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Abstract
The automated inference of quantified invariants is considered one
of the next challenges in software verification. The question of
the right precision-efficiency tradeoff for the corresponding pro-
gram analyses here boils down to the question of the right treat-
ment of disjunction below and above the universal quantifier. In
the closely related setting of shape analysis one uses the focus op-
erator in order to adapt the treatment of disjunction (and thus the
efficiency-precision tradeoff) to the individual program statement.
One promising research direction is to design parameterized ver-
sions of the focus operator which allow the user to fine-tune the fo-
cus operator not only to the individual program statements but also
to the specific verification task. We carry this research direction one
step further. We fine-tune the focus operator to each individual step
of the analysis (for a specific verification task). This fine-tuning
must be done automatically. Our idea is to use counterexamples
for this purpose. We realize this idea in a tool that automatically
infers quantified invariants for the verification of a variety of heap-
manipulating programs.

Categories and Subject DescriptorsD.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meaning
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams; F.3.2 [Logics and Meaning of Programs]: Semantics of
Programming Languages–Program Analysis

General Terms Algorithms, Languages, Reliability, Verification

Keywords Data Structures, Quantified Invariants, Predicate Ab-
straction, Abstraction Refinement, Shape Analysis

1. Introduction
There is a considerable interest in the automated verification of
correctness properties of programs that implement or use heap-
allocated data structures [6, 10, 19–21, 23, 24, 27, 29, 31, 34, 42,
43, 45, 48–50, 56, 57]. The correctness properties of such programs
typically include quantified assertions, e.g., assertionsthat describe
the expected shape of data structures such as“the reference count
for each internal object of the data structure is 1”and assertions
that describe the effect of data structure operations such as “all
objects stored in the data structure are properly initialized”. The
automated inference of quantified invariants for the verification of
quantified assertions is considered one of the next challenges in
software verification.
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The eternal quest for the right precision/efficiency tradeoff in
the corresponding program analyses here boils down to the ques-
tion of the right treatment of disjunction below and above the uni-
versal quantifier (specifically in the construction of the abstract
transformer). To achieve a reasonable average tradeoff between
precision and efficiency, existing program analyses followa com-
mon recipe (see, e.g., [19, 42, 48]). The designer of the program
analysis starts off with a coarse but efficient generic abstract trans-
former and then manually adapts this abstract transformer to the
individual kinds of program statements such that disjunctions are
introduced prudently. In the closely related setting of shape analy-
sis this adaptation is referred to as thefocus operation[48]. If one
has to adapt the abstract transformer to individual programstate-
ments, uniformly for all possible uses of the analysis, the designer
of the program analysis is obliged to be very conservative with re-
gard to the precision of the focus operator. As a consequence, the
analysis is often too inefficient.

It is therefore desirable to fine-tune the focus operator to a
specific use of the analysis. A promising research directionis to
design parameterized focus operators that allow the user ofthe
analysis to (manually) do this fine-tuning herself, for eachnew
verification task; the resulting gain of scalability is encouraging;
new classes of heap-manipulating programs, even concurrent ones,
have been successfully analyzed [39–41].

In this paper, we carry this research direction one step further
(and perhaps to its logical extreme). We propose to fine-tunethe
focus operator not only to each individual problem instance, but
to each individual step of the analysis, i.e., each application of the
abstract transformer. This fine-tuning must be done automatically.
Our idea is to use counterexamples for this purpose. The contri-
bution of this paper is to conceptually and practically realize the
idea and to demonstrate its interesting potential. We present a new
method and tool that automatically infers quantified invariants for
the verification of a variety of heap-manipulating programs.

The general idea of using counterexamples for refining an
abstraction stems from the classical scheme of counterexample-
guided abstraction refinement (CEGAR) [3, 14, 25]. A number of
software verification tools based on the scheme, e.g., [3, 12, 26, 44],
are able to synthesize expressive invariants (though, not quantified
ones, so far). A spurious counterexample is an error trace that is
possible in the abstract but not in the concrete. Adding predicates
extracted from a spurious counterexample refines the abstract do-
main; in a subsequent step, the scheme re-defines the abstract trans-
former (as a function on the new abstract domain). In contrast, the
focus operator refines the effect of the abstract transformer without
changing the abstract domain and without re-defining the function.
We propose to use spurious counterexamples for both: for refining
the abstract domain, and for fine-tuning a focus operator that adapts
the effect of the abstract transformer.

More precisely, we transcend the idea of lazy abstraction [25],
a CEGAR scheme which adapts the abstract domain exactly to the
point of the execution of the analyzed program. We devise anested



lazy abstraction refinement loop that adapts both, the abstract do-
mainand the abstract transformer exactly to the point. The refine-
ment loop consists of two nested refinement steps. The first step
refines the abstract domain by extracting new predicates from the
spurious error trace. If a spurious error trace is not eliminated by
merely refining the abstract domain then the second step usesthe
spurious error trace to construct a focus operator that adapts the ef-
fect of the abstract transformer on the current abstract domain. This
adaptation can thus be performed locally and lazily, i.e., anew for
each single application of the abstract transformer.

In passing, let us note that our development of the counter-
example-guided focus was originally motivated by the goal to es-
tablish the so-calledprogress property[25]. The property means
that every spurious counterexample encountered during theanal-
ysis is eventually eliminated by a refinement step. The property
is of foremost theoretical interest (a priori, it need not improve the
chances of convergence in practice since there may be alwaysa new
spurious counterexample). In the setting of quantified invariants,
however, the theoretical interest of counterexample-guided focus is
in line with its practical relevance. The progress propertyholds (and
only holds) in the presence of counterexample-guided focus. The
practical verification does succeedwith counterexample-guided fo-
cus and does notwithout; the reason is apparently that in many
benchmarks, a uniformly precise abstract transformer withfeasible
cost comes with a too low precision.

Summary. To summarize, our work leverages the research on
the CEGAR scheme in software verification [3, 12, 14, 25] and
the research on the focus operator in shape analysis [39–41, 48].
Our contribution is to show that the techniques developed inthese
two research directions can be fruitfully integrated to enhance one
another for the inference of quantified invariants:

• the focus operator can be made effective in a CEGAR setting
because it can be fine-tuned lazily and its locality can be driven
to the extreme,

• the CEGAR scheme can be made effective for quantified in-
variants because adding an inner refinement loop for the focus
operator provides the progress property and the precision re-
quired on practical examples (without the otherwise prohibitive
cost for a precise abstract transformer on an abstract domain for
quantified assertions).

2. Motivating Example
In this section, we will use an example to motivate the counter-
example-guided focus and explain it in more detail. The program
INIT shown in Fig.1 initializes all entries in a singly-linked list.
The assert statement at locationℓ2 checks that all entries in the list
are indeed initialized after termination of the while loop.We would
like to automatically compute an inductive invariant for the loop
cutpoint at locationℓ1 that implies the safety of this assertion.

In the remainder of this section, we will first present the ab-
stract domain, then the most precise abstract transformer (which
is too costly to implement), then a less costly abstract transformer
(which is too coarse), and finally the transformer obtained by the
counterexample-guided focus.

Abstract Domain: Boolean heaps.We use a variation of predi-
cate abstraction [22] which we callBoolean heap abstraction[45].
Here we do not usestatepredicates (which can be defined by closed
first-order formulas as, e.g., in the assert statement at locationℓ2).
Instead, we use predicates that range over objects in the heap (and
which can be defined by formulas with free first-order variables).
These predicates are reminiscent of the predicates used in three-
valued shape analysis [48] and indexed predicate abstraction [31].
Figure2 shows three such predicates for Program INIT. The predi-

ℓ0 : y:= x

ℓ1 : while y 6=null do
y.data := 0

y:= y.next

ℓ2 : assert(∀v. (x, v) ∈ next∗ ∧ v 6=null → v.data=0)

Figure 1. Program INIT

Cont = { v | (x, v) ∈ next∗ ∧ v 6= null }

Iter = { v | (y, v) ∈ next∗ ∧ v 6= null }

Init = { v | v.data = 0 }

Figure 2. Predicates for Program INIT denoting sets of objects

cates range over objects in the heap. For notational convenience we
write predicates as sets. For instance, the predicateCont denotes
the content of the list pointed to byx, i.e., the set of all non-null
objects that are reachable fromx by following next pointers in the
heap. Data structure fields such asnext anddata are modeled as
function symbols. The binary relationnext∗ denotes the reflexive
transitive closure of the functionnext . Given a program state (i.e.,
a valuation ofnext anddata as functions), the finite set of predi-
cates induces a partition of the heap into finitely many equivalence
classes of heap objects.

The abstract domain of Boolean heaps consists of formulas that
describe such partitions. Each formula in the abstract domain is
a disjunction of universally quantified Boolean combinations of
the given predicates. The abstract domain is finite. We call the
outer disjuncts in these formulasabstract states. For instance, the
formulaF given by

F ≡ ∀v. (v ∈ Iter → v ∈ Cont) ∧

(v ∈ Cont → v ∈ Iter ∨ v ∈ Init)

is an abstract state for the predicates in Fig.2. An abstract state is
a special case of an element of the abstract domain (a disjunction
with only one disjunct).

We use elements of the abstract domain to express inductive
invariants. For example, the formulaF is an inductive invariant for
locationℓ1 in program INIT and implies that the assert statement at
locationℓ2 does not fail.

Most Precise Abstract Transformer.For the purpose of this expo-
sition, we represent the most precise abstract transformerusing an
abstract programover abstract states; see Fig.3. The abstraction
of the concrete transformer for each basic block in the concrete
program is translated to a statement in the abstract program. The
abstract program has a program variable for each of the givenpred-
icates (carrying the same name, e.g.,Iter , Cont ). The program
variables in the abstract program range over sets of objects.

Figure3 shows the Boolean heap abstraction of program INIT
for the predicates given in Fig.2. Here “*” stands for the non-
deterministic choice of a Boolean value. The statementhavocx
stands for the nondeterministic assignment of program variablex.
In the example, for the sake of simplicity, we implicitly assume
that all lists are acyclic. We express the updates in the abstract pro-
gram through logical formulas over unprimed and primed variables
(which, as usual, model the pre and the post value for the update).
For instance, the abstract transformer for the loop body of program
INIT is given by

∀v. (v ∈ Cont ↔ v ∈ Cont ′) ∧

(v ∈ Init � v ∈ Init ′) ∧

(v ∈ Iter ′
� v ∈ Iter) ∧

(v ∈ Init ′ ∧ v /∈ Init ↔ v ∈ Iter ∧ v /∈ Iter ′).



ℓ0 : havoc Iter ′

assumeIter ′ = Cont

Iter := Iter ′

ℓ1 : while ∗ do
havoc Iter ′, Init ′

assumeInit ⊆ Init ′

assumeIter ′ ⊆ Iter

assumeInit ′ − Init = Iter − Iter ′

(Iter , Init):= (Iter ′, Init ′)

assumeIter=∅

ℓ2 : assertCont ⊆ Init

Figure 3. Program ABSINIT: Boolean heap ab-
straction of Program INIT

ℓ0 : havoc Iter ′

assumeIter ′ = Cont

Iter := Iter ′

ℓ1 : while ∗ do
havoc Iter ′, Init ′

assumeInit ⊆ Init ′

assumeIter ′ ⊆ Iter

(Iter , Init):= (Iter ′, Init ′)

assumeIter=∅

ℓ2 : assertCont ⊆ Init

Figure 4. Program CARTABSINIT: Carte-
sian abstraction of Program ABSINIT

ℓ0 : havoc Iter ′

assumeIter ′ = Cont

Iter := Iter ′

ℓ1 : while ∗ do
havoc Iter ′, Init ′, Y

assumeInit ′ = Init ∪ Y

assumeIter ′ = Iter − Y

(Iter , Init):= (Iter ′, Init ′)

assumeIter=∅

ℓ2 : assertCont ⊆ Init

Figure 5. Counterexample-guided focus
applied to Program CARTABSINIT

For readability, in the abstract program in Fig.3, we decompose the
abstract transformers into several assume statements and represent
them as set constraints (instead of universally quantified formulas).
Also, we omit some redundant information.

The successor abstract state under the execution of a basic block
in the abstract program is obtained as one expects. First theab-
stract state is conjoined with the logical formula (in unprimed and
primed variables) that represents the abstract transformer of the ba-
sic block. Then the unprimed variables are projected and theprimed
variables renamed by their unprimed version. The (finite) set of
reachable abstract states for the abstract program ABSINIT repre-
sents an (inductive) invariant of the program INIT. Projected to lo-
cationℓ1, this invariant implies the formulaF . I.e., the correspond-
ing analysis (which computes the set of reachable abstract states of
ABSINIT) succeeds to prove the correctness of the program INIT.

Program ABSINIT represents themost preciseabstract trans-
former with respect to the abstract domain induced by the given
predicates. This abstraction is in general too expensive. First, the
construction of the abstract program requires exponentially many
theorem prover calls in the number of predicates. Second, the most
precise abstraction often keeps track of more information than is
necessary for proving a specific property and causes the analysis to
explore unnecessarily large parts of the abstract domain.

Abstract Transformer with Cartesian Abstraction. In order to
obtain an abstract transformer with feasible cost, one can apply
the Cartesian abstraction[2, 16] on top of the Boolean heap ab-
straction. Cartesian abstraction is originally defined on abstract do-
mains that are power sets of vectors (in our case bitvectors). Its
name stems from the fact that it abstracts a set of vectorsS by the
smallest Cartesian product (of component sets) that containsS. It
applies to our setting because we can represent an abstract state
canonically as a set of bitvectors where each bitvector corresponds
to an inner disjunct of the abstract state.

The Cartesian abstraction of the most precise abstract post(with
respect to the Boolean heap abstraction) can be constructedeffec-
tively from the concrete program (in practice using only a polyno-
mial number of theorem prover calls) [45]. Furthermore, Cartesian
abstraction avoids an explosion of the size and number of abstract
states that are explored in the fixed point computation by restricting
the disjuncts that can appear below and above the universal quanti-
fier in abstract states. The resulting analysis is efficient in practice.
In general, however, it is too imprecise. This is demonstrated by
our example program.

Figure4 shows the Cartesian abstraction of Program ABSINIT.
Program CARTABSINIT loses the correlation between the predi-
catesIter andInit in the abstract transformer of the loop body (the
correlation is expressed by the statementassumeInit ′ − Init =
Iter − Iter ′ in the program ABSINIT in Fig.3). As a consequence,

the invariantF of Program ABSINIT is not an invariant of Pro-
gram CARTABSINIT. I.e., the corresponding analysis (which com-
putes the set of reachable abstract states of CARTABSINIT) does
not succeed to prove the correctness of the program INIT.

Counterexample-Guided Focus.The analysis of the abstract pro-
gram CARTABSINIT produces a spurious error trace that witnesses
a violation of the assert statement at locationℓ2. It seems tempt-
ing to try to use the spurious error trace to refine the abstraction as
done in the CEGAR scheme. As mentioned above, in the existing
CEGAR scheme, the abstract domain is refined; the desired effect
is to eliminate the spurious error trace. The underlying assumption
which guarantees this effect is that the refined analysis is based
on the most precise abstract transformer. In our case, however, the
spurious error trace results from an imprecise abstract transformer,
rather than an imprecise abstract domain. In fact, the abstract do-
main is already able to express an inductive invariant that is suf-
ficiently strong to rule out all spurious error traces. An attempt to
extract new predicates from the proof of spuriousness of thecoun-
terexample is therefore pointless. It makes more sense to use the
spurious error trace for refining the abstract transformer,rather than
the abstract domain.

To do so, we use the above-mentioned focus operator that is in-
spired by shape analysis. It refines the image of the abstracttrans-
former by changing the presentation of its pre-image. We do not
change the definition of the abstract transformer (with the Carte-
sian abstraction). However, when applied to the new presentation,
the Cartesian abstraction does not lose as much precision asbefore.
The novelty of our approach is that we devise a focus operatorthat
is constructed on-demand and locally from the spurious error trace.

Figure5 illustrates the effect of our counterexample-guided fo-
cus operator on Program CARTABSINIT. It only affects the body
of the while loop. The focus operator uses an additional predicate
Y = { v | y = v } in order to split disjuncts below the universal
quantifier into multiple disjuncts before the application of the ab-
stract transformer for the loop body. As a consequence, the corre-
lation between variablesIter and Init is not lost in spite of the
Cartesian abstraction of the abstract transformer. Note the differ-
ent, but equivalent representation of the correlation by two assume
statements. Our method and tool automatically infers the split pred-
icateY and the corresponding focus operator from a spurious coun-
terexample of the abstract program CARTABSINIT. The inductive
invariant obtained by the fixed point of the resulting abstract trans-
former implies the assertion at locationℓ2. I.e., the analysis (which
computes the set of reachable abstract states of the abstract pro-
gram in Fig.5) does succeed to prove the correctness of Program
INIT.



3. Preliminaries
We now formalize the notion of formulas and programs used in this
paper and formally introduce Boolean heap abstraction.

3.1 Logics and Programs.

Logical formulas and structures. For reasoning about programs
we consider formulas in a sorted logicL. We require thatL pro-
vides the sortsobj (heap objects) andloc (program locations). Fur-
thermore, we require thatL provides logical constructs for equality
over both sorts, Boolean connectives, and first-order quantification
over variables of sortobj. Formulas are expressed over a signature
Σ whereΣ consists of the following constant symbols of sortloc:
ℓ ∈ Locs (control locations),pc (the program counter),ℓ0 (the ini-
tial location), andℓE (the error location), as well as the following
symbols of sortobj: unary function symbolsf ∈ Flds (data struc-
ture fields) and constant symbolsx ∈ Vars (program variables).
We leave out sort annotations in formulas whenever this causes no
confusion. In our running examples, the logicL is given by first-
order logic with transitive closure.

We fix non-empty disjoints setsO andL for the interpretations
of sortobj and loc. A Σ-structureA is a first-order interpretation
that interprets each symbol inΣ by a function over, respectively, an
element in the sets interpreting the associated sorts. We writeA(f)
for the interpretation of symbolf ∈ Σ in structureA. We further
writeA(t) for the denotation of aΣ-termt in structureA. Hereby,
A also provides interpretations for the free variables occurring in
t. We use standard logical notation for satisfiability, validity, and
entailment. Finally, for a formulaF we write[[F ]] to denote the set
of all structures that satisfyF .

Programs.The set of commandsComs is defined by the following
grammar whereF is a formula inL, x, y ∈ Vars denote program
variables,f ∈ Flds a pointer field, andℓ ∈ Locs ∪ {ℓ0, ℓE} a
control location:

c ::= c ; c | assumeF | pc:= ℓ | x:= y | x:= y.f | x.f := y

A programP is a finite set of commands. Consecutiveness of com-
mands in a program is achieved by composing assume statements
on the value ofpc, updates ofpc, and the actual commands using
the sequential composition operator.

Program states. A programstateis aΣ-structure. We denote by
States the set of all program states. We call a states initial state
iff it satisfiess |= pc=ℓ0 and we call iterror stateiff it satisfies
s |= pc=ℓE. Let init be the formulapc=ℓ0 denoting all initial
states and letsafe be the formulapc 6=ℓE denoting all non-error
states.

Null pointers and allocation.Note that we interpret data structure
fieldsf as total functions. We treatnull as a program variable that
can neither be assigned nor dereferenced. We assume that forall
fields f ∈ Flds the equalitynull.f = null holds in all program
states. In order to ensure absence of null dereferences, every com-
mandc that contains a dereference of the formx.f is guarded by a
commandassume(x=null); pc:= ℓE that directs control to the er-
ror location ifx is not defined. Allocation of fresh heap objects can
be modelled by introducing a predicate symbol that keeps track of
the current set of allocated objects. However, this requires the in-
clusion ofhavoc commands that nondeterministically update the
value of a program variable. The techniques presented in this paper
carry over to programs extended withhavoccommands. For details
see [51].

Transition relations.Each commandc represents a relation[[c]] on
pairs of states(s, s′) that is defined recursively on the structure of
commands as follows:

• If c is a sequential compositionc1; c2 then there must exist a
states′′ such that(s, s′′) ∈ [[c1]] and(s′′, s′) ∈ [[c2]].

• If c is an assume commandassumeF , we require thats |= F
ands′ = s.

• If c is an update of the program counter or a program variable,
we haves′ = s[pc 7→s(ℓ)] for c = (pc:= ℓ), s′ = s[x 7→ s(y)]
for c = (x:= y) ands′ = s[x 7→ s(f(y))] for c = (x:= f.y).

• Finally, if c is a field update of the formf.x:= y, we have
s′ = s[f 7→ s(f)[s(x) 7→s(y)]].

Computations and traces.A programcomputationof a program
P is a (possibly infinite) sequenceσ = s0

c0→ s1
c1→ . . . of states

and commands such thats0 is an initial state and for each pair of
consecutive statessi andsi+1 we have(si, si+1) ∈ [[ci]] for some
commandci ∈ P . A trace is a sequence of commands and we
call the projection of a computationσ = s0

c0→ s1
c1→ . . . to the

sequence of commandsc0c1 . . . the trace of that computation. A
trace is callederror trace if it is the trace of some computation that
reaches an error state. A program issafeif it has no error traces.

Predicate transformers. Given a set of statesS and a binary
relationR on states, we define strongest postconditionpost and
weakest (liberal) preconditionwlp as usual:

post(R)(S)
def

=
˘

s′ | ∃s. (s, s′) ∈ R ∧ s ∈ S
¯

wlp(R)(S)
def

=
˘

s | ∀s′. (s, s′) ∈ R ⇒ s′ ∈ S
¯

.

We further introduce symbolic weakest preconditions on formulas.
For any commandc and formulaF the formulawlp(c)(F ) is a for-
mula such that we havewlp([[c]])([[F ]]) = [[wlp(c)(F )]]. Note that
we do not requireF to be closed. We extend symbolic weakest pre-
conditions from commands to sequences of commands as expected.

3.2 Boolean Heap Abstraction

We formalize the Boolean heap abstraction in terms of an abstract
interpretation [15]. The concrete domain is given by sets of states
ordered by set inclusion. We represent elements of the concrete do-
main by closed formulas inL. The concrete fixed point functional
is the operatorpost for the transition relation of the concrete pro-
gram (i.e., the union of the transition relations of all its commands)
and the initial statesinit. The abstract domain is a finite set of for-
mulas that forms a sublattice of the concrete domain. The analysis
is to compute the least fixed point of an abstraction ofpost that is
defined on the abstract domain. The computed least fixed pointis
an inductive invariant of the concrete program.

Abstract domain.The abstract domain is parameterized by a finite
set of predicates that denote sets on heap objects in a given state.
In the following, we fix a particular finite set of predicatesP . We
considerP to be given by a set of (closed) lambda terms of the form
λv. G whereG is a formula inL, i.e., each predicatep ∈ P denotes
a set of objects in a given state. If the formulaG is itself closed
we call the corresponding predicatestate predicate. We denote by
P(v) the set of formulas obtained by beta reduction of all formulas
p(v) for p ∈ P . For notational convenience we assume thatP
is such that for allv the setP(v) is closed under negation. The
following definitions are implicitly parameterized by the setP .

The abstract domainAbsDom overP consists of all formulas
of the form

n
_

i=1

∀v.

mi
_

ji=1

Dji
(v)

where eachDji
(v) is a conjunction of formulas inP(v). We

call the outer disjuncts of these formulasabstract statesand the
inner disjunctsabstract objects. We identify formulas up to logical
equivalence. The partial order on the abstract domain is given by



the logical entailment relation “|=”. Note thatAbsDom is finite
(modulo logical equivalence) and closed under both conjunction
and disjunction. Thus, it forms a complete lattice. The abstract
domain can be easily generalized to formulas with quantification
over more than one variable and predicates that denote relations on
objects rather than just sets [51].

Abstraction function.The abstraction functionα that maps a set of
states represented by a closed formulaF to a formula in the abstract
domain is defined as follows

α(F )
def

=
^

n

F# ∈ AbsDom | F |= F#
o

.

The functionα is the lower adjoint of a Galois connection(α, γ)
between the concrete and abstract domain, withγ being the identity
function.

Abstract post operator.The most precise abstract post operator on
the abstract domain of Boolean heapspost

#

BH and a commandc is
given by composition of the concrete post operator forc with the
Galois connection(α, γ). The actual abstract post operator that we
use in the fixed point computation of the analysis is an abstraction
of post

#

BH. We denote this operator bypost
#

C·BH and call it the
Cartesian abstract post operator. Formally, the operatorpost

#

C·BH

is defined as a Cartesian abstraction of the operatorpost
#

BH. In the
following, we only show howpost

#

C·BH is computed. For further
details see [45, 51].

We allow abstract states in the pre and post-images of operator
post

#

C·BH to range over different sets of predicatesP1, respectively,
P2. Let c be a command andF# an abstract state over predicates
P1 of the form

F# = ∀v.
m
_

j=1

Dj(v)

where the disjunctsDj are monomials, i.e., each predicate in
P1 occurs either positive or negative in eachDj . The operator
post

#

C·BH mapsF# to a single abstract stateF ′# by mapping each
disjunctDj in F# to a single disjunctD′

j in F ′#. The mapping
guarantees that ifs ∈ States is a concrete state that satisfiesF#

ando ∈ O an object that satisfies disjunctDj in s then for every
c-successors′ of s, o satisfiesD′

j in s′. Since this property holds
for all objectso, everyc-successors′ of s satisfiesF ′#. Formally,
the image ofF# under the abstract post operatorpost

#

C·BH for
commandc is given by:

post
#

C·BH[P1,P2](c)(F
#) =

∀v.
Wm

j=1

V

˘

p(v) ∈ P2(v) | F# ∧ Dj(v) |= wlp(c)(p(v))
¯

Thus, the image of the Cartesian abstract post is computed by
checking entailments between conjunctions of predicates and
weakest preconditions of predicates. The quantified formulaF# in
the antecedent of these entailments can be replaced by any weaker
formula, e.g., a conjunction of finitely many instantiations of F#.
The operatorpost

#

C·BH is extended to disjunctions of abstract states
as expected.

4. Counterexample-Guided Focus
Before we formally define the counterexample-guided focus oper-
ator, it is instructive to fully understand the nature of theloss of
precision that is induced by Cartesian abstraction.

Recall ProgramInit from Section2. The left part of Figure6
shows a program states that may occur at locationℓ1 during
execution of Program INIT. The boxes represent abstract objects
over the setsCont , Init , andIter . HerebySc stands for the set

Cont

Iter

Initc

Contc

Iterc

3 7 pc=ℓ1 s

x, y null
next

d
a
ta

next

d
a
ta

0 7 pc=ℓ1 s′

Cont

Iterc

Init

Cont

Iter

Initc

Contc

Iterc

nullyx next next

d
a
ta

d
a
ta

Figure 6. A reachable program states of Program INIT and its
successor states′ that is obtained after execution of the loop body.

complement ofS. Formally the states satisfies the abstract state

F# = ∀v. v ∈ Cont∧v ∈ Iter ∧v /∈ Init∨v /∈ Cont∧v /∈ Iter

The right part of Figure6 shows the post-states′ of s that is
obtained at locationℓ1 after execution of the loop body. The boxes
indicate again the abstract objects associated with the concrete
objects. The abstract state consisting of the disjunction of these
abstract objects is the image of the most precise abstract post
post

#

BH of the abstract stateF#. Let F ′# be this abstract post-
state. Note that the concrete objects ins that are represented by
the abstract object

v ∈ Cont ∧ v ∈ Iter ∧ v /∈ Init

end up in two disjoint abstract objects inF ′#. The Cartesian ab-
stract post operatormergesthese two disjuncts into a single con-
junction that only contains the predicates on which both disjuncts
agree, namely,v ∈ Cont . The correlations between predicatesInit

andIter in the two inner disjuncts ofF ′# are lost.
If we want to adapt the precision of the Cartesian abstract post

we need to prevent it from merging disjuncts in the post-image of
the most precise abstract post. This adaptation is performed by our
focus operator. The focus operator adapts the precision of the Carte-
sian abstract post indirectly. Namely, it refines the abstract domain
of the pre-image and splits disjuncts (i.e., both abstract states and
abstract objects in abstract states) in the pre-image into more fine-
grained disjunctions. The splitting ensures that individual disjuncts
in the refined pre-image are mapped to individual disjuncts in the
post-image under the most precise abstract post. This effectively
prevents Cartesian abstraction from losing precision. Both the re-
finement of the abstract domain and the splitting of disjuncts are
guided by spurious error traces that are produced by the analysis.

Counterexample-guided focus.We now formally define the
counterexample-guided focus operator. In the following wefix a
programP and a set of predicatesP . An abstract computationσ#

is a sequence

F#
0

op0−→ F#
1

op1−→ . . .
opn−1

−→ F#
n

where theF#

i are elements of the abstract domainAbsDom [P ]
and theopi are abstract transformersAbsDom[P ] → AbsDom [P ].
Moreover, the following two conditions hold: (1)F#

0 = α[P ](init)
and (2) for alli between 0 andn−1, F#

i+1 = opi(F
#

i ). We say that
the abstract computationends in an error stateif F#

n 6|= safe. We
say thatσ# is generatedby a traceπ = c0 . . . cn−1 and an operator
op ∈ Coms → AbsDom → AbsDom if for all i, opi = op(ci).
We say that the generated abstract computation issoundif for all i
between 0 andn − 1, F#

i+1 is an over-approximation of the set of
states that are reachable from an initial state by followingthe trace
c0 . . . ci. Finally, we say that a traceπ is aspurious error tracefor
op, if the abstract computation generated byπ andop ends in an
error state, yet,π is not an error trace of programP .

The counterexample-guided focus operator is used to eliminate
spurious error traces for the Cartesian abstract post that are not



spurious error traces for the most precise abstract post. Let π0 =
c0 . . . cn−1 be such a trace.

Note that concrete error traces can be characterized in terms of
symbolic weakest preconditions.

LEMMA 1. A traceπ is an error trace iffinit 6|= wlp(π)(safe).

Sinceπ0 is not a concrete error trace, we know thatπ0 satisfies

init |= wlp(π0)(safe) (1)

Letprefi(π0) be the prefix ofπ0 up to commandci−1, respectively,
suffi(π0) its suffix starting from commandci. From (1) and the
properties of predicate transformerspost andwlp follows that for
all i between0 andn − 1 we have

post([[prefi(π0)]])([[init]]) ⊆ wlp([[suffi(π0)]])([[safe]]) (2)

In other words, for eachi the formulawlp(suffi(π0))(safe) is
satisfied in all states that are reachable from an initial state by
following the traceprefi(π0). The idea of our counterexample-
guided focus operator is to use the formulaswlp(suffi(π0))(safe)
to guide the splitting of disjuncts in the pre-images of the Cartesian
post operator.

The counterexample-guided focus operatorfocus takes a se-
quence of commandsπ (the suffix of a spurious error traceπ0)
and an element of the abstract domainAbsDom[P ] as arguments
and maps the latter to an element of a refined abstract domain
AbsDom[preds(π)] with P ⊆ preds(π). The operatorfocus is
defined as follows

focus(π)(F#)
def

= α[preds(π)](wlp(π)(safe)) ∧ F#

The set of predicatespreds(π) is the union of the predicatesP and
predicates that are extracted from the weakest precondition of safe
with respect toπ. More precisely, ifπ = cπ′ thenpreds extracts
all atoms from the formula

wlp(c)(α[P ](wlp(π′)(safe))) (3)

TheadaptedCartesian abstract post operatorpost
#

f·C·BH(π) for the
suffix π of some spurious error trace is obtained by composition of
the Cartesian post operator (for the refined pre-image domain) with
the focus operator:

post
#

f·C·BH(π)
def

= λc. post
#

C·BH[preds(π),P ](c) ◦ focus(π)

Let σ# be the abstract computation generated from pathπ0 and
the sequence of operators[post

#

f·C·BH(suffi(π))(ci)]0≤i<n.

PROPOSITION2 (Soundness of Focus).The abstract computation
σ# is sound.

The proof of Proposition2 follows from Property (2) and the
fact thatpost

#

C·BH is a sound approximation of the most precise
abstract post operatorpost

#

BH.

PROPOSITION3 (Progress of Focus).The abstract computation
σ# does not reach an error state.

The proof of Proposition3 relies on the fact that the traceπo

of computationσ# is not an error trace and not spurious for the
most precise abstract post. One can then show thatfocus performs
sufficient splitting of disjuncts in abstract states ofσ# before each
application of the Cartesian abstract post. This splittingensures
that Cartesian abstraction causes no loss of information that is
crucial for proving thatπo is safe. Note, however, that the focused
Cartesian abstract post is not guranteed to compute the mostprecise
abstract post for the given trace. Its precision lies between the plain
Cartesian abstract post and the most precise abstract post.

Practical considerations. In our actual analysis the focus oper-
ator is always applied in a very specific situation, namely, when
the abstract domain for the post states of the refined abstract trans-
former already contains all the predicates that can be extracted from
the spurious error trace used for the focus. Therefore the abstrac-
tion functionα in (3) can be replaced by the identity function. The
resulting focus operator is then polynomial in the number ofex-
tracted predicates and the size of the representation of thefocused
abstract states.

5. Additional Examples
We now illustrate how the counterexample-guided focus adapts
the abstract transformers for the abstractions of three example
programs. In all of these examples, the analysis without counter-
example-guided focus would not be able to infer a sufficiently
strong invariant that proves the correctness of the program.

Program I NIT . We first revisit Program INIT from Section2.
We explained the nature of the loss of precision under Cartesian
abstraction for this example program in the previous section. This
loss of precision causes that the analysis of Program INIT produces
spurious error traces even though the abstract domain can express
a sufficiently strong inductive invariant. The shortest such spurious
error trace is the trace that starts with the commands at location ℓ0
executes the while loop once and then goes to the error location via
the failing assert statement at locationℓ2. The weakest precondition
wlp(π)(safe) for the suffixπ of this spurious error trace that starts
in locationℓ1 is given by the formula

y.next=null ∧ y 6=null →

(∀v. (x, v) ∈ next∗ ∧ v 6=null → v.data=0 ∨ y=v)

Using this formula, the focus operator refines the pre-imageof the
abstract transformer for the loop body by adding, among other
predicates, the predicateY = { v | y=v }. In this particular ex-
ample, simply adding predicateY to the pre-image domain is suf-
ficient to rule out the spurious error trace. Recall that the image of
the Cartesian abstract post operator is computed by considering a
normal form of the pre-image where in each inner disjunct every
predicate occurs either positively or negatively. Thus, refining the
abstract domain by adding predicateY already enables the Carte-
sian abstract post to perform the necessary splitting of disjuncts in
the original pre-image. However, this splitting is purely syntactic.
Some of the split disjuncts might be unsatisfiable in all represented
pre-states but might be mapped to satisfiable disjuncts in the post-
image and, thus, cause imprecision. Also, without proper focus the
image of the Cartesian abstract post will always be a single abstract
state and never a proper disjunction. Our second example shows
that, in general, the local refinement of the abstract domainof the
pre-image alone, does not suffice to eliminate a spurious error trace
for the Cartesian abstract post.

Program L ISTREVERSE. Consider program LISTREVERSE in
Figure7 that performs an in-place reversal of a singly-linked list.
The list is pointed to by program variabler. Assume the heap
is sharing-free before execution of the program (the first assume
statement at locationℓ0) and assume thatr points to the actual root
node of the list (the second assume statement at locationℓ0). We
would like to verify that under these assumptionsr points again to
the root node of the reversed list after termination of the program.

One part of the inductive invariant for locationℓ1 that is needed
to verify the assertion at locationℓ2 is given by the formula

e=null ∨ (∀v. v.next 6=e)

This formula expresses thate always points to the root of the part
of the original list that has yet to be reversed. This formulacan be



ℓ0 : assume(∀u v w. v.next=w ∧ u.next=w ∧ v 6=u → w=null)

assume(r=null ∨ (∀v. v.next 6=r))

e:= r ; r := null

ℓ1 : while e 6=null do
t := e; e:= e.next

t.next := r

ℓ2 : assert(r=null ∨ (∀v. v.next 6=r))

Figure 7. Program LISTREVERSE
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Figure 8. Two reachable states of Program LISTREVERSE

expressed by the disjunction of the following two abstract states

F#
1 : ∀v. e=v ↔ null=v

F#
2 : ∀v. v.next 6=e

Figure 8 shows two states that may occur at locationℓ1 during
execution of the while loop. Both states satisfy the abstract state
F#

2 . Note that after execution of the loop body, the states1 sat-
isfies only abstract stateF#

1 while the second state satisfies only
abstract stateF#

2 . The Cartesian abstract post operator will always
merge the post states ofF#

2 that result from execution of the loop
body into a single abstract state. An analysis based on this opera-
tor therefore cannot infer a sufficiently strong inductive invariant.
The counterexample-guided focus causesF#

2 to be split into two
abstract states, one whose post states are covered byF#

1 and one
whose post states are covered byF#

2 . Thus, the Cartesian abstract
post will not lose precision on the focused pre-image. Refining the
abstract domain by adding additional predicates will not make up
for the loss of precision on the unfocused pre-image, unlessone
adds astate predicatethat expresses one of the outer disjuncts in
terms of an inner disjunct of the other (e.g., the predicatee=null in
the given example). In general, the state predicates that one needs
to add to prevent loss of precision under Cartesian abstraction can
be arbitrarily complex quantified formulas.

Program DL ISTERASE. The splitting of disjuncts that is per-
formed by our counterexample-guided focus operator is closely re-
lated tomaterializationin shape analysis. Materialization refers to
an intermediate step in the computation of the abstract postwhere
a concrete object is extracted from an abstraction of a collection of
objects. For instance, given an abstraction of a list, one needs to
extract the head of the list in order to compute a precise abstract
post-state for a command that iterates over the list. Our third exam-
ple demonstrates that counterexample-guided focus performs mate-
rialization automatically, even in cases that require data-structure-
specific manual adaptation of the abstract transformers in many ex-
isting shape analyses.

Consider Program DLISTERASE shown in Figure9. This pro-
gram erases all entries in an acyclic doubly-linked list. The list is
pointed to by program variabler. The loop that erases the entries in
the list iterates backwards over the data structure starting from the
last entryl. In each iteration both the forward pointernext and the
backward pointerprev of the current iterate are set tonull. The task
is to verify that theprev andnext fields of all original list entries
have indeed been set tonull after the loop terminates. This prop-
erty is expressed by the assert statement at locationℓ2. The assume
statements at locationℓ0 express the precondition of the program.

ℓ0 : assume(∀v w. v.prev 6=null ∧ w.next 6=v ∨ v.prev .next = v)

assume(∀v. v ∈ Cont0 ↔ (r, v) ∈ next∗ ∧ v 6=null)

assumel ∈ Cont0

assumel.next=null

ℓ1 : while l 6=null do
l.next:= null

t:= l; l:= l.prev

t.prev := null

ℓ2 : assert(∀v. v ∈ Cont0 → v.next=null ∧ v.prev=null)

Figure 9. Program DLISTERASE

The first assume statement expresses that fieldprev is the inverse
of fieldnext which implies that the listr is doubly-linked. The sec-
ond assume statements defines the setCond0, aghost variablethat
denotes the set of elements that are originally stored in thelist. The
third and fourth assume statement together ensure thatl points to
the last entry in the list.

The important part of the inductive invariant at locationℓ1 that
is strong enough for proving the assertion at locationℓ2 is given by
the following formula

∀v. v ∈ Cont0 ∧ (l, v) /∈ prev
∗ → v.next=null ∧ v.prev=null

In order to infer this formula, the abstract transformer forthe loop
body needs to split some of the inner disjuncts that contain positive
occurrences of the predicate(l, v) ∈ prev∗ in order to keep pre-
cise information about the object pointed to by program variablel
in each iteration. This splitting corresponds to materialization from
the back of the doubly-linked list. Many shape analyses, e.g., those
based on separation logic [13, 19, 38], need special hand-crafted
rules to perform materialization for specific data structures. With
counterexample-guided focus, the abstract transformer isautomat-
ically adapted to perform materialization. The adaptationmecha-
nism is independent of the data structures that the analyzedpro-
gram manipulates and is only applied when the extra precision is
needed to prove a particular property.

6. Lazy Nested Abstraction Refinement
We now present our lazy nested abstraction refinement loop
that integrates lazy counterexample-guided refinement of the ab-
stract domain and lazy adaptation of the abstract transformer via
counterexample-guided focus.

The refinement loop is shown in Figure10. The procedure
LazyNestedRefine takes a programP as input and constructs
an abstract reachability tree (ART) in the spirit of lazy abstrac-
tion [25]. An ART is a tree where each noder is labeled by a set of
predicatesr.preds and abstract statesr.states in AbsDom [r.preds ].
The root noder0 of the ART is labeled by an abstract state denot-
ing the set of all initial states. Each edge in the ART is labeled by
a commandc in programP and an abstract transformerop for the
commandc. We writer

c,op
−→ r′ to denote that there is an edge in

the ART from noder to noder′ which is labeled byc and op.
Furthermore, we writer

π
→∗ r′ to indicate that there is a (possibly

empty) path fromr to r′ in the ART that is labeled by the traceπ.
Each path in the ART starting from the root node corresponds to an
abstract computation that is generated from the trace labelling the
path.

The lazy nested abstraction refinement algorithm iteratively ex-
tends and refines the ART until either a fixed point is reached,i.e.,
the disjunction of the abstract states contained in all ART nodes is
an inductive invariant of programP , or until an error trace has been
constructed. If a spurious error trace is encountered during the fixed
point computation then this trace is used to refine the abstraction.
We now describe the algorithm in detail.



proc LazyNestedRefine(P : program)

begin
let r0 = 〈preds : {init} , states : init, covered : false〉

let succ(r) =

let Succ = ∅

for all c ∈ T do
let r′ = 〈preds : ∅, states : false, covered : false〉

let op = post
#

C·BH
(c)

add edger
c,op
−→ r′

Succ:=Succ ∪ {(r, op, r′)}

return Succ

let U = succ(r0)

while U 6= ∅ do
choose and remove(r1, op, r2) ∈ U

r2.states:= op[r1.preds , r2.preds](r1.states)

if r2.states |=
W

r { r.states | r 6= r2 } then
r.covered := true

else ifr2.states |= safe then U :=U ∪ succ(r′)

elselet rs, π such thatπ is maximal trace withrs
π
→∗ r2 ∧

rs.states 6|= wlp(π)(safe)

if rs = r0 then return counterexample(π)

else letrp, c, op such thatrp
c,op
−→ rs

let Pπ = preds(wlp(π)(safe))

let op′ = if Pπ 6⊆ rs.preds then
rs.preds := rs.preds ∪ Pπ

op

elseop ◦ focus(cπ)

remove subtrees starting fromrs

for all r2 such that
r2.covered ∧ r2.states 6|= false∧

rs.states older thanr2.states do

let r1, c,op such thatr1
c,op
−→ r2

r2.covered := false

r2.states:= false

U :=U ∪ {(r1, op, r2)}

rs.states:= false

rs.covered := false

update edgerp
c,op′

−→ rs

U :=U ∪ {(rp, op′, rs)}

return ”program is safe”
end

Figure 10. Lazy nested abstraction refinement algorithm

The algorithm maintains a work set of unprocessed ART edges
U . In each iteration one unprocessed ART edge(r1, op, r2) is
selected. Then the image of the abstract states inr1 and the abstract
transformerop is computed and the resulting abstract states are
stored inr2.states . If the computed abstract states are already
subsumed by other ART nodes then the noder2 is marked as
covered. Otherwise ifr2.states contains no error states then the
ART is extended with new nodes that are the successors ofr2 for all
the commands inP . The edges to the successor nodes are labeled
by the commandsc and the initial abstract transformer given by the
Cartesian abstract post for the commandc. Then the new edges are
inserted to the set of unprocessed edges.

If r2 contains error states then the trace labelling the path from
r0 to r2 is a potential error trace. The analysis now determines
whether this trace is a spurious error trace. For this purpose, it
performs a symbolic backward analysis of the error trace. This

backward analysis finds the oldest ancestor noders of r2 with
rs

π
→∗ r2 such thatrs.states represents some concrete state that

can reach an error state by executing the traceπ, i.e., formallyrs is
the oldest node on the path that still satisfies

rs.states 6|= wlp(π)(safe) .

If rs is the root node of the ART thenπ is a concrete error trace and
the procedure returns the counterexample. If, however,rs is not the
root node then the trace is a spurious error trace. In this case we call
rs the spurious nodeof the trace. The algorithm then determines
the immediate predecessor noderp of the spurious node. We call
rp thepivot nodeof the spurious error trace. The pivot node is the
youngest node on the given path in the ART that does not represent
any concrete states that can reach an error state by following the
commands in the trace. Depending on the refinement phase either
the abstract domain ofrs is refined or the abstract transformer that
labels the edge betweenrs andrp is adapted.

The refinement works as follows. The spurious part of the error
trace starts from the spurious noders. Our abstraction refinement
procedure first attempts to refine the abstract domain of noders

by adding new predicatesPπ that are extracted from the spurious
partπ of the spurious error trace. The predicate extraction function
preds guarantees that the weakest preconditionwlp(π)(safe) of the
path is expressible in the abstract domain of the refined noders,
i.e., formally the following entailment holds

α[Pπ](wlp(π)(false)) |= wlp(π)(false) .

Suppose the analysis was to compute the most precise abstract post
operator for each command. Then we were guaranteed that after
refining the predicate set of noders and reprocessing the ART
edge betweenrp andrs, the noders would no longer be spurious
for this spurious error trace. This would ensure that the spurious
error trace would eventually be eliminated. However, our analysis
uses the Cartesian abstract post operator. Thus, the same spurious
error trace might be reproduced after the refinement of the abstract
domain. The refinement procedure would then fail to derive new
predicates for noders. In this case, the second refinement phase
refines the current abstract transformerop for commandc that
labels the edge betweenrp andrs. The abstract transformerop is
refined by composition with the counterexample-guided focus for
the spurious partcπ of the trace.

After the abstraction has been refined, the spurious subtrees be-
low rs are removed from the ART. In order to ensure soundness,
ART nodes that have potentially been marked as covered due to
subsumption by nodes in the removed subtrees are uncovered and
reinserted into the work set. Finally, the spurious ART edgebe-
tweenrp andrs is updated and also reinserted into the work set.

If the set of unprocessed ART edges becomes empty then all
outgoing edges of inner ART nodes have been processed and all
leaf nodes are covered, i.e., an inductive invariant that proves the
absence of reachable error states has been computed. Thus, the
procedure returns “program is safe”.

THEOREM4 (Soundness).ProcedureLazyNestedRefine is sound,
i.e., for any programP if LazyNestedRefine(P ) terminates with
“program is safe” then programP is safe.

The proof of Theorem4 relies on Proposition2 and follows
the argumentation in [25]. The next theorem states that procedure
LazyNestedRefine has the progress property. In the setting of lazy
abstraction, progress means that procedureLazyNestedRefine can-
not diverge because it gets stuck on refining a finite set of spurious
error traces over and over again.

THEOREM5 (Progress).A run∆ of procedureLazyNestedRefine
terminates, unless the set of spurious error traces encountered in∆
is infinite.



benchmark checked properties DP time (in s) CGF

List.traverse AC, SF MONA 0.11 no
List.init AC, SF, PC MONA 0.69 no
List.create AC, SF MONA 0.78 yes
List.getLast AC, SF, PC MONA 0.53 no
List.contains AC, SF, PC MONA 0.53 no
List.insertBefore AC, SF MONA 2.48 yes
List.append AC, SF MONA 8.95 no
List.filter AC, SF MONA 5.31 yes
List.partition AC, SF MONA 149.16 yes
List.reverse AC, SF MONA 5.52 yes
DList.addLast AC, SF, DL, PC MONA 2.05 yes
DList.erase AC, SF, DL, PC MONA 17.98 yes
SortedList.add AC, SF, SO, PC MONA, Z3 9.88 no
SkipList.add AC, SF, PC MONA 10.82 yes
Tree.add AC, SF, PC MONA 18.51 no
ParentTree.add AC, SF, PL, PC MONA 20.48 no
ThreadedTree.addAC, SF, TH, SO, PCMONA, Z3 445.93 no
Client.move CS Z3 3.11 no
Client.createMoveCS, PC Z3 41.07 yes
Client.partition CS, FC, PC Z3 108.15 no

Properties: CS = call safety, AC = acyclic, SF = sharing free,DL = doubly linked, PL =
parent linked, TH = threaded, SO = sorted, FC = frame condition, PC = post condition

Table 1. Summary of experiments. Column DP lists the used deci-
sion procedures. Column CGF indicates whether counterexample-
guided focus was required to successfully verify the corresponding
program.

7. Implementation and Case Studies
We implemented our analysis in our tool Bohne. Bohne is imple-
mented in Objective Caml and distributed as part of the Jahobsys-
tem [30, 51, 56, 57]. The input to Bohne are Java programs anno-
tated with special comments that specify procedure contracts and
representation invariants of data structures. We represent elements
of the abstract domain as sets of BDDs [11] and use the weaker
order of propositional implication for the fixed point test in the
abstraction refinement loop. Abstract transformers are also repre-
sented as BDDs to enable efficient post-image computation. We
represent the program counter explicitely and not implicitely in ab-
stract states. Our tool uses a few simple heuristics to guessan ini-
tial set of predicates from the input program and its specification.
All additional predicates are inferred in the nested abstraction re-
finement procedure. Since we syntactically extract new predicates
from weakest preconditions of finite traces in the program, we can-
not infer reachability predicates (i.e., predicates with transitive clo-
sure operators) if they do not already occur in the specification.
We therefore use a widening technique to infer new reachability
predicates from the predicates that are extracted from weakest pre-
conditions.

Case studies.We applied Bohne to verify operations on a diverse
set of data structures implementations, checking a varietyof prop-
erties. No manual adaptation of the abstract domain or the abstract
transformers was required for the successful verification of these
example programs. In particular, we were able to verify preserva-
tion of data structure invariants for operations on threaded binary
trees (including sortedness and the in-order traversal invariant). We
are not aware of any other analysis that can verify these proper-
ties with a comparable degree of automation. Further experiments
cover data structures such as (sorted) singly-linked lists, doubly-
linked lists, two-level skip lists, trees, and trees with parent point-
ers. The verified properties include: absence of runtime errors such
as null dereferences complex data structure consistency properties,
such as preservation of the tree structure and sortedness. Finally,
we verified procedure contracts expressing functional correctness

benchmark #appl. of #ref. final ART #predicates
abs. poststeps size depth st./loc. total avrg. max.

List.traverse 3 0 4 4 1.00 4 2.8 3
List.init 5 1 5 5 2.00 7 5.4 7
List.create 11 6 6 6 1.67 11 6.7 9
List.getLast 7 1 6 6 2.00 7 6.0 7
List.contains 5 1 5 5 2.00 6 5.2 6
List.insertBefore 8 2 5 5 13.50 10 7.4 8
List.append 5 1 4 4 1.50 13 8.2 11
List.filter 31 5 14 5 2.50 12 7.1 10
List.partition 62 21 40 7 3.50 15 10.8 12
List.reverse 9 3 5 5 2.00 11 7.0 9
DList.addLast 7 3 5 5 1.50 8 7.2 8
DList.erase 23 6 10 5 5.00 10 7.6 8
SortedList.add 21 3 13 5 1.33 9 6.2 9
Skiplist.add 19 4 16 6 3.67 12 9.6 11
Tree.add 11 0 12 5 3.00 11 10.5 11
ParentTree.add 11 0 12 5 3.00 11 10.5 11
ThreadedTree.add 151 4 82 6 4.33 17 7.8 17
Client.move 8 0 9 9 1.00 16 8.4 11
Client.createMove 46 6 21 18 1.00 33 10.1 14
Client.partition 118 18 24 19 1.00 32 11.9 15

Table 2. Analysis details for experiments. The columns list the
number of applications of the abstract post, the number of refine-
ment steps, the size and depth of the final ART that representsthe
computed fixed point, the average number of abstract states per lo-
cation in the fixed point, the total number of predicates, andthe
average and maximal number of predicates in a single ART node.

properties, e.g., how the set of elements stored in a data structure is
affected by the procedure.

We further performed modular verification of data structure
clients that use the interface for sets with iterators from the
java.util library. For this purpose, we annotated procedure con-
tracts for all set operations and then used our tool to infer invariants
for the client. These invariants ensure that all preconditions of the
set operations are satisfied at call sites in the client. Furthermore
we verified functional correctness properties of the clientcode.

Table1 shows a summary for a collection of benchmarks run-
ning on a 2.66 GHz Intel Core2 with 3 GB memory using one core.
Each program satisfied all of the checked properties listed for the
respective program and for each program all of the checked prop-
erties have been verified in a single run of the analysis. For reason-
ing about transitive closure of fields in tree-like data structures we
used MONA [28] in combination with our field constraint analysis
technique [52] for reasoning about non-tree fields. We further used
the SMT solver Z3 [18] for verifying sortedness properties. For the
the data structure clients we used only Z3. The last column inTa-
ble 1 indicates that for many of our benchmarks the verification
would not succeed without the use of counterexample-guidedfo-
cus, i.e., without counterexample-guided focus the analysis would
not be able to rule out some spurious error trace and get stuck.

Note that our examples are not limited to stand-alone programs
that build and then traverse their own data structures. Instead, our
examples verify procedures with non-trivial preconditions, post-
conditions and representation invariants that can be part of arbi-
trarily large code.

Further details of the benchmarks are given in Tables2 and
3. Table 3 gives details on the calls to the validity checker and
its underlying decision procedures. One immediately observes that
the calls to the validity checker are the main bottleneck of the
analysis. On average, 98% of the total running time is spent in
the validity checker. The reasons for the high running timesare
diverse. First, communication with decision procedures iscurrently
implemented via files which is slower than passing data directly.
Second, we use expensive decision procedures such as MONA. In



benchmark #VC calls rel. time spent in VC time/DP call
total DP cache total abstr. refine. avrg. max.

List.traverse 41 20 51.22% 92.59% 92.59% 0.00% 0.005 0.012
List.init 132 69 47.73% 95.93% 72.67% 23.26% 0.010 0.024
List.create 189 68 64.02% 95.36% 57.22% 38.14% 0.011 0.016
List.getLast 158 56 64.56% 97.74% 54.89% 42.86% 0.009 0.028
List.contains 114 52 54.39% 95.45% 55.30% 40.15% 0.010 0.028
List.insertBefore 246 143 41.87% 97.25% 80.61% 16.64% 0.017 0.052
List.append 311 254 18.33% 99.46% 97.10% 2.37% 0.035 0.080
List.filter 820 273 66.71% 97.36% 87.20% 10.17% 0.019 0.060
List.partition 7650 3027 60.43% 99.17% 95.63% 3.54% 0.049 0.088
List.reverse 615 312 49.27% 98.55% 89.05% 9.50% 0.017 0.048
DList.addLast 161 89 44.72% 97.86% 62.57% 35.28% 0.023 0.040
DList.erase 749 484 35.38% 98.15% 81.42% 16.73% 0.036 0.224
SortedList.add 470 190 59.57% 97.89% 65.65% 32.24% 0.051 0.120
Skiplist.add 679 241 64.51% 97.52% 43.84% 53.68% 0.044 0.076
Tree.add 390 124 68.21% 99.52% 67.59% 31.94% 0.149 0.624
ParentTree.add 428 141 67.06% 99.36% 63.41% 35.94% 0.144 0.596
ThreadedTree.add2882 619 78.52% 99.65% 91.80% 7.85% 0.720 3.816
Client.move 111 82 26.13% 97.17% 85.48% 11.70% 0.037 0.136
Client.createMove 662 393 40.63% 96.35% 33.35% 63.00% 0.101 5.428
Client.partition 2138 896 58.09% 94.92% 27.13% 67.79% 0.115 5.540

Table 3. Statistics for validity checker (VC) calls. The columns
list the total number of calls to the VC, the number of actual calls
to decision procedures and the corresponding cache hit ration, the
time spent in the VC relative to the total running time, and the
average and maximal time spent for a single VC call.

some of the examples individual calls to these decision procedures
can take up to several seconds. Running times can be improved
by incorporating more efficient decision procedures for reasoning
about specific data structures [7, 33, 54].

Limitations.The set of data structures that our implementation can
handle is limited by the decision procedures that we have currently
incorporated into our system. The use of monadic second-order
logic over trees as our main logic for reasoning about transitive
closure makes it more difficult to use our tool for verifying data
structures that admit cycles or sharing. Furthermore, our widening
technique for inferring new reachability predicates only works for
flat tree-like structures. It is not appropriate for handling nested
data structures such as lists of lists which may require the analysis
to infer nested reachability predicates.

Costs and gains of automation.In order to estimate the costs and
gains of an increased degree of automation, we compared Bohne
to TVLA [ 35], the implementation of three-valued shape analysis
[48]. We used TVLA version 3.0 alpha [8] for our comparison.
We ran both tools on a set of singly-linked list benchmarks. For
each example program we used the same precondition in both tools:
heaps that form a forest of acyclic, sharing free lists. For TVLA we
provided preconditions in the form of sets of three-valued logical
structures. Bohne automatically computed the abstractionof pre-
conditions given as logical formulas. We did not use finite differ-
encing [46] to automatically compute predicate updates in TVLA.
With finite differencing TVLA was unable to prove preservation
of acyclicity of lists in some of the examples. We therefore used
the standard abstract domain and abstract transformers forsingly-
linked lists that are shipped with TVLA (with standard focusas
described in [48]). This abstract domain provides high precision
for analyzing list-manipulating programs. We checked for proper-
ties that require such high precision, in order to get a meaningful
comparison. We checked for absence of null dereferences as well
as preservation of acyclicity and absence of sharing. All properties
where checked in a single run of each analysis. Both tools were
able to verify these properties for all our benchmarks.

The results of our experiments are summarized in Table4.
The running times for Bohne are between one and two orders of
magnitude higher than for TVLA. Observe that almost all timeis

benchmark running time (in s) avrg. #abs. states #predicates
Bohne w/o VC TVLA Bohne TVLA Bohne TVLA

traverse 0.11 0.008 0.179 1.0 8 4 12
create 0.78 0.036 0.133 1.7 6 11 12
getLast 0.53 0.012 0.214 2.0 10 7 14
insertBefore 2.48 0.068 0.503 13.5 15 10 18
append 8.95 0.048 0.462 1.5 23 13 18
filter 5.31 0.140 0.600 2.5 19 12 18
partition 149.16 1.238 1.508 3.5 72 15 18
reverse 5.52 0.080 0.331 2.0 12 11 14

Table 4. Comparison between Bohne and TVLA. The columns list
total running times, average number of abstract states per location
in the fixed point, and total number of predicates (we refer to
the total number of unary predicates used by TVLA.). The third
column shows the running time of Bohne without the time spentin
the validity checker, i.e., this would be the total running time if we
had an oracle for checking validity of formulae that would always
return instantaneously.

spent in the decision procedure. Thus, the increase in running time
is the price that we pay for automation.

More important in the context of this work is the fact that the
space consumption of Bohne (measured in number of explored ab-
stract states) is smaller than TVLA’s, in some examples signifi-
cantly. TVLA’s focus operator eagerly splits abstract states (and
summary nodes) during fixed point computation in order to retain
high precision. This potentially leads to an explosion in the num-
ber of explored abstract states. Instead, our counterexample-guided
focus splits abstract states and abstract objects on demand, only if
the additional precision is required to rule out some spurious error
trace. We believe that this is the main reason for the smallerspace
consumption of Bohne. This believe is supported by our experience
with a uniform focus operator similar to TVLA’s that we used in an
earlier implementation.

However, there are other factors that play a role, such as thefact
that Bohne’s abstraction refinement loop infers a smaller number
of predicates, compared to the fixed set of predicates that TVLA
uses. A smaller predicate set results in a smaller abstract domain.
Furthermore, the abstract domains of the two analyses are very
similar, but not equivalent. In particular, abstract objects in our
abstract states can be empty. This is in contrast to summary nodes in
TVLA’s three-valued structures which are bound to be non-empty.
The presence of empty abstract objects can result in more compact
abstractions. Hence, a more sturdy conclusion as to why the space
consumption of Bohne is smaller requires further experiments.

8. Further Related Work

Shape analysis.Most shape analyses infer quantified invariants of
heap programs, either explicitly or implicitly. We discusssome of
these techniques in the following.

Our analysis shares many ideas with three-valued shape anal-
ysis [48] which inspired our idea of the counterexample-guided
focus operator. In the previous section we presented an experi-
mental comparison of both analyses. We now discuss additional
related work. Recent approaches enable the automatic computation
of transfer functions [36, 46] for three-valued shape analysis. Some
of these approaches are using decision procedures [55]. A method
for automated generation of predicates using inductive learning has
been presented in [37], but is not based on counterexamples. A
recent direction is the development of parameterized focusoper-
ators that are fined-tuned to specific verification tasks [40, 41, 47].
Our counterexample-guided focus is not only fine-tuned to a spe-
cific verification task but also to the individual steps of theanalysis



of a specific verification task. Furthermore, this fine-tuning is per-
formed automatically. However, the above techniques are explored
in the more challenging setting of the verification of concurrent
heap programs. Here, user-provided domain-specific knowledge is
often invaluable for obtaining an efficient analysis.

Shape analyses based on separation logic such as [13, 19, 38]
are typically tailored towards specific data structures andproper-
ties. This makes them scale to programs of impressive size [53],
but also limits their application domain. Recent techniques intro-
duce some degree of parametricity and allow the analysis to auto-
matically adapt to specific data structure classes [4, 24]. All of these
techniques still require manual adaptation of abstract transformers
to perform materialization for different classes of data structures.
Our focus operator performs this adaptation automatically.

Shape analysis based on abstract regular tree model checking
[10] encodes heap programs into tree transducers which can be
analyzed using automata-based program analysis techniques. The
encoding into tree transducers loses precision if the structures ob-
served in the heap program do not exhibit some regularity. This
shape analysis can take advantage of abstraction refinementtech-
niques that have been developed for abstract regular tree model
checking [9]. In particular, there is an automata-based version of
predicate abstraction that can be combined with abstraction refine-
ment and provide progress guarantees. However, these refinement
techniques cannot prevent any loss of precision that is caused by the
initial encoding of a heap program into tree transducers. Also, this
approach focuses on shape invariants of data structures anddoes
not apply to properties such as sortedness.

Predicate abstraction. Classical predicate abstraction [22]
can be seen as an instance of Boolean heap abstraction where
all abstraction predicates are closed formulas. Our technique of
counterexample-guided focus therefore carries over to classical
predicate abstraction.

The advantages of combining predicate abstraction with shape
analysis are clearly demonstrated in lazy shape analysis [6]. Lazy
shape analysis performs independent runs of a shape analysis algo-
rithm, whose results are then used to improve the precision of predi-
cate abstraction. The combined analysis implicitly infersquantified
invariants. In contrast, our analysis transcends the lazy abstraction
technique to the point where it itself becomes effective as ashape
analysis. Thus, our analysis offers the benefits of lazy abstraction
(i.e., a high degree of automation and targeted precision) also for
the heap-aware analysis.

Indexed predicate abstraction [31] uses predicates with free
variables to infer quantified invariants and is similar to our analysis.
However, indexed predicate abstraction has not yet been used for
the analysis of heap programs. Heuristics for automatic discovery
of indexed predicates are described in [32]. The abstract domain of
our analysis is more general than the indexed predicate abstraction
domain, because it contains disjunctions of universally quantified
statements. The presence of disjunctions avoids loss of precision
at join points of the control flow graph. This is important in the
context of abstraction refinement because it enables the analysis to
precisely identify spurious error traces in the abstract system.

The SLAM tool [3] uses Cartesian abstraction [2] on top of
predicate abstraction. The loss of precision under Cartesian abstrac-
tion is not a decisive factor in standard predicate abstraction [1].
However, there are other approximations of abstract transformers
that are used for performance reasons in actual implementations.
A side-effect of such approximations is that spurious errortraces
may not be eliminated by sole refinement of the abstract domain.
SLAM incorporates an algorithm developed by Das and Dill [17]
as a countermeasure. This algorithm gradually refines the abstract
transformer towards the most precise abstract post for a fixed pred-
icate abstraction. In SLAM this algorithm is applied whenever no

new predicates can be extracted from a spurious error trace.The
refinement of the abstract transformer guarantees that the spurious
error trace is eventually eliminated. However, this algorithm is not
appropriate in the context of an abstract domain of quantified asser-
tions. It relies on a greedy elimination of spurious abstract transi-
tions in the abstract transformer. In predicate abstraction these ab-
stract transitions are simple conjunctions of predicates.In our set-
ting they are quantified Boolean combinations of predicates. The
enumeration of abstract transitions is therefore infeasible.

Quantified invariants over arrays.For programs over arrays the
problem of how to treat disjunctions in the inference of quantified
invariants is not as accentuated as in the context of heap programs.
Techniques for inferring quantified invariants that only apply to
programs over arrays include [20, 27, 29, 49]. Noticeable excep-
tions are [23, 50] which also apply to heap programs. Here the user
specifies predicates and templates for the quantified invariants that
partially fix the Boolean structure of the inferred invariants. The
analysis then automatically instantiates the template parameters.
The templates can significantly reduce the search-space. However,
finding the right predicates and the right templates is non-trivial in
the context of heap programs.

Extracting predicates from counterexamples.The problem of
extracting good predicates from counterexamples for a domain of
quantified assertions is orthogonal to the contribution of this pa-
per. In the setting of quantified invariant inference, the question of
how to infer predicates from a finite set of spurious counterexam-
ples that rule out infinitely many similar spurious counterexamples
(e.g., resulting from the traversal of a recursive data structure) is
open. In our implementation we followed a practical approach to
solve this problem. Techniques for the inference of quantified inter-
polants [43] offer a promising alternative. Such techniques could be
integrated in our approach following the line of interpolation-based
abstraction refinement [5, 27].

9. Conclusion
In this paper, we have addressed the automated inference of quan-
tified invariants for software verification. The fine-tuningof the fo-
cus operator (from the related area of shape analysis) is central to
finding the right efficiency-precision tradeoff in the underlying pro-
gram analysis. We have put forward the idea to use counterexam-
ples to guide the fine-tuning of the focus operator. We have shown
how this idea can be realized in a method and tool; preliminary
experiments indicate its practical potential.

An interesting line of future research is the extension of the pre-
sented work to the verification of concurrent programs. It seems
that here one should seek the integration of counterexample-guided
focus with existing mechanisms for manually fine-tuning parame-
terized versions of the focus operator[39]. This would allow the
user to incorporate domain-specific knowledge (e.g., aboutsyn-
chronization) into the analysis.
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