . (2)

In order for the definition of xj in nj to be reachable along P , guard(nj) needs
to evaluate to true. Moreover, since trace P does not traverse alternative branches, the
value of xi is unknown if guard(nj) does not hold. Based on this insight, we define a
control-sensitive encoding csenc(P ) as follows:

csenc(ni)
def
=


guard(nj)⇒ (xi = xj) if stmt(ni) is xi:=φ(xj)

and nj assigns xj
enc(ni) if ni is an assignment
true if ni is a condition

(3)

An inductive error invariant for the encoding csenc(P ) induces a control-sensitive
slice (cf. Definition 4 of flow-sensitivity and Theorem 6 in [2]):

8



Definition 10 (Control-sensitive Slice). Let P be an error trace for the assertion ψ.
A (sound) slice Q is control-sensitive if for every statement stmtsQ[k] = stmtsP [i]
and every assumption stmtsP [j] such that stmtsP [i] is in scope of stmtsP [j], there is
some prefix stmtsQ[1, h] of stmtsQ[1, k] (with h < k such that stmtsQ[h] precedes and
stmtsQ[h + 1] succeeds or equals stmtsP [j] in P ) such that stmtsQ[1, h] is an error
trace for ¬(stmtsP [j]).

Intuitively, the definition requires that Q justifies that every branch containing a
relevant statement will be taken.

Theorem 1. Let P be a (concurrent) error trace for ψ of length k and let I0, I1 ,
. . . ,Ik−1, Ik+1 be error invariants (with I0 = true and Ik+1 = false) obtained from
an inductive sequence interpolant for csenc(n1), . . . , csenc(nk), ψ. Let Q be the slice
obtained from P by removing each sub-path P [i, j] for which Ii−1 is inductive. Then Q
is a sound control-sensitive slice for P . (Proof in [11])

Note that the interpolants in Theorem 1 may contain different versions of a variable
x, since the encoding of φ-nodes may refer to conditions in the “past”. This corresponds
to history or ghost variables used in Hoare logic and does not affect soundness.

Example 2. Figure 4b shows the path P from Example 1 sliced using a control-sensitive
encoding csenc(P ) based on φ-nodes. Note that the statements initializing bal and
amount, which guarantee that the Y-branch is taken, are included in the slice.

Synchronization. In the simple interleaving semantics deployed in this paper, locks
can be modeled using an integer variables ` and atomicity constraints. Lock ` is avail-
able if its value is 0. Any other value t indicates that the lock ` is held by thread t. Let
n be a node of thread t with a self-loop waiting for (` = 0) to become true, and m its
successor node assigning t to `. By constraining the execution such that no thread other
than t can execute between n and m, we guarantee that lock acquisition is performed
atomically. Analogously, a lock ` held by the current thread (guaranteed by condition
` = t) is released by the statement `:=0. Control-sensitive slices also take into account
lock acquisition statements, as relevant statements executed in a locked region are in
the scope of the corresponding condition (` = 0).

Hazards. A trace contains a data hazard if its outcome depends on the sequence (or
timing) of concurrently executed statements. As explained for the sub-trace in Figure 2
discussed in Section 1, applying error invariants in their original form [6] to sequential
paths results in slices that ignore important characteristics of concurrent traces. While
csenc(P ) reflects control-flow, it fails to capture data dependencies, which are con-
straints arising from the flow of data between statements [21]:

Read-after-write If statement stmt(n) writes a value read by statement stmt(m), then
the two statements are flow dependent.

Write-after-read An anti dependence occurs when statement stmt(n) reads a value
that is later updated (over-written) by stmt(m).

9



T2 T1

L2: balance1 := bal+ a[3];
L′

2: balance2 := bal− a[5]
balance3 := π(balance1, balance2);
assert(balance3 = a[1] + a[2] + a[3]− a[4]− a[5]);

Fig. 5: Part of a path with hazard and π-node

Write-after-write An output dependence exists if stmt(n) as well as stmt(m) set the
value of the same variable.

While this definition also applies to single threads, we concern ourselves exclusively
with inter-thread data dependencies. In a path P , a data dependency between different
threads can indicate a conflicting access (i.e., a race condition or hazard).

Unlike flow dependence (which is taken into account by enc(P ) and csenc(P ),
since the SSA form represents use-definition pairs and therefore also flow dependence
explicitly), anti and output dependencies are not explicit in the SSA-based encoding of
P used in Sections 3.1 and 3.2. Similar to merge points in sequential programs, inter-
thread dependencies in P give rise to conflicting definitions of global variables. The
Concurrent SSA (CSSA) form of paths presented in [29, 26] introduces π-functions to
resolve dependencies between accesses to global variables in different threads.

To convert an error trace into CSSA form, we introduce an arbiter node before every
read access to a global variable x in an error trace P (analogously to the arbiter nodes for
φ-functions in Section 2). The arbiter node is annotated with a π-function that selects
from all definitions of the global variable x in P the most recent definition:

π-functions at n ∈ Nt for a global variable x, take as parameters the subscripted
variables representing definitions of x in all threads.6

Figure 5 shows a simplified suffix of the trace in Figure 2. The simplified trace
consists of two threads with a π-node (arbitrating between the definitions balance1 and
balance2) inserted before an assertion ψ that states the expected outcome. Note that
unlike the degenerate φ-functions used in Section 3.2, a π-function for x has as many
parameters as there are definitions of x in P .

To encode WAR and WAW dependencies, we introduce an irreflexive, transitive,
and anti-symmetric relation hb(ni, nj) which indicates that node ni is executed before
node nj . This happens-before relation enables us to encode the edges of a program
trace, reflecting the program order and the schedule.

In addition, rd(x, ni) and wr(x, nj) indicate that x is read at node ni and written at
node nj . These primitives allow for an explicit encoding of data dependencies:

wr(x, ni) ∧ hb(ni, nj) ∧ rd(x, nj)⇔ rawx(ni, nj)
rd(x, ni) ∧ hb(ni, nj) ∧ wr(x, nj)⇔ warx(ni, nj)
wr(x, ni) ∧ hb(ni, nj) ∧ wr(x, nj)⇔ wawx(ni, nj)

(4)

The hazard-sensitive encoding presented below incorporates data dependencies into
the encoding of a trace. The encoding is derived directly from a program path P , taking

6 As an optimization, only the last definition of x in thread t before n is added.

10



advantage of the information encoded in the edges. Assignments (without π-functions)
are encoded as follows:

hsenc(ni)
def
=

wr(x, ni) ∧ enc(ni) if ni writes global var. x
rd(x, ni) ∧ enc(ni) if ni reads global var. x
enc(ni) otherwise

(5)

Nodes ni with π-functions incorporate happens-before information. Let ni be a
π-node assigning xi, let nj be an assignment to xj and the last node before ni in P
updating the global variable x. Then hsenc(ni) is:

rd(x, ni) ∧ (DEP(ni, nj)⇒ (xi = xj)) (6)

where DEP(ni, nj) is the following condition:

rawx(nj , ni) ∧
∧

m ∈ {n ∈ P |wr(x, n)}
m 6= nj

(wawx(m,nj) ∨ warx(ni,m)) (7)

Intuitively, DEP(ni, nj) states that xj is written before xi is read, and no other
definition of x interferes.

Finally, edges are encoded as happens-before relations:

hsenc(〈ni, ni+1〉)
def
= hb(ni, ni+1) (8)

Given a path P def
= n1, 〈n1, n2〉, n2, . . . , 〈nk−1, nk〉, nk, applying sequence interpo-

lation to the formulas hsenc(n1), hsenc(〈n1, n2〉), hsenc(n2), . . . , hsenc(〈nk−1, nk〉),
hsenc(nk), ψ yields a sequence in1, out1, . . . , ink, outk of formulas such that

ini ∧ hsenc(ni)⇒ outi and outi ∧ hsenc(〈ni, ni+1〉)⇒ ini+1 .

Unlike before, ini and outi propagate facts about states as well as execution order.
We can slice sub-path [ni, nj ] if ini ⇒ outj , sub-path (ni, nj) if outi ⇒ inj , sub-path
[ni, nj) if ini ⇒ inj , and sub-path (ni, nj ] if outi ⇒ outj . The resulting sliced path Q
corresponds to a sequence of statements stmtsQ and a set of edges Q�E representing
context switches and program order constraints relevant to the error.

Definition 11 (Hazard-sensitive slice). Given an error trace P , a (sound) slice Q is
hazard-sensitive if for every statement stmtsQ[k] = stmtsP [j] and statement stmtsP [i]
such that there is an inter-thread data dependency between stmtsP [i] and stmtsP [j],
there is an h such that stmtsQ[h] = stmtsP [j].

Theorem 2. Let P be a concurrent error trace and let Q be the slice obtained from P
as explained above. Then Q is a sound hazard-sensitive slice of P . (Proof in [11])

Example 3. Consider the path in Figure 5. A hazard-insensitive slice would contain
the statement at node L′2 but not the statement at node L′2 (as explained in Section
1) since L2 has no influence on the state after L′2. Encoding (6) and (7) of the π-node
require the interpolant before the π-node to imply wawbalance(L2, L

′
2), and consequently

wr(balance, L2), wr(balance, L′2), and hb(L2, L
′
2) (as indicated in Figure 2). Nodes L2

and L′2 as well as the edge 〈L2, L
′
2〉 are included in the resulting slice.

11



3.3 Fine-Tuning Explanations

The encodings presented in Section 3.2 can be combined in a straightforward manner,
providing us with a choice of control WAR , and WAW dependencies reflected by the
resulting explanation. Control-flow or hazard-sensitivity can be added (or removed) by
(dis-)regarding π-nodes and φ-nodes in P . Control-flow dependency can be incorpo-
rated into π-nodes in Equation (6) by prefixing the assignment xi = xj with the guard
of the definition of xj at node nj : guard(nj) ⇒ (DEP(ni, nj)⇒ (xi = xj)), similar
to the guard in the definition of csenc(ni) in Encoding (3). Moreover, Encoding (6) can
be made insensitive to WAR dependencies by restricting m to predecessors of ni and
by dropping the disjunct warx(ni,m) from (7) (and similarly for WAW dependencies).
Note that flow dependency has a special role, since use-definition chains are explicit in
the SSA representation.
The partial order given by the subset relation ⊆
over the power-set of the remaining dependencies
{cs,war,waw} reflects possible levels of detail of
explanations, as illustrated by the Hasse diagram to
the right. As indicated in the diagram, the configu-
ration ∅ corresponds to the basic approach presented
in [6, 22], whereas {cs} represents control-flow sen-
sitive approach.

{cs,war,waw}

{cs,war} {cs,waw} {war,waw}

{cs} {war} {waw}

∅
[6, 22]

While we see interpolants as an inherent part of the explanation, the level of detail
provided by these annotations cannot be related or formalized as easily as it is the
case for dependencies: changing the underlying encoding typically has an unpredictable
effect on the structure and strength of interpolants [4, 20].

4 Experiments

We implemented our approach as an extension of the directed testing tool ConCrest [7].
We generate error traces of concurrent programs and then produce slices as described in
Section 3. While all slices provided by our tool are sound in the sense of Definition 9,
the level of detail might not be sufficient to reflect the underlying bug: for example, the
hazard-sensitive slice for the account benchmark readily reveals the atomicity violation.
Therefore, it is not necessary to compute a more detailed control-sensitive slice.

The results from Section 3.3 enable the developer to gradually increase the detail in
an iterative manner until the bug can be understood. This section provides an empirical
evaluation of the size and accuracy of slices with varying levels of detail.

Effectiveness of the Method. To evaluate our method, we applied it on a collection
of faulty C programs to show how effective the different dependency encodings are at
revealing different types of concurrency bugs. We used four different encodings to track
data and control dependencies: hs refers to hazard-sensitive encoding for tracking inter-
thread data dependencies, cs refers to control-sensitive encoding for tracking control
dependencies, and ds denotes the basic encoding encP of Section 3. The symbol “+”
indicates combinations of encodings.

12



Our definition of whether the bug was captured depends on the type of bug. For
data race bugs, we required that the slice reflecting the bug contains both conflicting
accesses. For atomicity violations, a slice reflecting the bug contains conflicting state-
ments from another thread interrupting the desired atomic region. For order violations,
a slice reflecting the bug contains conflicting statements in the problematic order.

Table 1 summarizes our empirical results. The benchmarks in this table are clas-
sified into two groups. The first group consists of 33 multithreaded C programs taken
from [17].7 These programs capture the essence of concurrency bugs reported in various
versions of open source applications such as Mozilla, Apache, and GCC. The apache2
and bluetooth benchmarks in the second group are simplified versions of applications
taken from [7]. The pool-simple-2 benchmark is a lock-free concurrent data structure
with a linearizability bug. We discuss this benchmark in depth in [11]. The remaining
two benchmarks in the second group are variants of the program discussed in Section 1.
For each benchmark program, the name, the number of lines of code (LOC), the num-
ber of threads, and the type of bug are listed in Table 1. The number of error traces (#T)
per benchmark varies due to specific assertions and ConCrest’s ability to produce error
traces. They do not reflect any preselection of traces. In total, ConCrest generated 90
error traces from the 38 programs all of which we considered in our evaluation.

We useX to indicate that the explanations obtained using the corresponding encod-
ing capture the bug, and – if the bug was not captured. By manually inspecting the slices
we found that for all but two benchmarks, tracking all dependencies ds+cs+hs yields ex-
planations that capture the corresponding concurrency bug. For most benchmarks there
exists at least one additional encoding which provides smaller slices that still reveal the
bug. This encoding is usually hs (68%) or cs (50%) depending on the nature of the bug
and the assertions. Interestingly, our analysis revealed that boop, freebsd auditarg and
gcc-java-25530 from [17] contain sequential bugs already reflected in a ds-slice rather
than concurrency bugs (even though in [17] they are classified as concurrency bugs).

In two of the three error traces of freebsd auditarg the bug is triggered by non-
interleaved executions of the threads. For these traces, any encoding yields an adequate
explanation. In one error trace, however, the bug is triggered by an interference between
two threads, which is only reflected by the encodings ds+hs and ds+cs+hs.

Only the programs hash table, ms queue02, and list seq, which contain bugs in
intricate concurrent data structures, require the full ds+cs+hs encoding.

Only for the two benchmarks apache-25520 and cherokee 01 the slices produced
by our method failed to reveal the bugs. The problem is that the root cause of the asser-
tion violation is that a specific branch of a conditional statement is not taken during the
execution. Slices of single error traces cannot reveal the non-occurrence of an event as
the cause for failure. Therefore, we plan to analyze merged error traces in future work.

Running times. The generation of the slices takes an average of 2.43s (σ = 11.02s)
across all encodings with a maximum of 168.8s. As expected, the running times increase
with the amount of detail captured by the encoding. Generating a ds explanation takes
0.43s on average (σ = 0.18s) whereas a ds+cs+hs explanation takes 7.3s (σ = 21.25s).

7 ConCrest’s search heuristic failed to generate an error trace for the fibbench longer, a variant
of fibbench with larger parameters. We emphasize that this failure is related to the generation
of traces rather than slicing.

13



Benchmark #T LOC AIT Threads Bugs ds+cs+hs ds+hs ds+cs ds
S[%] V[%] S[%] V[%] S[%] V[%] S[%] V[%]
µ σ µ σ RB µ σ µ σ RB µ σ µ σ RB µ σ µ σ RB

account 3 43 (58) 51.7 4 AV 62 12 77 6 X 42 10 68 6 X 43 8 68 6 – 29 5 59 5 –
apache-21287 2 30 (79) 43 3 AV 72 0 87 0 X 28 0 53 0 – 51 0 87 0 X 9 0 40 0 –
apache-25520 1 88 (192) 34 3 AV 38 – 50 – – 9 – 33 – – 26 – 50 – – 9 – 33 – –
barrier vf false 12 57 (85) 27 4 AV 70 0 80 0 X 19 0 40 0 – 67 0 80 0 X 15 0 40 0 –
boop 1 58 (98) 40 3 SB 38 – 47 – X 30 – 40 – X 35 – 47 – X 28 – 40 – X
cherokee 01 1 88 (188) 28 3 AV 46 – 60 – – 11 – 40 – – 32 – 60 – – 11 – 40 – –
counter seq 1 28 (41) 29 3 DR 72 – 90 – X 38 – 70 – X 52 – 80 – – 31 – 60 – –
fibbench 2 34 (47) 34 3 AV 94 3 97 3 X 94 3 97 3 X 88 3 97 3 X 88 3 97 3 X
freebsd auditarg 3 52 (104) 37 4 SB 67 7 86 0 X 32 5 64 0 X 57 10 79 10 X (2/3) 30 8 57 10 X (2/3)
gcc-java-25530 2 36 (86) 17 3 SB 35 0 40 0 X 35 0 40 0 X 24 0 40 0 X 24 0 40 0 X
gcc-libstdc++-3584 1 40 (104) 37 3 AV 62 – 79 – X 35 – 64 – X 46 – 71 – – 30 – 57 – –
gcc-libstdc++-21334 1 36 (86) 27 3 OV 63 – 78 – X 22 – 33 – X 48 – 78 – – 15 – 33 – –
gcc-libstdc++-40518 2 40 (104) 23 3 AV 43 0 56 0 X 30 0 56 0 – 39 0 56 0 X 22 0 56 0 –
glib-512624 02 2 50 (94) 27.5 3 AV 84 2 100 0 X 47 3 80 0 X 60 4 85 5 – 38 5 65 5 –
hash table 1 51 (114) 69 3 AV 41 – 61 – X 4 – 21 – – 29 – 54 – – 4 – 21 – –
jetty-1187 1 24 (98) 26 3 AV 81 – 100 – X 35 – 78 – X 58 – 89 – – 27 – 67 – –
lazy01 false 2 39 (55) 23 4 OV 91 0 100 0 X 65 0 100 0 X 87 0 100 0 X 61 0 100 0 X
lineEq 2t 01 1 35 (58) 52 3 AV 69 – 81 – X 46 – 71 – X 52 – 76 – X 37 – 67 – X
linux-iio 1 54 (87) 55 3 DR 40 – 59 – X 20 – 50 – X 27 – 41 – – 16 – 32 – –
linux-tg3 1 93 (115) 167 3 DR 19 – 38 – X 13 – 36 – X 8 – 11 – X 2 – 9 – –
list seq 1 59 (122) 53 3 AV 58 – 95 – X 6 – 30 – – 40 – 75 – – 6 – 30 – –
llvm-8441 2 149 (244) 32.5 3 AV 74 4 92 0 X 18 0 33 0 X 55 7 83 8 – 12 0 33 0 –
mozilla-61369 1 19 (68) 6 1 OV 67 – 100 – X 67 – 100 – X 67 – 100 – X 67 – 100 – X
ms queue02 1 67 (97) 66 3 AV 44 – 52 – X 5 – 20 – – 35 – 48 – – 5 – 20 – –
mysql5 1 21 (27) 28 3 AV 82 – 89 – X 46 – 67 – X 46 – 89 – – 25 – 67 – –
mysql-644 1 68 (165) 16 3 AV 38 – 33 – X 38 – 33 – X 25 – 33 – – 25 – 33 – –
mysql-3596 1 30 (83) 6 3 DR 100 – 100 – X 100 – 100 – X 67 – 100 – X 67 – 100 – X
mysql-12848 1 51 (142) 14 2 AV 71 – 67 – X 43 – 50 – – 50 – 67 – X 29 – 50 – –
read write false 1 78 (140) 58 5 AV 17 – 27 – X 17 – 27 – X 17 – 27 – X 17 – 27 – X
reorder2 false 8 50 (105) 10.5 5 AV 86 14 100 0 X 86 14 100 0 X 62 8 100 0 X 62 8 100 0 X
testconc02 1 15 (19) 9 2 AV 89 – 100 – X 89 – 100 – X 56 – 100 – – 56 – 100 – –
transmission-1.42 1 25 (78) 5 3 DR 100 – 100 – X 100 – 100 – X 80 – 100 – X 80 – 100 – X
VectPrime02 1 97 (183) 115 3 AV 25 – 68 – X 9 – 45 – X 18 – 59 – – 7 – 36 – –

apache2 8 719 (–) 235.5 3 AV 8 2 9 2 X 1 0 1 0 – 7 2 9 2 X 1 0 1 0 X
bankaccount-lock-for-loop 5 103 (–) 247 3 AV 46 2 44 2 X 12 1 30 2 X 40 2 42 2 – 9 1 23 3 –
bankaccount-simple-lock 2 50 (–) 45 3 AV 71 0 80 0 X 31 0 60 0 X 62 0 73 0 – 24 0 53 0 –
bluetooth 5 87 (–) 35.8 3 AV 42 0 63 0 X 14 0 31 0 – 36 0 63 0 X 11 0 31 0 –
pool-simple-2 8 298 (–) 885.5 3 LV 30 1 58 2 X 0 0 2 0 – 29 1 56 2 X 0 0 2 0 –

Total 90 58.8 72 88 35 54 47 45 67.7 61 27 50.5 22

#T: No. of Traces in Benchmark LOC: Lines of Codea AIT: Average No. of Instructions in a Trace
ds: Basic Encoding cs: Control-Sensitive Encoding hs: Hazard-Sensitive Encoding
S: Slice Size / Trace Size V: No. of Variables in Slice / No. of Variables in Trace
µ: Average σ: Standard Deviation
RB: Reflects Concurrency Bug AV: Atomicity Violation SB: Sequential Bug
DR: Data Race OV: Order Violation LV: Linearizability Violation
a LOC excluding comments and blank lines; LOC in parentheses are as stated in [17].

Table 1: Experimental comparison of sensitivity-configurations for slicing

Quantitative Evaluation. Table 1 shows the effect of tracking different dependencies
on the size of the slices. µ refers to average percentage reduction as the quotient of the
number of remaining and original instructions, so smaller numbers mean smaller slices.
As expected, increasing the sensitivity of the algorithm by tracking more dependencies
leads to smaller reductions. However, as we have seen previously, the hazard-sensitive
explanations (ds+hs), which capture the concurrency bugs in 68% of the benchmarks,
on average contain 35% of the original instructions and 54% of the original variables.
We gained the maximum reduction with the encoding (ds), however the resulting expla-
nations reflected the concurrency bugs in only 23% of the benchmarks. The amount of
reduction differs across benchmarks with a maximum of 93% for the apache2 bench-
mark program. Slices which are hazard- but not control-flow sensitive tend to be much
smaller than slices which are control-flow sensitive, but not data-hazard sensitive.

14



5 Related Work

The original work on error invariants [6, 2] is discussed in Sections 2 and 3. Murali et
al. [22] relate error invariants to unsatisfiable cores and consistency-based diagnosis.
The latter is also implemented in ConcBugAssist [17], a repair tool for concurrent pro-
grams, and BugAssist [15] for the diagnosis of sequential bugs. Both BugAssist and
ConcBugAssist take into account multiple traces simultaneously and can yield better
accuracy in certain cases (e.g., benchmarks apache-25520 and cherokee 01 in Section
4). Neither [15, 17] nor [22] report branch conditions (or statements explaining why
they hold). On the benchmarks from [17], we found that ConcBugAssist yields similar
reduction ratios as our tool using the hs+ds encoding. The dependency of ConcBugAs-
sist on a bounded model checker for the constraint generation entails scalability issues:
even on a simplified version of pool simpl 2 for which we provided the minimal un-
winding depth necessary to detect the bug, ConcBugAssist timed out after 45 minutes,
while our approach generated a slice in 2.5 minutes for the non-simplified program.

Other static approaches for simplifying and summarizing concurrent error traces
include [10], [12], [13], and [16]. In [10], an SMT solver and model enumeration is
used to derive a symbolic representation of all reorderings of a given trace that violate a
safety property, which is then used to explain the bug. Instead, we analyze a single fail-
ing trace, ensuring that our encoding explicitly captures which happens-before relations
are relevant for the faulty behavior.

Tools that attempt to minimize the number of context switches, such as SIMTRACE
[12] and TINERTIA [13], are orthogonal to the approach presented in this paper.

Many techniques for detecting race conditions or atomicity/serializability violations
are geared towards specific bug characteristics [9, 30, 18]. Similarly, dynamic tech-
niques such as Falcon [24] and Unicorn [23] rely on bug patterns. Our approach en-
codes data-dependencies rather than relying on bug patterns or specific bug character-
istics. Recent work [27] uses mining of failing and passing traces to isolate erroneous
sequences of statements. Our technique only considers failing traces.

AFIX [14] and CONCURRENCYSWAPPER [1] automatically fix concurrency-related
errors. The latter uses error invariants to generalize a linear error trace to a partially
ordered trace, which is then used to synthesize a fix. This approach may potentially
benefit from our more fine-tuned trace encoding that enables error invariants to capture
concurrent data dependencies.

6 Conclusion

We proposed to augment error invariants with information about inter-thread data de-
pendency and hazards to capture a broad range of concurrency bugs. Our technique
generates sound slices of concurrent error traces, enabling developers to quickly isolate
and focus on the relevant aspects of error traces. We proved that the reported slices are
sound and sufficient to trigger the failure. The experimental evaluation of our proto-
type implementation showed that the approach is effective and significantly reduces the
amount of code that needs to be inspected.

15



References

1. Pavol Cerný, Thomas A. Henzinger, Arjun Radhakrishna, Leonid Ryzhyk, and Thorsten Tar-
rach. Efficient synthesis for concurrency by semantics-preserving transformations. In Com-
puter Aided Verification (CAV), volume 8044 of LNCS, pages 951–967. Springer, 2013.

2. Jürgen Christ, Evren Ermis, Matthias Schaef, and Thomas Wies. Flow-sensitive fault local-
ization. In Verification, Model Checking and Abstract Interpretation (VMCAI), 2013.

3. Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck.
Efficiently computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems (TOPLAS), 13(4):451–490, 1991.

4. Vijay D’Silva, Mitra Purandare, Georg Weissenbacher, and Daniel Kroening. Interpolant
strength. In Verification, Model Checking and Abstract Interpretation (VMCAI), volume
5944 of Lecture Notes in Computer Science, pages 129–145. Springer, 2010.

5. Dawson R. Engler and Ken Ashcraft. Racerx: effective, static detection of race conditions
and deadlocks. In SOSP, pages 237–252. ACM, 2003.

6. Evren Ermis, Martin Schäf, and Thomas Wies. Error invariants. In Symposium on Formal
Methods, volume 7436 of Lecture Notes in Computer Science, pages 187–201. Springer,
2012.

7. Azadeh Farzan, Andreas Holzer, Niloofar Razavi, and Helmut Veith. Con2colic testing. In
Foundations of Software Engineering (FSE), pages 37–47. ACM, 2013.

8. Cormac Flanagan and Stephen N. Freund. FastTrack: efficient and precise dynamic race
detection. Communications of the ACM, 53(11):93–101, 2010.

9. Cormac Flanagan and Shaz Qadeer. A type and effect system for atomicity. In Programming
Language Design and Implementation (PLDI), pages 338–349. ACM, 2003.

10. Ashutosh Gupta, Thomas A. Henzinger, Arjun Radhakrishna, Roopsha Samanta, and
Thorsten Tarrach. Succinct representation of concurrent trace sets. In POPL, pages 433–
444. ACM, 2015.

11. A. Holzer, D. Schwartz-Narbonne, M. Tabaei Befrouei, G. Weissenbacher, and T. Wies.
Error Invariants for Concurrent Traces. ArXiv e-prints, abs/1608.08584, August 2016.

12. Jeff Huang and Charles Zhang. An efficient static trace simplification technique for debug-
ging concurrent programs. In Static Analysis Symposium (SAS), volume 6887 of Lecture
Notes in Computer Science, pages 163–179. Springer, 2011.

13. Nicholas Jalbert and Koushik Sen. A trace simplification technique for effective debugging
of concurrent programs. In Foundations of Software Engineering (FSE), pages 57–66. ACM,
2010.

14. Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and Ben Liblit. Automated atomicity-
violation fixing. In Programming Language Design and Implementation (PLDI), pages 389–
400. ACM, 2011.

15. M. Jose and R. Majumdar. Cause clue clauses: error localization using maximum satisfiabil-
ity. In Programming Language Design and Implementation (PLDI), 2011.

16. Sujatha Kashyap and Vijay K. Garg. Producing short counterexamples using ”crucial
events”. In Computer Aided Verification (CAV), volume 5123 of Lecture Notes in Computer
Science, pages 491–503. Springer, 2008.

17. Sepideh Khoshnood, Markus Kusano, and Chao Wang. Concbugassist: constraint solving
for diagnosis and repair of concurrency bugs. In ISSTA, pages 165–176. ACM, 2015.

18. Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes: a com-
prehensive study on real world concurrency bug characteristics. In ACM Sigplan Notices,
volume 43, pages 329–339. ACM, 2008.

19. Kenneth L. McMillan. An Interpolating Theorem Prover. Theoretical Computer Science,
345(1):101–121, 2005.

16



20. Kenneth L. McMillan. Lazy Abstraction with Interpolants. In Computer Aided Verification
(CAV), volume 4144 of Lecture Notes in Computer Science, pages 123–136. Springer, 2006.

21. Steven S. Muchnick. Advanced Compiler Design Implementation. Morgan Kaufmann, 1997.
22. Vijayaraghavan Murali, Nishant Sinha, Emina Torlak, and Satish Chandra. A hybrid algo-

rithm for error trace explanation. In VSTTE, 2014.
23. Sangmin Park, Richard Vuduc, and Mary Jean Harrold. A unified approach for localizing

non-deadlock concurrency bugs. In Software Testing, Verification and Validation (ICST),
pages 51–60. IEEE, 2012.

24. Sangmin Park, Richard W. Vuduc, and Mary Jean Harrold. Falcon: fault localization in
concurrent programs. In International Conference on Software Engineering (ICSE), pages
245–254. ACM, 2010.

25. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E. Anderson. Eraser: A Dynamic
Data Race Detector for Multithreaded Programs. ACM Trans. Comput. Syst., 15(4):391–411,
1997.

26. Nishant Sinha and Chao Wang. On interference abstractions. In Principles of Programming
Languages (POPL), pages 423–434. ACM, 2011.

27. Mitra Tabaei-Befrouei, Chao Wang, and Georg Weissenbacher. Abstraction and mining of
traces to explain concurrency bugs. In Runtime Verification (RV), 2014.

28. F. Tip. A survey of program slicing techniques. JOURNAL OF PROGRAMMING LAN-
GUAGES, 3:121–189, 1995.

29. Chao Wang, Sudipta Kundu, Rhishikesh Limaye, Malay Ganai, and Aarti Gupta. Symbolic
predictive analysis for concurrent programs. 23(6):781–805, November 2011.

30. Min Xu, Rastislav Bodı́k, and Mark D. Hill. A serializability violation detector for shared-
memory server programs. In Programming Language Design and Implementation (PLDI),
pages 1–14. ACM, 2005.

17


