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Abstract

The automated inference of quantified invariants is comsitiene
of the next challenges in software verification. The questd
the right precision-efficiency tradeoff for the correspiogdpro-
gram analyses here hoils down to the question of the right-tre
ment of disjunction below and above the universal quantifier
the closely related setting of shape analysis one uses ths fip-
erator in order to adapt the treatment of disjunction (and ttne
efficiency-precision tradeoff) to the individual progratatement.
One promising research direction is to design parameteiee
sions of the focus operator which allow the user to fine-thedo-
cus operator not only to the individual program statemeuntsitso
to the specific verification task. We carry this researchctiive one
step further. We fine-tune the focus operator to each indalidtep
of the analysis (for a specific verification task). This fineibg
must be done automatically. Our idea is to use counterexampl
for this purpose. We realize this idea in a tool that autocadlsi
infers quantified invariants for the verification of a vayief heap-
manipulating programs.

Categories and Subject DescriptorsD.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1¢gics and Meaning
of Program$: Specifying and Verifying and Reasoning about Pro-
grams; F.3.2l[ogics and Meaning of PrograrhsSemantics of
Programming Languages—Program Analysis

General Terms Algorithms, Languages, Reliability, Verification

Keywords Data Structures, Quantified Invariants, Predicate Ab-
straction, Abstraction Refinement, Shape Analysis

1. Introduction

There is a considerable interest in the automated verificadf
correctness properties of programs that implement or use-he
allocated data structure§,[10, 19-21, 23, 24, 27, 29, 31, 34, 42,
43, 45, 48-50, 56, 57]. The correctness properties of such programs
typically include quantified assertions, e.g., assertibasdescribe
the expected shape of data structures sucthasreference count
for each internal object of the data structure is &hd assertions
that describe the effect of data structure operations sacfall
objects stored in the data structure are properly initiali?. The
automated inference of quantified invariants for the vatfan of
quantified assertions is considered one of the next chateirg
software verification.
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The eternal quest for the right precision/efficiency trdflao
the corresponding program analyses here boils down to ths-qu
tion of the right treatment of disjunction below and above timi-
versal quantifier (specifically in the construction of thestadct
transformer). To achieve a reasonable average tradeoffebet
precision and efficiency, existing program analyses follosom-
mon recipe (see, e.g.19, 42, 48]). The designer of the program
analysis starts off with a coarse but efficient generic alstrans-
former and then manually adapts this abstract transforméne
individual kinds of program statements such that disjumgiare
introduced prudently. In the closely related setting ofpghanaly-
sis this adaptation is referred to as foeus operatiorj48]. If one
has to adapt the abstract transformer to individual progstate-
ments, uniformly for all possible uses of the analysis, tesigher
of the program analysis is obliged to be very conservativé va-
gard to the precision of the focus operator. As a consequé¢hee
analysis is often too inefficient.

It is therefore desirable to fine-tune the focus operator to a
specific use of the analysis. A promising research diredscio
design parameterized focus operators that allow the uséneof
analysis to (manually) do this fine-tuning herself, for easw
verification task; the resulting gain of scalability is encaging;
new classes of heap-manipulating programs, even cont¢umes,
have been successfully analyz&841].

In this paper, we carry this research direction one stefhéurt
(and perhaps to its logical extreme). We propose to fine-thae
focus operator not only to each individual problem instarie
to each individual step of the analysis, i.e., each apptinatf the
abstract transformer. This fine-tuning must be done autoaibt
Our idea is to use counterexamples for this purpose. Theicont
bution of this paper is to conceptually and practically imathe
idea and to demonstrate its interesting potential. We pteseew
method and tool that automatically infers quantified irsat$ for
the verification of a variety of heap-manipulating programs

The general idea of using counterexamples for refining an
abstraction stems from the classical scheme of countemgram
guided abstraction refinement (CEGAR) [L4, 25]. A number of
software verification tools based on the scheme, &gl7] 26, 44],
are able to synthesize expressive invariants (though, uenttdied
ones, so far). A spurious counterexample is an error traagish
possible in the abstract but not in the concrete. Addingipetels
extracted from a spurious counterexample refines the abstoa
main; in a subsequent step, the scheme re-defines the alistrae
former (as a function on the new abstract domain). In copttias
focus operator refines the effect of the abstract transfowitbout
changing the abstract domain and without re-defining thetfon.
We propose to use spurious counterexamples for both: forimgfi
the abstract domain, and for fine-tuning a focus operatoetiepts
the effect of the abstract transformer.

More precisely, we transcend the idea of lazy abstrac@ah [
a CEGAR scheme which adapts the abstract domain exactlgto th
point of the execution of the analyzed program. We devisested



lazy abstraction refinement loop that adapts both, the atistio-
mainand the abstract transformer exactly to the point. The refine-
ment loop consists of two nested refinement steps. The fapt st
refines the abstract domain by extracting new predicates fhe
spurious error trace. If a spurious error trace is not elatgd by
merely refining the abstract domain then the second steptlises
spurious error trace to construct a focus operator thattadag ef-
fect of the abstract transformer on the current abstractdtoriihis
adaptation can thus be performed locally and lazily, i.eewafor
each single application of the abstract transformer.

In passing, let us note that our development of the counter-
example-guided focus was originally motivated by the goatg-
tablish the so-callegrogress property25]. The property means
that every spurious counterexample encountered duringuthé
ysis is eventually eliminated by a refinement step. The ptgpe
is of foremost theoretical interest (a priori, it need nopiove the
chances of convergence in practice since there may be abwasis
spurious counterexample). In the setting of quantified riaves,
however, the theoretical interest of counterexamplegifdcus is
in line with its practical relevance. The progress prophdis (and
only holds) in the presence of counterexample-guided fothe
practical verification does succeetth counterexample-guided fo-
cus and does nawithout the reason is apparently that in many
benchmarks, a uniformly precise abstract transformer fe#hible
cost comes with a too low precision.

Summary. To summarize, our work leverages the research on
the CEGAR scheme in software verificatiod, [L2, 14, 25] and

the research on the focus operator in shape anal$8ist], 48].

Our contribution is to show that the techniques developdtiése
two research directions can be fruitfully integrated toamte one
another for the inference of quantified invariants:

¢ the focus operator can be made effective in a CEGAR setting
because it can be fine-tuned lazily and its locality can beedri
to the extreme,

e the CEGAR scheme can be made effective for quantified in-
variants because adding an inner refinement loop for thesfocu
operator provides the progress property and the precigen r
quired on practical examples (without the otherwise pribii
cost for a precise abstract transformer on an abstract ddiorai
quantified assertions).

2. Motivating Example

In this section, we will use an example to motivate the caunte
example-guided focus and explain it in more detail. The @oy
INIT shown in Fig.1 initializes all entries in a singly-linked list.
The assert statement at locatienchecks that all entries in the list
are indeed initialized after termination of the while lodye would
like to automatically compute an inductive invariant foe ttoop
cutpoint at locatiort; that implies the safety of this assertion.

In the remainder of this section, we will first present the ab-
stract domain, then the most precise abstract transforwigctf
is too costly to implement), then a less costly abstractsfamer
(which is too coarse), and finally the transformer obtaingdhe
counterexample-guided focus.

Abstract Domain: Boolean heaps.We use a variation of predi-
cate abstractior?P] which we callBoolean heap abstractida5].
Here we do not usstatepredicates (which can be defined by closed
first-order formulas as, e.g., in the assert statement atitot/s).
Instead, we use predicates that range over objects in tipe(hed
which can be defined by formulas with free first-order vaeahl
These predicates are reminiscent of the predicates usdude-t
valued shape analysid§] and indexed predicate abstracti@1].
Figure2 shows three such predicates for Progrant| The predi-

lo: yi=x
£1:  while y#null do
y.data:=0
y:=y.next
ly:  assert(Vv. (z,v) € next* A v#null — v.data=0)

Figure 1. Program NIT

Cont ={v | (z,v) € next™ Av # null }
Iter ={v | (y,v) € next™ ANv # null }
Init ={v|v.data =0}

Figure 2. Predicates for ProgrannIT denoting sets of objects

cates range over objects in the heap. For notational coeneaiwe
write predicates as sets. For instance, the predi€atet denotes
the content of the list pointed to by, i.e., the set of all non-null
objects that are reachable franby following nezt pointers in the
heap. Data structure fields suchrasct and data are modeled as
function symbols. The binary relatiomnezt™ denotes the reflexive
transitive closure of the functionezt. Given a program state (i.e.,
a valuation ofnext and data as functions), the finite set of predi-
cates induces a partition of the heap into finitely many exjaivwce
classes of heap objects.

The abstract domain of Boolean heaps consists of formudds th
describe such partitions. Each formula in the abstract dworisa
a disjunction of universally quantified Boolean combinasicof
the given predicates. The abstract domain is finite. We tall t
outer disjuncts in these formulabstract statesFor instance, the
formula F given by

F = Yv. (v € Iter — v e Cont) A
(v e Cont — v € Iter Vv € Init)

is an abstract state for the predicates in RigAn abstract state is
a special case of an element of the abstract domain (a digjanc
with only one disjunct).

We use elements of the abstract domain to express inductive
invariants. For example, the formukais an inductive invariant for
location?; in program NIT and implies that the assert statement at
location?, does not fail.

Most Precise Abstract TransformeFor the purpose of this expo-
sition, we represent the most precise abstract transfangieg an
abstract programover abstract states; see Fiy.The abstraction
of the concrete transformer for each basic block in the aincr
program is translated to a statement in the abstract program
abstract program has a program variable for each of the giraf
icates (carrying the same name, efBier, Cont). The program
variables in the abstract program range over sets of objects
Figure 3 shows the Boolean heap abstraction of progranT |
for the predicates given in Fig. Here “*" stands for the non-
deterministic choice of a Boolean value. The statentevoc x
stands for the nondeterministic assignment of progranakbeic.
In the example, for the sake of simplicity, we implicitly agse
that all lists are acyclic. We express the updates in theatigtro-
gram through logical formulas over unprimed and primedalads
(which, as usual, model the pre and the post value for thetapda
For instance, the abstract transformer for the loop bodyadiam
INIT is given by

Vo. (v € Cont < v € Cont') A
(v € Init - v € Init’) A
(v € Iter’ - v € Iter) A
(v e Init' ANv ¢ Init < v € Iter Av & Iter’).



fo: havoc Iter’ lo: havoc Iter’ lo: havoc Iter’
assumelter’ = Cont assumelter’ = Cont assumelter’ = Cont
Tter:= Iter’ Tter:= Iter’ Tter:= Iter’
¢1: while x do ¢1: while x do ¢1: while x do
havoc Iter’, Init’ havoc Iter’, Init’ havoc Iter’, Init’, Y
assumelnit C Init’ assumelnit C Init’ assumelnit’ = InitUY
assumelter’ C Iter assumelter’ C Iter assumelter’ = Iter — Y
assumelnit’ — Init = Iter — Iter’ (Iter, Init):= (Iter’, Init") (Iter, Init):= (Iter’, Init")
(Iter, Init):= (Iter’, Init") assumelter=0 assumelter=0
assumelter=( lo: assert Cont C Init lo: assert Cont C Init

lo: assert Cont C Init

Figure 3. Program AsINIT: Boolean heap ab- Figure 4. Program @QRTABSINIT: Carte- Figure 5. Counterexample-guided focus
straction of ProgramnNIT sian abstraction of Programe&INIT applied to Program ERTABSINIT

For readability, in the abstract program in Figwe decompose the
abstract transformers into several assume statementeprebsent
them as set constraints (instead of universally quantibeaidilas).
Also, we omit some redundant information.

The successor abstract state under the execution of a askc b
in the abstract program is obtained as one expects. Firsitihe
stract state is conjoined with the logical formula (in unped and
primed variables) that represents the abstract transfasfiibe ba-
sic block. Then the unprimed variables are projected andriheed
variables renamed by their unprimed version. The (finit¢)ofe
reachable abstract states for the abstract prograsi WT repre-
sents an (inductive) invariant of the programii. Projected to lo-
cation/y, this invariant implies the formul&'. l.e., the correspond-
ing analysis (which computes the set of reachable abstateissof
ABSINIT) succeeds to prove the correctness of the prognam. |

Program AsINIT represents thenost preciseabstract trans-
former with respect to the abstract domain induced by thergiv
predicates. This abstraction is in general too expensivst, Ehe
construction of the abstract program requires exponéntiaany
theorem prover calls in the number of predicates. Secoedntist
precise abstraction often keeps track of more informatitam tis
necessary for proving a specific property and causes thgsas &
explore unnecessarily large parts of the abstract domain.

Abstract Transformer with Cartesian Abstraction. In order to
obtain an abstract transformer with feasible cost, one qgutya
the Cartesian abstractiorj2, 16] on top of the Boolean heap ab-
straction. Cartesian abstraction is originally defined losti@ct do-
mains that are power sets of vectors (in our case bitvecttiss)
name stems from the fact that it abstracts a set of vectdrg the
smallest Cartesian product (of component sets) that cmfailt
applies to our setting because we can represent an abdatet s
canonically as a set of bitvectors where each bitvectoesponds
to an inner disjunct of the abstract state.

The Cartesian abstraction of the most precise abstrac{yibst
respect to the Boolean heap abstraction) can be constreffesd
tively from the concrete program (in practice using only &/po-
mial number of theorem prover call9)g]. Furthermore, Cartesian
abstraction avoids an explosion of the size and number dfaaits
states that are explored in the fixed point computation hyicéisg
the disjuncts that can appear below and above the univaraatig
fier in abstract states. The resulting analysis is efficiepractice.

In general, however, it is too imprecise. This is demonsttdiy
our example program.

Figure4 shows the Cartesian abstraction of PrograpsNIT.
Program @RTABSINIT loses the correlation between the predi-
cateslter andInit in the abstract transformer of the loop body (the
correlation is expressed by the statemasgumelnit’ — Init =
Iter — Iter’ in the program AsINIT in Fig. 3). As a consequence,

the invariantF' of Program ABSINIT is not an invariant of Pro-
gram CARTABSINIT. l.e., the corresponding analysis (which com-
putes the set of reachable abstract states A#T@ BSINIT) does
not succeed to prove the correctness of the prognam. |

Counterexample-Guided FocusThe analysis of the abstract pro-
gram CARTABSINIT produces a spurious error trace that witnesses
a violation of the assert statement at locatiion It seems tempt-
ing to try to use the spurious error trace to refine the alistraas
done in the CEGAR scheme. As mentioned above, in the existing
CEGAR scheme, the abstract domain is refined; the desiredteff
is to eliminate the spurious error trace. The underlyingiaggion
which guarantees this effect is that the refined analysisaged

on the most precise abstract transformer. In our case, feowbe
spurious error trace results from an imprecise abstracsfoamer,
rather than an imprecise abstract domain. In fact, the atistio-
main is already able to express an inductive invariant thatui-
ficiently strong to rule out all spurious error traces. Areatpt to
extract new predicates from the proof of spuriousness of tle-
terexample is therefore pointless. It makes more senseetaheas
spurious error trace for refining the abstract transfornagier than

the abstract domain.

To do so, we use the above-mentioned focus operator that is in
spired by shape analysis. It refines the image of the absteans-
former by changing the presentation of its pre-image. We ato n
change the definition of the abstract transformer (with tlaetes
sian abstraction). However, when applied to the new pratent
the Cartesian abstraction does not lose as much precislefaz.
The novelty of our approach is that we devise a focus opetiasbr
is constructed on-demand and locally from the spurious émaoe.

Figure5 illustrates the effect of our counterexample-guided fo-
cus operator on Programa®TABSINIT. It only affects the body
of the while loop. The focus operator uses an additionalipatel
Y = {v |y =wv} in order to split disjuncts below the universal
quantifier into multiple disjuncts before the applicatidrtiee ab-
stract transformer for the loop body. As a consequence,direc
lation between variablegter and Init is not lost in spite of the
Cartesian abstraction of the abstract transformer. Nateliffer-
ent, but equivalent representation of the correlation by agsume
statements. Our method and tool automatically infers tligspd-
icateY and the corresponding focus operator from a spurious coun-
terexample of the abstract programrABSINIT. The inductive
invariant obtained by the fixed point of the resulting alttteans-
former implies the assertion at locatién l.e., the analysis (which
computes the set of reachable abstract states of the absteac
gram in Fig.5) does succeed to prove the correctness of Program
INIT.



3. Preliminaries

We now formalize the notion of formulas and programs usetig t
paper and formally introduce Boolean heap abstraction.

3.1 Logics and Programs.

Logical formulas and structures. For reasoning about programs
we consider formulas in a sorted logit We require thatC pro-
vides the sortebj (heap objects) anidc (program locations). Fur-
thermore, we require tha provides logical constructs for equality
over both sorts, Boolean connectives, and first-order dfiGatton
over variables of sorbj. Formulas are expressed over a signature
3> whereX: consists of the following constant symbols of slxt:

£ € Locs (control locations)pc (the program counter, (the ini-
tial location), and?x (the error location), as well as the following
symbols of sorbbj: unary function symbolg € Flds (data struc-
ture fields) and constant symbalse Vars (program variables).
We leave out sort annotations in formulas whenever thisesans
confusion. In our running examples, the lodids given by first-
order logic with transitive closure.

We fix non-empty disjoints set§ and L for the interpretations
of sortobj andloc. A X-structureA is a first-order interpretation
that interprets each symbol ¥aby a function over, respectively, an
element in the sets interpreting the associated sorts. \Weutf)
for the interpretation of symbof € X in structureA. We further
write A(¢) for the denotation of &-termt in structureA. Hereby,
A also provides interpretations for the free variables a@egrin
t. We use standard logical notation for satisfiability, vijidand
entailment. Finally, for a formuld we write [ F'] to denote the set
of all structures that satisfy.

Programs.The set of commandS§oms is defined by the following
grammar wherd" is a formula inZ, z,y € Vars denote program
variables,f € Flds a pointer field, and € Locs U {fo, ¢} a
control location:

cu= c;classumel | pe:={L|z:=y|x:=y.f |z.fi=y

A program P is a finite set of commands. Consecutiveness of com-

If ¢ is a sequential composition ; co then there must exist a
states” such thaf(s, s”) € [c1] and(s”, s’) € [ez].

e If ¢ is an assume commardsumeF’, we require that = F
ands’ = s.

If ¢ is an update of the program counter or a program variable,
we haves’ = s[pc—s(£)] for c = (pe:=¥), s' = s[x — s(y)]
forc = (z:=y) ands’ = s[z — s(f(y))] for c = (x:= f.y).

e Finally, if ¢ is a field update of the fornf.z:=y, we have

s' = s[f = s(f)[s(x)—s(y)]]-

Computations and traces.A programcomputationof a program

P is a (possibly infinite) sequenee= sy <% s; < ... of states
and commands such thas is an initial state and for each pair of
consecutive states ands; 1 we have(s;, si+1) € [c;] for some
commande; € P. A traceis a sequence of commands and we
call the projection of a computation = so =% s; = ... to the
sequence of commandsgc; ... the trace of that computation. A
trace is callectrror traceif it is the trace of some computation that
reaches an error state. A progranségeif it has no error traces.

Predicate transformers. Given a set of state§ and a binary
relation R on states, we define strongest postconditont and
weakest (liberal) preconditionlp as usual:

post(R)(S) & {s'|3s.(s,s) eRAsES}
wip(R)(S) = {s|Vs'.(s,s) ER=5s €S} .
We further introduce symbolic weakest preconditions omidas.
For any command and formulaF’ the formulawlp(c)(F) is a for-
mula such that we havelp([c])([#]) = [wlp(c)(F)]. Note that

we do not requird’ to be closed. We extend symbolic weakest pre-
conditions from commands to sequences of commands as egpect

3.2 Boolean Heap Abstraction

We formalize the Boolean heap abstraction in terms of anratist
interpretation 15]. The concrete domain is given by sets of states
ordered by set inclusion. We represent elements of the etsndo-
main by closed formulas iff. The concrete fixed point functional

mands in a program is achieved by composing assume staementis the operatopost for the transition relation of the concrete pro-

on the value ofpc, updates ofpc, and the actual commands using
the sequential composition operator.

Program states. A programstateis a 3-structure. We denote by
States the set of all program states. We call a stateitial state
iff it satisfiess |= pc={y and we call iterror stateiff it satisfies
s = pc=Lg. Letinit be the formulapc={, denoting all initial
states and letafe be the formulapc#¢r denoting all non-error
states.

Null pointers and allocation.Note that we interpret data structure
fields f as total functions. We treaiull as a program variable that
can neither be assigned nor dereferenced. We assume tredt for
fields f € Flds the equalitynull.f = null holds in all program
states. In order to ensure absence of null dereferencey, ewa-
mandc that contains a dereference of the farnf is guarded by a
commandassume(z=null); pc:= ¢ g that directs control to the er-
ror location ifz is not defined. Allocation of fresh heap objects can
be modelled by introducing a predicate symbol that keeuk to&
the current set of allocated objects. However, this reguine in-
clusion ofhavoc commands that nondeterministically update the
value of a program variable. The techniques presentedsmp#per
carry over to programs extended withvoccommands. For details
see p1].

Transition relations.Each command represents a relatidia] on
pairs of stategs, s’) that is defined recursively on the structure of
commands as follows:

gram (i.e., the union of the transition relations of all igmanands)
and the initial statemit. The abstract domain is a finite set of for-
mulas that forms a sublattice of the concrete domain. Thiysisa
is to compute the least fixed point of an abstractiopadt that is
defined on the abstract domain. The computed least fixed {oint
an inductive invariant of the concrete program.

Abstract domain.The abstract domain is parameterized by a finite
set of predicates that denote sets on heap objects in a gatn s
In the following, we fix a particular finite set of predicates We
considerP to be given by a set of (closed) lambda terms of the form
Av. G whereG is aformulainZ, i.e., each predicate € P denotes
a set of objects in a given state. If the formulais itself closed
we call the corresponding predicatate predicateWe denote by
P (v) the set of formulas obtained by beta reduction of all forraula
p(v) for p € P. For notational convenience we assume tRat
is such that for albv the setP(v) is closed under negation. The
following definitions are implicitly parameterized by thet .

The abstract domaidbsDom over P consists of all formulas

of the form
\/ Yo.
i=1

where eachDy, (v) is a conjunction of formulas iP(v). We
call the outer disjuncts of these formulabstract statesnd the
inner disjunctabstract objectsWe identify formulas up to logical
equivalence. The partial order on the abstract domain isngby

\ D)

Ji=1



the logical entailment relation=". Note that AbsDom is finite

(modulo logical equivalence) and closed under both conjanc
and disjunction. Thus, it forms a complete lattice. The raust
domain can be easily generalized to formulas with quantifina
over more than one variable and predicates that denotéoreain

objects rather than just sets]].

Abstraction function.The abstraction functioa that maps a set of
states represented by a closed fornfdie a formula in the abstract
domain is defined as follows

alF) & /\{F#GAbsDam|F|:F#} .

The functiona is the lower adjoint of a Galois connecti¢n, +y)
between the concrete and abstract domain, wltking the identity
function.

Abstract post operatorThe most precise abstract post operator on
the abstract domain of Boolean heapst,, and a command is
given by composition of the concrete post operatordaith the
Galois connectiori, ). The actual abstract post operator that we
use in the fixed point computation of the analysis is an atistra

of postf,,. We denote this operator byost? ., and call it the
Cartesian abstract post operatofFormally, the operatopost?BH

is defined as a Cartesian abstraction of the opegatst?,. In the
following, we only show howpost?éfBH is computed. For further
details see45, 51].

We allow abstract states in the pre and post-images of aperat
postz‘ifBH to range over different sets of predicafes respectively,
Ps. Let ¢ be a command anf'* an abstract state over predicates
P, of the form

F* =vu. \/ D;(v)
j=1

where the disjunctsD; are monomials, i.e., each predicate in
‘P1 occurs either positive or negative in ea€ly. The operator
postz‘ifBH mapsE'# to a single abstract stafé* by mapping each
disjunct D; in F# to a single disjunctD} in F'#. The mapping
guarantees that ¥ € States is a concrete state that satisfigd
ando € O an object that satisfies disjuntt; in s then for every
c-successos’ of s, o satisfiesD) in s’. Since this property holds

for all objectso, everyc-successos’ of s satisfiesi”# . Formally,

the image of F# under the abstract post operatnnsstﬁBH for
command: is given by:

postz‘if%B,_|[7717 Pol(c)(F#) =
Yo. VI, A p(v) € P2(v) | F# A D;(v) |= wip(c)(p(v)) }

Thus, the image of the Cartesian abstract post is computed by

checking entailments between conjunctions of predicated a
weakest preconditions of predicates. The quantified foarAit in

the antecedent of these entailments can be replaced by akewe
formula, e.g., a conjunction of finitely many instantiasonf F'# .
The operatopost? ,, is extended to disjunctions of abstract states
as expected.

4. Counterexample-Guided Focus

Before we formally define the counterexample-guided foquer-o
ator, it is instructive to fully understand the nature of thss of
precision that is induced by Cartesian abstraction.

Recall Programnit from Section2. The left part of Figures
shows a program state that may occur at locatiod; during
execution of ProgramNIT. The boxes represent abstract objects
over the setCont, Init, and Iter. HerebyS¢ stands for the set

7 |pe=t1]8

nqrt @
—>|

data

Cont Conte Cont Cont Cont®
Iter Ttere Iter® Iter Ttere
Init® Init Init€

Figure 6. A reachable program stateof Program NIT and its
successor staté that is obtained after execution of the loop body.

complement of5. Formally the state satisfies the abstract state
F# =Yuv.v € ContAv € Iter Av ¢ InitVv ¢ ContAv ¢ Iter

The right part of Figures shows the post-state’ of s that is
obtained at locatio; after execution of the loop body. The boxes
indicate again the abstract objects associated with theretn
objects. The abstract state consisting of the disjunctiothese
abstract objects is the image of the most precise abstratt po
post?, of the abstract stat&'#. Let F'# be this abstract post-
state. Note that the concrete objectssithat are represented by
the abstract object

v e Cont ANv € Iter Av ¢ Init

end up in two disjoint abstract objects if{*. The Cartesian ab-
stract post operatanergesthese two disjuncts into a single con-
junction that only contains the predicates on which botfudists
agree, namely; € Cont. The correlations between predicafest
andter in the two inner disjuncts of'# are lost.

If we want to adapt the precision of the Cartesian abstrast po
we need to prevent it from merging disjuncts in the post-ienafy
the most precise abstract post. This adaptation is perfbbyeur
focus operator. The focus operator adapts the precisidredt arte-
sian abstract post indirectly. Namely, it refines the albstlamain
of the pre-image and splits disjuncts (i.e., both abstretes and
abstract objects in abstract states) in the pre-image iot@ fine-
grained disjunctions. The splitting ensures that indiaidiisjuncts
in the refined pre-image are mapped to individual disjunctheé
post-image under the most precise abstract post. Thistigébc
prevents Cartesian abstraction from losing precisionhBlo¢ re-
finement of the abstract domain and the splitting of disjsirzce
guided by spurious error traces that are produced by thgsisal

Counterexample-guided focus.We now formally define the
counterexample-guided focus operator. In the following fixea
programpP and a set of predicaté®. An abstract computation™
is a sequence

op op OPn—1
P oo g o,

FY
where theF’” are elements of the abstract domalihsDom/[P]
and theop, are abstract transformesdsDom[P] — AbsDom|[P].
Moreover, the following two conditions hold: (B} = a[P](init)
and (2) for all; between O and — 1, Fﬁl = op, (FL#). We say that
the abstract computaticends in an error staté F¥ (£ safe. We
say that™ is generatedy a tracer = co . .. ¢,—1 and an operator
op € Coms — AbsDom — AbsDom if for all 4, op, = op(c;).
We say that the generated abstract computatisousdif for all ¢
between 0 ane, — 1, Fiﬁl is an over-approximation of the set of
states that are reachable from an initial state by followhegtrace
co - . . ¢;. Finally, we say that a trace is aspurious error traceor
op, if the abstract computation generatedbynd op ends in an
error state, yety is not an error trace of prograi.

The counterexample-guided focus operator is used to di@in
spurious error traces for the Cartesian abstract post tieahat



spurious error traces for the most precise abstract postrd-e=
¢o . ..cn—1 be such atrace.

Note that concrete error traces can be characterized irstefm
symbolic weakest preconditions.

LEMMA 1. A tracer is an error trace iffinit = wip()(safe).
Sincemno is not a concrete error trace, we know thatsatisfies

init = wlp(mo)(safe) 1)

Let pref, (7o) be the prefix ofro up to command;_1, respectively,
suff; (mo) its suffix starting from command;. From (1) and the
properties of predicate transformersst andwlp follows that for
all i betweerp andn — 1 we have

post([[pref; (mo)]) ([init]) € wip([suffi(mo)])([safe]) (2)

In other words, for eachi the formulawlp(suff;(mo))(safe) is
satisfied in all states that are reachable from an initilesky
following the tracepref,(mo). The idea of our counterexample-
guided focus operator is to use the formukds(suff; (7)) (safe)
to guide the splitting of disjuncts in the pre-images of tlat€sian
post operator.

The counterexample-guided focus operaiotus takes a se-
quence of commands (the suffix of a spurious error trace))
and an element of the abstract domdibsDom[P] as arguments

Practical considerations. In our actual analysis the focus oper-
ator is always applied in a very specific situation, namelyemw
the abstract domain for the post states of the refined abstaas-
former already contains all the predicates that can beaxgidrom
the spurious error trace used for the focus. Therefore thrah
tion function« in (3) can be replaced by the identity function. The
resulting focus operator is then polynomial in the numbeexf
tracted predicates and the size of the representation dbtused
abstract states.

5. Additional Examples

We now illustrate how the counterexample-guided focus tdap
the abstract transformers for the abstractions of threenpba
programs. In all of these examples, the analysis withouhtzst
example-guided focus would not be able to infer a sufficientl
strong invariant that proves the correctness of the program

Program INIT. We first revisit ProgramNIT from Section2.
We explained the nature of the loss of precision under Garies
abstraction for this example program in the previous sacfidis
loss of precision causes that the analysis of Progmam produces
spurious error traces even though the abstract domain qaesx
a sufficiently strong inductive invariant. The shortesttsspurious
error trace is the trace that starts with the commands atitocé,

and maps the latter to an element of a refined abstract domainexecutes the while loop once and then goes to the error ¢wcaith

AbsDom|preds(m)] with P C preds(r). The operatoffocus is
defined as follows
focus(r)(F#)

& alpreds(m)](wlp(r)(safe))
The set of predicatgsreds(r) is the union of the predicaté® and
predicates that are extracted from the weakest precondifisafe

with respect tor. More precisely, ift = cr’ thenpreds extracts
all atoms from the formula

wip(c)(a[P](wip(n")(safe))) ®)

TheadaptedCartesian abstract post operapast. 5, () for the
suffix = of some spurious error trace is obtained by composition of
the Cartesian post operator (for the refined pre-image dgmaih

the focus operator:

AF?#

post?c g (m) = Ac. postZ g, [preds (), P](c) o focus(m)

Leto™ be the abstract computation generated from patnd
the sequence of operatdgost . g, (suffi (7)) (c:)]o<i<n-

PrRoOPOSITION2 (Soundness of Focusfhe abstract computation
o* is sound.

The proof of Propositior? follows from Property ?) and the
fact thatpost}%BH is a sound approximation of the most precise
abstract post operatobstﬁH.

PropPosITION3 (Progress of FocusYhe abstract computation
o does not reach an error state.

The proof of Propositior8 relies on the fact that the trace,

of computations™ is not an error trace and not spurious for the
most precise abstract post. One can then showfekat performs
sufficient splitting of disjuncts in abstract statessdf before each
application of the Cartesian abstract post. This spliteémgures
that Cartesian abstraction causes no loss of informatian ith
crucial for proving thatr, is safe. Note, however, that the focused
Cartesian abstract post is hot guranteed to compute thepmezsse
abstract post for the given trace. Its precision lies betvibe plain
Cartesian abstract post and the most precise abstract post.

the failing assert statement at locatin The weakest precondition
wlp(7)(safe) for the suffixr of this spurious error trace that starts
in location/; is given by the formula

y.next=null A y#£null —
(Vv. (z,v) € next™ A v#null — v.data=0V y=v)

Using this formula, the focus operator refines the pre-inafghe
abstract transformer for the loop body by adding, amongrothe
predicates, the predicaé = {v | y=v}. In this particular ex-
ample, simply adding predicalé to the pre-image domain is suf-
ficient to rule out the spurious error trace. Recall that thage of
the Cartesian abstract post operator is computed by coside
normal form of the pre-image where in each inner disjunctyeve
predicate occurs either positively or negatively. Thufiniheg the
abstract domain by adding predicatealready enables the Carte-
sian abstract post to perform the necessary splitting @fimliss in
the original pre-image. However, this splitting is purejngactic.
Some of the split disjuncts might be unsatisfiable in all espnted
pre-states but might be mapped to satisfiable disjunctseipdst-
image and, thus, cause imprecision. Also, without propenddahe
image of the Cartesian abstract post will always be a sirtigaract
state and never a proper disjunction. Our second examplessho
that, in general, the local refinement of the abstract dorofthe
pre-image alone, does not suffice to eliminate a spurioes gace
for the Cartesian abstract post.

Program LISTREVERSE. Consider program ISTREVERSEIN
Figure 7 that performs an in-place reversal of a singly-linked list.
The list is pointed to by program variable Assume the heap
is sharing-free before execution of the program (the firstae
statement at locatiofy) and assume thatpoints to the actual root
node of the list (the second assume statement at locégjorvwe
would like to verify that under these assumptiongoints again to
the root node of the reversed list after termination of tregpam.

One part of the inductive invariant for locatién that is needed
to verify the assertion at locatiaf is given by the formula

e=null vV (Vv.v.next#e)

This formula expresses thatalways points to the root of the part
of the original list that has yet to be reversed. This formuda be



Lo : assume(Vu v w. v.next=w A u.next=w A v#u — w=null)
assume(r=null V (Vv. v.next#r))
e:=r; r:=null
£1 : while eznull do
t:=e; e:=e.nexrt
t.next:=r
L : assert(r=null V (Vv. v.next#r))

Figure 7. Program LSTREVERSE

next next 2] pCZgl
@00« O-.
next next
1] pe=l1 ®/ @@O/

Figure 8. Two reachable states of ProgramsitREVERSE

expressed by the disjunction of the following two abstraates

F: Y. e=v < null=v
FY : Y. v.nexte

Figure 8 shows two states that may occur at locatiQnduring
execution of the while loop. Both states satisfy the abststate
F2#. Note that after execution of the loop body, the statesat-
isfies only abstract statEl# while the second state satisfies only
abstract staté“f. The Cartesian abstract post operator will always
merge the post states Etf that result from execution of the loop
body into a single abstract state. An analysis based on fase
tor therefore cannot infer a sufficiently strong inductiveariant.
The counterexample-guided focus cau§§§ to be split into two
abstract states, one whose post states are coverétfbynd one
whose post states are coveredyf . Thus, the Cartesian abstract
post will not lose precision on the focused pre-image. Reditihe
abstract domain by adding additional predicates will nokenap
for the loss of precision on the unfocused pre-image, urdess
adds astate predicatahat expresses one of the outer disjuncts in
terms of an inner disjunct of the other (e.g., the predieaisull in

the given example). In general, the state predicates tf@heads

to add to prevent loss of precision under Cartesian abgiracan

be arbitrarily complex quantified formulas.

Program DLISTERASE. The splitting of disjuncts that is per-
formed by our counterexample-guided focus operator istyas-
lated tomaterializationin shape analysis. Materialization refers to
an intermediate step in the computation of the abstractyhbeste
a concrete object is extracted from an abstraction of actidie of
objects. For instance, given an abstraction of a list, orezlsi¢o
extract the head of the list in order to compute a preciseradist
post-state for a command that iterates over the list. Otnl #hiam-
ple demonstrates that counterexample-guided focus pesforate-
rialization automatically, even in cases that require -gatacture-
specific manual adaptation of the abstract transformersimyrax-
isting shape analyses.

Consider Program DISTERASE shown in Figured. This pro-
gram erases all entries in an acyclic doubly-linked liste Tist is
pointed to by program variable The loop that erases the entries in
the list iterates backwards over the data structure staftim the
last entryl. In each iteration both the forward pointe¢zt and the
backward pointeprev of the current iterate are setdall. The task
is to verify that theprev andnext fields of all original list entries
have indeed been set tall after the loop terminates. This prop-
erty is expressed by the assert statement at locétiofhe assume
statements at locatiofy express the precondition of the program.

Lo : assume(Vv w. v.prev#null A w.next#v V v.prev.next = v)
assume(Vv. v € Contg < (r,v) € next* A v#null)
assumel € Conto
assumel.next=null

¢1 : while I#null do

l.next:=null
t:=1; l:=1.prev
t.prev:=null
Lo : assert(Vv. v € Conto — v.next=null A v.prev=null)

Figure 9. Program DUSTERASE

The first assume statement expresses that figld is the inverse
of field next which implies that the list is doubly-linked. The sec-
ond assume statements defines the&etd,, aghost variablehat
denotes the set of elements that are originally stored ilighdhe
third and fourth assume statement together ensurd {haints to
the last entry in the list.

The important part of the inductive invariant at locatigrnthat
is strong enough for proving the assertion at locatipis given by
the following formula

Vov.v € Conto A (1,v) & prev” — v.next=null A v.prev=null

In order to infer this formula, the abstract transformertfo loop
body needs to split some of the inner disjuncts that contagitige
occurrences of the predicate v) € prev* in order to keep pre-
cise information about the object pointed to by programalale!
in each iteration. This splitting corresponds to matez&tion from
the back of the doubly-linked list. Many shape analyses, thgse
based on separation logi¢J, 19, 38], need special hand-crafted
rules to perform materialization for specific data struesuiWith
counterexample-guided focus, the abstract transfornertsmat-
ically adapted to perform materialization. The adaptatisecha-
nism is independent of the data structures that the analpeed
gram manipulates and is only applied when the extra pretisio
needed to prove a particular property.

6. Lazy Nested Abstraction Refinement

We now present our lazy nested abstraction refinement loop
that integrates lazy counterexample-guided refinemenhefab-
stract domain and lazy adaptation of the abstract transfokia
counterexample-guided focus.

The refinement loop is shown in Figuf®. The procedure
LazyNestedRefine takes a programP as input and constructs
an abstract reachability tree (ART) in the spirit of lazy tabs-
tion [25). An ART is a tree where each nodds labeled by a set of
predicates.preds and abstract statesstates in AbsDom|[r.preds].
The root node, of the ART is labeled by an abstract state denot-
ing the set of all initial states. Each edge in the ART is latdby
a command: in programP and an abstract transformep for the

commande. We writer 225 7' to denote that there is an edge in
the ART from noder to noder’ which is labeled by and op.
Furthermore, we write = * 7' to indicate that there is a (possibly
empty) path fromr to »’ in the ART that is labeled by the trace
Each path in the ART starting from the root node correspoodst
abstract computation that is generated from the traceliabehe
path.

The lazy nested abstraction refinement algorithm iteritiene-
tends and refines the ART until either a fixed point is reached,
the disjunction of the abstract states contained in all ABd@&s is
an inductive invariant of prograt®, or until an error trace has been
constructed. If a spurious error trace is encountered dinia fixed
point computation then this trace is used to refine the atisira
We now describe the algorithm in detail.



proc LazyNestedRefine(P: program)
begin
let ro = (preds: {init}, states: init, covered : false)
let succ(r)
let Succ = 0
forall c € 7 do
let r’ = (preds: 0, states: false, covered : false)

let op = posté&_BH(c)
add edger 28 ¢
Suce:= Succ U {(r, op, ")}
return Succ
let U = suce(ro)
while U # ¢ do
choose and removéry, op,r2) € U
ro.states:= op[ri.preds, ro.preds|(ri.states)
if r2.states = \/,. { r.states | 7 # ra } then
r.covered:= true
else ifra.states = safe then U:= U U succ(r’)
elselet r,, 7 such that 7 is maximal trace with-s = * o A
rs.states = wlp(m)(safe)
if rs = ro then return counterezample ()

else letr,, ¢, op such thatr, %% r,
let Pr = preds(wlp(m)(safe))
let op’ = if Pr € rs.preds then
rs.preds:=rs.preds U Pr
op
elseop o focus(cm)
remove subtrees starting from
for all 2 such that
ro.covered A ro.states B~ false A
rs.states older thanrs.states do

let 1, ¢, op such thatry ikl 4 )
ro.covered:= false
ro.states:= false
U:=UU{(r1,op,m2)}
rs.states:= false
rs.covered:= false
!
update edge, AL
Ui= U U{(rp, op’,7s)}
return "program is safe”
end

Figure 10. Lazy nested abstraction refinement algorithm

The algorithm maintains a work set of unprocessed ART edges
U. In each iteration one unprocessed ART edge, op,r2) is
selected. Then the image of the abstract states &md the abstract
transformerop is computed and the resulting abstract states are
stored inry.states. If the computed abstract states are already
subsumed by other ART nodes then the naedeis marked as
covered. Otherwise if5.states contains no error states then the
ART is extended with new nodes that are the successaetsfof all
the commands iP. The edges to the successor nodes are labeled
by the commands and the initial abstract transformer given by the
Cartesian abstract post for the comman@hen the new edges are
inserted to the set of unprocessed edges.

If ro contains error states then the trace labelling the path from
ro t0 ro IS a potential error trace. The analysis now determines
whether this trace is a spurious error trace. For this perpis
performs a symbolic backward analysis of the error tracds Th

backward analysis finds the oldest ancestor nadef r, with

rs —* 1o such thatrs.states represents some concrete state that
can reach an error state by executing the tradee., formallyr, is

the oldest node on the path that still satisfies

rs.states = wlp(w)(safe) .

If r5 is the root node of the ART thenis a concrete error trace and
the procedure returns the counterexample. If, howeyes not the
root node then the trace is a spurious error trace. In thiswasall

rs the spurious nodeof the trace. The algorithm then determines
the immediate predecessor nogeof the spurious node. We call
rp the pivot nodeof the spurious error trace. The pivot node is the
youngest node on the given path in the ART that does not reptes
any concrete states that can reach an error state by fotjothiz
commands in the trace. Depending on the refinement phas® eith
the abstract domain of; is refined or the abstract transformer that
labels the edge betweep andr), is adapted.

The refinement works as follows. The spurious part of thererro
trace starts from the spurious node Our abstraction refinement
procedure first attempts to refine the abstract domain of mede
by adding new predicateB, that are extracted from the spurious
partm of the spurious error trace. The predicate extraction fanct
preds guarantees that the weakest preconditidw(r) (safe) of the
path is expressible in the abstract domain of the refined mode
i.e., formally the following entailment holds

a[Px](wlp(r)(false)) |= wip()(false) .

Suppose the analysis was to compute the most precise dlpgisic
operator for each command. Then we were guaranteed that afte
refining the predicate set of node and reprocessing the ART
edge between, andr,, the noders would no longer be spurious
for this spurious error trace. This would ensure that theieps
error trace would eventually be eliminated. However, owalysis
uses the Cartesian abstract post operator. Thus, the sameusp
error trace might be reproduced after the refinement of theradt
domain. The refinement procedure would then fail to derive ne
predicates for nodes. In this case, the second refinement phase
refines the current abstract transformer for commandc that
labels the edge betweep andr;. The abstract transformep is
refined by composition with the counterexample-guided $ofcu

the spurious paitr of the trace.

After the abstraction has been refined, the spurious sushiee
low r, are removed from the ART. In order to ensure soundness,
ART nodes that have potentially been marked as covered due to
subsumption by nodes in the removed subtrees are uncoveded a
reinserted into the work set. Finally, the spurious ART etige
tweenr, andr; is updated and also reinserted into the work set.

If the set of unprocessed ART edges becomes empty then all
outgoing edges of inner ART nodes have been processed and all
leaf nodes are covered, i.e., an inductive invariant thatgs the
absence of reachable error states has been computed. fbus, t
procedure returns “program is safe”.

THEOREM4 (Soundness)Procedure_azyNestedRefine is sound,
i.e., for any programP if LazyNestedRefine(P) terminates with
“program is safe” then progran¥ is safe.

The proof of Theoremt relies on Propositior?2 and follows
the argumentation in2p]. The next theorem states that procedure
LazyNestedRefine has the progress property. In the setting of lazy
abstraction, progress means that procetlazgNestedRefine can-
not diverge because it gets stuck on refining a finite set aieps
error traces over and over again.

THEOREM5 (Progress)A run A of procedurd_azyNestedRefine
terminates, unless the set of spurious error traces enevedinA
is infinite.



[benchmark | checked properties] DP [time (in s)[CGF|

List.traverse AC, SF MONA 0.11] no
List.init AC, SF, PC MONA 0.69 no
List.create AC, SF MONA 0.78| yes
List.getLast AC, SF, PC MONA 0.53] no
List.contains AC, SF, PC MONA 0.53] no
List.insertBefore | AC, SF MONA 2.48| yes
List.append AC, SF MONA 8.95 no
List.filter AC, SF MONA 5.31] yes
List.partition AC, SF MONA 149.1¢ yes
List.reverse AC, SF MONA 5.52| yes
DList.addLast |AC, SF, DL, PC MONA 2.05| yes
DList.erase AC, SF, DL, PC MONA 17.98 yes
SortedList.add |AC, SF, SO, PC  |MONA, Z3 9.88| no
SkipList.add AC, SF, PC MONA 10.82] yes
Tree.add AC, SF, PC MONA 18.51] no
ParentTree.add [AC, SF, PL, PC MONA 20.48 no
ThreadedTree.addA\C, SF, TH, SO, PCMONA, Z3 445.93 no
Client. move CS Z3 3.11| no
Client.createMoveCS, PC Z3 41.07| yes
Client.partition |CS, FC, PC Z3 108.15 no

Properties: CS = call safety, AC = acyclic, SF = sharing fBdes doubly linked, PL =
parent linked, TH = threaded, SO = sorted, FC = frame condiftC = post condition

Table 1. Summary of experiments. Column DP lists the used deci-
sion procedures. Column CGF indicates whether countengieam
guided focus was required to successfully verify the cpoasing
program.

7. Implementation and Case Studies

We implemented our analysis in our tool Bohne. Bohne is imple
mented in Objective Caml and distributed as part of the Jaleb
tem [30, 51, 56, 57]. The input to Bohne are Java programs anno-
tated with special comments that specify procedure coistraed
representation invariants of data structures. We reptedements

of the abstract domain as sets of BDOd][and use the weaker
order of propositional implication for the fixed point test the
abstraction refinement loop. Abstract transformers are r@pre-
sented as BDDs to enable efficient post-image computatian. W
represent the program counter explicitely and not imglgitn ab-
stract states. Our tool uses a few simple heuristics to guess-

tial set of predicates from the input program and its speatific.

All additional predicates are inferred in the nested alosta re-
finement procedure. Since we syntactically extract newipages
from weakest preconditions of finite traces in the programcan-
not infer reachability predicates (i.e., predicates wigmsitive clo-
sure operators) if they do not already occur in the spedifinat
We therefore use a widening technique to infer new readhabil
predicates from the predicates that are extracted from egtgke-
conditions.

Case studiesWe applied Bohne to verify operations on a diverse
set of data structures implementations, checking a vaoiepyop-
erties. No manual adaptation of the abstract domain or thiaatt
transformers was required for the successful verificatiothese
example programs. In particular, we were able to verify @nes
tion of data structure invariants for operations on threlai@ary
trees (including sortedness and the in-order traversatiant). We
are not aware of any other analysis that can verify theseeprop
ties with a comparable degree of automation. Further exysaris
cover data structures such as (sorted) singly-linked, lgssibly-
linked lists, two-level skip lists, trees, and trees withgrd point-
ers. The verified properties include: absence of runtimaresuch
as null dereferences complex data structure consisteopegies,
such as preservation of the tree structure and sortedniesdlyF
we verified procedure contracts expressing functionalecbness

benchmark #appl. of| #ref. final ART #predicates
abs. poststepg size] depth st./loc.| total avrg.[ max.
List.traverse 3 0| 4 4] 1.000 4] 2.8 3
List.init 5 1l 5 5| 2.00 71 5.4 7
List.create 11 6| 6 6| 1.67] 11| 6.7 9
List.getLast 7 1l 6 6| 2.000 7| 6.0 7
List.contains 5 1l 5 5/ 2.000 6| 5.2 6
List.insertBefore 8 2] 5 5] 13.50] 10| 7.4 8
List.append 5 1 4 4] 1.50] 13] 8.2 11
List.filter 31 5| 14 5| 2500 12| 7.1] 10
List.partition 62| 21 40 7] 3.50] 15| 10.8] 12
List.reverse 9 3] 5 5] 2.00] 11| 7.0 9
DList.addLast 7 3] 5 5] 150 8| 7.2 8
DList.erase 23 6| 10 5] 5.00] 10] 7.6 8
SortedList.add 21 3] 13 5[ 1.33[ 9| 6.2 9
Skiplist.add 19 4] 16 6] 3.67] 12] 9.6] 11
Tree.add 11 0| 12 5] 3.00] 11] 10.5] 11
ParentTree.add 11 0] 12 5] 3.00] 11| 10.5] 11
ThreadedTree.add 151 4] 82 6| 4.33[ 17| 7.8] 17
Client.move 8 0] 9 9] 1.00] 16| 8.4 11
Client.createMov¢ 46 6| 21| 18] 1.00 33| 10.1] 14
Client.partition 118 18] 24 19| 1.00] 32[ 11.9] 15

Table 2. Analysis details for experiments. The columns list the
number of applications of the abstract post, the numberfofee
ment steps, the size and depth of the final ART that represieats
computed fixed point, the average number of abstract statdsp
cation in the fixed point, the total number of predicates, dred
average and maximal number of predicates in a single ART.node

properties, e.g., how the set of elements stored in a datetgte is
affected by the procedure.

We further performed modular verification of data structure
clients that use the interface for sets with iterators frdm t
java.util library. For this purpose, we annotated procedure con-
tracts for all set operations and then used our tool to imfgriants
for the client. These invariants ensure that all precooadgiof the
set operations are satisfied at call sites in the client.néamore
we verified functional correctness properties of the clete.

Table 1 shows a summary for a collection of benchmarks run-
ning on a 2.66 GHz Intel Core2 with 3 GB memory using one core.
Each program satisfied all of the checked properties listedhe
respective program and for each program all of the checkeppr
erties have been verified in a single run of the analysis. &asan-
ing about transitive closure of fields in tree-like data stwes we
used MONA R8] in combination with our field constraint analysis
technique $2] for reasoning about non-tree fields. We further used
the SMT solver Z2318] for verifying sortedness properties. For the
the data structure clients we used only Z3. The last columfain
ble 1 indicates that for many of our benchmarks the verification
would not succeed without the use of counterexample-guided
cus, i.e., without counterexample-guided focus the arsatysuld
not be able to rule out some spurious error trace and get.stuck

Note that our examples are not limited to stand-alone progra
that build and then traverse their own data structuresedastour
examples verify procedures with non-trivial precondisipipost-
conditions and representation invariants that can be peatho-
trarily large code.

Further details of the benchmarks are given in Taldeand
3. Table 3 gives details on the calls to the validity checker and
its underlying decision procedures. One immediately olesethat
the calls to the validity checker are the main bottleneckhaf t
analysis. On average, 98% of the total running time is spent i
the validity checker. The reasons for the high running tiraes
diverse. First, communication with decision proceduresiisently
implemented via files which is slower than passing data tirec
Second, we use expensive decision procedures such as MQNA. |



benchmark [ #VCcalls [ rel time spentin VC [time/DP call benchmark| running time (in s) |avrg. #abs. states #predicates
[total] DP] cachg total] abstr] refine| avrg.] max| Bohne| w/o VC| TVLA Bohne| TVLA Bohne| TVLA
List.traverse 41| 20]51.229492.59% 92.59% 0.00%]0.005 0.012 traverse 0.11 0.008 0.179 1.0 8 a 12
Cistanit 132] 69|47.73% 95.93% 72.6 7% 23.2694 0.010] 0.024|
List.create 189]  68|64.02% 95.3694 57.22% 38.14%4 0.011] 0.016 create 0.78 0036 0133 1.7 6] 11} 12
Dist.geiLast 158] 56| 64.5694 07.74% 54.80%, 42.8694 0.009 0.028 getLast 053 0012 0.214 2.0 10 14
List.contains T14] 52| 54.30% 95.45% 55.30% 40.15%4 0.010 0.028 insertBeforg 2.48 0.068 0.503 13.5 15| 10| 18
List.insertBefore | 246 143|41.87% 97.25% 80.61% 16.64%4 0.017 0.052 append 8.95 0.048/ 0462 15 23] 13] 18
List.append 311| 254{18.339%499.46% 97.10% 2.37%]|0.035 0.080| filter 5.31] 0.140[ 0.600] 2.5 19 12 18
List.filter 820| 273|66.719% 97.3694 87.20% 10.17% 0.019 0.060 partiion  |149.16 1.238 1.508] 3.5 72| 15| 18
List.partition 7650/ 3027|60.43% 99.17%4 95.63% 3.54% 0.0490.088 reverse 557 0.080] 0.331 2.0 o] 11 14
List.reverse 15| 312|49.27% 98.55%4 89.05% 9.50% 0.017|0.048
DList.addLast 161] 89[44.72% 97.86%] 62.57%] 35.28%] 0.023 0.040 Table 4. Comparison between Bohne and TVLA. The columns list
D'-iST-srase . 749] 484]35.38%4 98,1594 81.429416.73940.0360.224 total running times, average number of abstract statesopatibn
SortedList.a 470 190|59.57% 97.89% 65.65%4 32.24%{ 0.051] 0.120 ; " : :
Skiplist.add 670| 241|64.51% 97.5204 43.84% 53.6894 0.044 0.076 in the fixed point, and total number of predicates (we refer to
Tree.add 300 124|68.21% 09.5294 67.59% 31.94%4 0.149 0.624 the total number of unary predicates used by TVLA.). Thedthir
ParentTree.add | 428| 141|67.06% 99.36%) 63.4194 35.9494 0.144] 0.596) column shows the running time of Bohne without the time spent
ThreadedTree.ad®@882] 619|78.5294 99.65% 91.80% 7.85%)| 0.720] 3.816) the validity checker, i.e., this would be the total runniimge if we
Client. move 111] 82|26.13% 97.17% 85.48% 11.70%0.037 0.13 had an oracle for checking validity of formulae that would:ays
Client.createMovg 662] 393|40.63% 96.35%4 33.35% 63.0094 0.101] 5.428 return instantaneously
Client.partiion | 2138] 896|58.00%4 94.9294 27.13% 67.79%4 0.115 5.540 '

Table 3. Statistics for validity checker (VC) calls. The columns ) o _ _ N
list the total number of calls to the VC, the number of actuslsc spent in the decision procedure. Thus, the increase inmgrtithe

to decision procedures and the corresponding cache tongdtie is the price that we pay for automation. _
time spent in the VC relative to the total running time, and th More important in the context of this work is the fact that the
average and maximal time spent for a single VC call. space consumption of Bohne (measured in number of expldred a

stract states) is smaller than TVLA'S, in some examplesifign
cantly. TVLAs focus operator eagerly splits abstract essafand
gsummary nodes) during fixed point computation in order tainet
high precision. This potentially leads to an explosion ie tum-

some of the examples individual calls to these decisiongaioes
can take up to several seconds. Running times can be improve

by incorpor.a.ting more efficient decision procedures fosoeing ber of explored abstract states. Instead, our counterdraguided
about specific data structurés B3, 54. focus splits abstract states and abstract objects on deroalydf
Limitations. The set of data structures that our implementation can the additional precision is required to rule out some spusrierror

handle is limited by the decision procedures that we haveently trace. We believe that this is the main reason for the smsgjiiace
incorporated into our system. The use of monadic seconekord consumption of Bohne. This believe is supported by our é&pee
logic over trees as our main logic for reasoning about ttaesi  with a uniform focus operator similar to TVLA's that we usedan
closure makes it more difficult to use our tool for verifyingtd earlier implementation.

structures that admit cycles or sharing. Furthermore, ademing However, there are other factors that play a role, such dathe
technique for inferring new reachability predicates onlyrkg for that Bohne’s abstraction refinement loop infers a smallentrer
flat tree-like structures. It is not appropriate for hanglimested of predicates, compared to the fixed set of predicates thatATV
data structures such as lists of lists which may require tia¢yais uses. A smaller predicate set results in a smaller abstomcaih.

to infer nested reachability predicates. Furthermore, the abstract domains of the two analyses axe ve

Costs and gains of automationin order to estimate the costs and ~ Similar, but not equivalent. In particular, abstract objemn our
gains of an increased degree of automation, we comparedeBohn abstract states can be empty. This is in contrast to sumnoaesrin

to TVLA [35], the implementation of three-valued shape analysis 1 YVLAS three-valued structures which are bound to be norpgm
[48]. We used TVLA version 3.0 alphag] for our comparison. The presence of empty abstract objects can result in morpactm
We ran both tools on a set of singly-linked list benchmarke, F @bstractions. Hence, a more sturdy conclusion as to whypiaees
each example program we used the same precondition in imh to consumption of Bohne is smaller requires further experisien
heaps that form a forest of acyclic, sharing free lists. FoLA we

provided preconditions in the form of sets of three-valuegidal 8. Further Related Work

structures. Bohne automatically computed the abstractfqore-

conditions given as logical formulas. We did not use finitiéedi Shape analysisMost shape analyses infer quantified invariants of
encing p6] to automatically compute predicate updates in TVLA. heap programs, either explicitly or implicitly. We discussme of
With finite differencing TVLA was unable to prove preseraati these techniques in the following.

of acyclicity of lists in some of the examples. We therefosedi Our analysis shares many ideas with three-valued shape anal
the standard abstract domain and abstract transformessniglsy/- ysis [48] which inspired our idea of the counterexample-guided

linked lists that are shipped with TVLA (with standard focas focus operator. In the previous section we presented anriexpe
described in 48]). This abstract domain provides high precision mental comparison of both analyses. We now discuss addlition
for analyzing list-manipulating programs. We checked faper- related work. Recent approaches enable the automatic ¢atigsu
ties that require such high precision, in order to get a nmegdui of transfer functions36, 46] for three-valued shape analysis. Some
comparison. We checked for absence of null dereferenceslhs w of these approaches are using decision procedbfgsA method

as preservation of acyclicity and absence of sharing. Alpprties for automated generation of predicates using inductivenieg has
where checked in a single run of each analysis. Both toole wer been presented ir3f], but is not based on counterexamples. A
able to verify these properties for all our benchmarks. recent direction is the development of parameterized fopes-

The results of our experiments are summarized in Table  ators that are fined-tuned to specific verification tagis 41, 47].

The running times for Bohne are between one and two orders of Our counterexample-guided focus is not only fine-tuned tpea s
magnitude higher than for TVLA. Observe that almost all tiise cific verification task but also to the individual steps of gmalysis



of a specific verification task. Furthermore, this fine-tgnis per-
formed automatically. However, the above techniques aposed
in the more challenging setting of the verification of coment
heap programs. Here, user-provided domain-specific krugelés
often invaluable for obtaining an efficient analysis.

Shape analyses based on separation logic such3ad9, 38
are typically tailored towards specific data structures praper-
ties. This makes them scale to programs of impressive Side [
but also limits their application domain. Recent techngjirero-
duce some degree of parametricity and allow the analysistm a
matically adapt to specific data structure clasdeg4]. All of these
techniques still require manual adaptation of abstraasfamers
to perform materialization for different classes of dataictures.
Our focus operator performs this adaptation automatically

Shape analysis based on abstract regular tree model checkin

[10] encodes heap programs into tree transducers which can be

analyzed using automata-based program analysis teclmidbe
encoding into tree transducers loses precision if the ires ob-
served in the heap program do not exhibit some regularitis Th
shape analysis can take advantage of abstraction refingewmt
niques that have been developed for abstract regular trefeimo
checking P]. In particular, there is an automata-based version of
predicate abstraction that can be combined with abstracgifine-
ment and provide progress guarantees. However, thesemeiitie
techniques cannot prevent any loss of precision that isscHogthe
initial encoding of a heap program into tree transducerso Athis
approach focuses on shape invariants of data structuredaesd
not apply to properties such as sortedness.

Predicate abstraction. Classical predicate abstractio22]

can be seen as an instance of Boolean heap abstraction wher

all abstraction predicates are closed formulas. Our tecienof
counterexample-guided focus therefore carries over tesidal
predicate abstraction.

The advantages of combining predicate abstraction witpesha
analysis are clearly demonstrated in lazy shape anal§sitdzy
shape analysis performs independent runs of a shape analys
rithm, whose results are then used to improve the precisipredi-
cate abstraction. The combined analysis implicitly infmantified
invariants. In contrast, our analysis transcends the lagjraction
technique to the point where it itself becomes effective akape
analysis. Thus, our analysis offers the benefits of lazyrabsbn
(i.e., a high degree of automation and targeted precisitsa) far
the heap-aware analysis.

Indexed predicate abstractiol] uses predicates with free
variables to infer quantified invariants and is similar to analysis.
However, indexed predicate abstraction has not yet beeath fose
the analysis of heap programs. Heuristics for automaticostesry
of indexed predicates are described3d][ The abstract domain of
our analysis is more general than the indexed predicateaahish
domain, because it contains disjunctions of universallgntitied
statements. The presence of disjunctions avoids loss ofspa
at join points of the control flow graph. This is important et
context of abstraction refinement because it enables tHgsismto
precisely identify spurious error traces in the abstrastesy.

The SLAM tool [3] uses Cartesian abstractio] [on top of
predicate abstraction. The loss of precision under Cartesistrac-
tion is not a decisive factor in standard predicate abstadt].
However, there are other approximations of abstract teanmsdrs
that are used for performance reasons in actual implenmansat
A side-effect of such approximations is that spurious etraces
may not be eliminated by sole refinement of the abstract demai
SLAM incorporates an algorithm developed by Das and 0Oiff]
as a countermeasure. This algorithm gradually refines thieaid
transformer towards the most precise abstract post for d fired-
icate abstraction. In SLAM this algorithm is applied wheseno

new predicates can be extracted from a spurious error tidee.
refinement of the abstract transformer guarantees thaptiréeoss

error trace is eventually eliminated. However, this aldoni is not

appropriate in the context of an abstract domain of quadtisser-
tions. It relies on a greedy elimination of spurious absttemsi-

tions in the abstract transformer. In predicate abstradtiese ab-
stract transitions are simple conjunctions of predicdtesur set-

ting they are quantified Boolean combinations of predicafée

enumeration of abstract transitions is therefore inféasib

Quantified invariants over arrays. For programs over arrays the
problem of how to treat disjunctions in the inference of difeed
invariants is not as accentuated as in the context of heapars.
Techniques for inferring quantified invariants that onlyplgpto
programs over arrays include(, 27, 29, 49. Noticeable excep-
tions are 23, 50] which also apply to heap programs. Here the user
specifies predicates and templates for the quantified averithat
partially fix the Boolean structure of the inferred invat&nThe
analysis then automatically instantiates the templatarpaters.
The templates can significantly reduce the search-spacee\o,
finding the right predicates and the right templates is mivat in
the context of heap programs.

Extracting predicates from counterexamples. The problem of
extracting good predicates from counterexamples for a doofa
quantified assertions is orthogonal to the contributionhig pa-
per. In the setting of quantified invariant inference, thesiion of
how to infer predicates from a finite set of spurious counizme
ples that rule out infinitely many similar spurious countamaples
(e.g., resulting from the traversal of a recursive datacttine) is
open. In our implementation we followed a practical apphotc
Qolve this problem. Techniques for the inference of quaedtifinter-
polants §3] offer a promising alternative. Such techniques could be
integrated in our approach following the line of interp@atbased
abstraction refinemenb]27].

9. Conclusion

In this paper, we have addressed the automated inferenaeanf g
tified invariants for software verification. The fine-tuniofithe fo-
cus operator (from the related area of shape analysis) tsat¢n
finding the right efficiency-precision tradeoff in the urigierg pro-
gram analysis. We have put forward the idea to use counterexa
ples to guide the fine-tuning of the focus operator. We hawg/sh
how this idea can be realized in a method and tool; prelirginar
experiments indicate its practical potential.

An interesting line of future research is the extension effire-
sented work to the verification of concurrent programs. énse
that here one should seek the integration of counterexagyitied
focus with existing mechanisms for manually fine-tuningapae-
terized versions of the focus opera®8]. This would allow the
user to incorporate domain-specific knowledge (e.g., akgot
chronization) into the analysis.
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