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Abstract—An integral part of all debugging activities is the
task of diagnosing the cause of an error. Most existing fault
diagnosis techniques rely on the availability of high quality test
suites because they work by comparing failing and passing runs
to identify the error cause. This limits their applicability. One
alternative are techniques that statically analyze an error trace
of the program without relying on additional passing runs to
compare against. Particularly promising are novel proof-based
approaches that leverage the advances in automated theorem
proving to obtain an abstraction of the program that aids fault
diagnostics. However, existing proof-based approaches still have
practical limitations such as reduced scalability and dependence
on complex mathematical models of programs. Such models are
notoriously difficult to develop for real-world programs. Inspired
by concolic testing, we propose a novel algorithm that integrates
concrete execution and symbolic reasoning about the error trace
to address these challenges. Specifically, we execute the error
trace to obtain intermediate program states that allow us to split
the trace into smaller fragments, each of which can be analyzed
in isolation using an automated theorem prover. Moreover, we
show how this approach can avoid complex logical encodings
when reasoning about traces in low-level C programs. We have
conducted an experiment where we applied our new algorithm
to error traces generated from faulty versions of UNIX utils such
as gzip and sed. Our experiment indicates that our concolic fault
abstraction scales to real-world error traces and generates useful
error diagnoses.

I. INTRODUCTION

Debugging is one of the most time consuming aspects
of software development. Several studies have shown that
programmers spend at least 50% of their time on debugging
(see, e.g., [13], [29]). There is no doubt that any kind of
automation with the effect of reducing the manual effort
involved in debugging can have a significant impact on software
productivity.

An integral part of all debugging activities is to diagnose
the cause of the error. For example, a program execution may
fail with a segmentation fault. The point of failure could be a
dangling pointer that is dereferenced. The actual defect causing
this failure could be a premature deallocation of memory that
created the dangling pointer. Often the defect and the point of
failure are far apart in the program source code. Hence, fault
diagnostics becomes more and more challenging as the size of
the program and the number of control flow paths increases.
Automated fault diagnosis techniques alone have the potential to
reduce the overall debugging time by 40% [22]. In addition, they
are a key enabling technology for automating other debugging
tasks, in particular, program repair [32]. In this paper, we
propose a novel fault diagnosis technique that conservatively
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over-approximates the behavior of a faulty program trace
such that only the error-relevant portions of the program are
preserved and the defect is precisely identified. This abstraction
of the error trace is obtained by using a combination of concrete
execution and symbolic reasoning. In reference to the idea of
concolic testing [11], [28], we refer to our approach as concolic
fault abstraction.

Research on automated fault diagnostics has mostly focused
on dynamic fault localization techniques, which try to identify a
single instruction in the program that is responsible for the error
or rank the instructions accordingly (e.g., [2], [23], [25], [35],
[37]). The results that have been achieved with these techniques
are impressive [5], [17]. However, they also have limitations.
Dynamic techniques assume the availability of passing runs that
are comparable to failing runs. The authors of [12] observe that
the usefulness of dynamic fault localization techniques strongly
correlates with the quality of the test suites that generate the
passing runs. Andreas Zeller, author of the seminal work on
Delta Debugging [5], [35], recently commented that a major
factor for the lack of adoption of existing automated fault
localization techniques is the assumption that test suites with
high code coverage are available [36]. According to Zeller, this
assumption contradicts the reality of how software is developed
in large parts of the software industry. It therefore seems
necessary to explore alternative techniques that extend and
complement dynamic fault localization.

One such alternative is to analyze the faulty program
fragment statically [10], [19], [30], [33]. Particularly promising
are novel static approaches that leverage the recent advances
in automated theorem proving technology, specifically Boolean
satisfiability (SAT) and satisfiability modulo theories (SMT)
solvers [10], [19]. These approaches encode error paths into
error trace formulas. An error trace formula is an unsatisfiable
logical formula. A refutation proof of this formula captures the
reason why the execution of the error trace fails. By applying
an automated theorem prover to obtain such proofs, the relevant
portions of the trace can be automatically identified without
relying on the availability of test suites. For example, in our
previous work [10], we have used Craig interpolation to extract
formulas from the obtained refutation proof. These so-called
error invariants provide an explanation of the error for a given
position in the trace and can be used for fault abstraction.

While proof-based fault diagnosis techniques are a promis-
ing alternative to dynamic techniques, they have practical
limitations that have not been addressed in previous work.
To precisely capture the behavior of an erroneous program
one has to model such features as dynamic memory allocation,
function calls, and inputs, over traces that can extend to large
numbers of instructions. This limits to applicability of these



techniques for two reasons: 1) the length of an error trace may
exceed what can be handled by existing theorem provers, and
2) there are currently no robust interpolation procedures for
the theory of arrays, making it difficult to automatically infer
invariants about heap allocated objects.

To address these limitations of purely static approaches,
we propose a novel fault diagnosis technique that combines
dynamic and static analysis of the error trace. In particular, we
note that given an executable error trace, we can determine the
concrete value of every variable, and every memory address,
using program instrumentation and dynamic execution. This
information can then be used to dramatically simplify the
encoding of the error trace for static analysis. Instead of relying
on complex mathematical theories to reason about pointer
aliasing, we can directly determine which memory location
a pointer references using the debugger. If a trace contains
too many statements to analyze using a theorem prover, we
can split the trace into subtraces, and use the program states
observed during the concrete execution to seed the analysis of
the individual subtraces.

Contributions. The paper makes the following contributions
to the state of the art of static fault diagnostics:

• An algorithm that leverages information from dynamic
execution to subdivide the error trace into smaller
subtraces, each of which is amenable to static analysis
using an automated theorem prover.

• A new memory model that uses dynamic informa-
tion about the heap to enable the application of
interpolation-based fault abstraction to real programs.

We demonstrate the ability of our approach to simplify and
explain error traces on two real-world examples taken from
faulty versions of the open source UNIX tools sed and gzip.
Our experiment shows that concolic fault abstraction can scale
to real-world error traces, and that our technique is effective
at diagnosing error causes in failing traces without relying on
the availability of additional passing traces that are sufficiently
similar to the failing trace.

II. OVERVIEW

We illustrate our fault diagnosis approach using a bug from
the SIR bug benchmark suite [8]1. In particular, we consider
the bug sed1, which is a seeded fault in the UNIX stream
editor sed. Figure 1 shows the portion of sed’s source code
that is relevant for the seeded bug. The actual source code
spans several thousand lines. The bug suppresses a call to a
function that initializes a pointer. The uninitialized pointer is
dereferenced later on, leading to a segmentation fault.

Generating the Error Trace. As a first step, we generate
an error trace by instrumenting the program using a custom
cilly [20] transformation, and then executing the program with
an input that triggers the bug. The generated error trace is
shorter than the full program, but still consists of 976 statements
and 89 function calls.

1The full source code and the test input that reveals the bug are taken from
the BugRedux [14], [16] distribution, and are available online.

Analyzing the Error Trace. The basis of our approach for
analyzing the generated error trace is the static fault diagnosis
algorithm presented in [10], [27]. This algorithm computes an
abstract slice of the error trace that explains the faulty program
behavior. The abstract slice is a subsequence of statements
of the error trace that are correlated with the bug. Figures 2
and 3 show two possible abstract slices that we expect to be
computed for the error trace of the faulty sed program. In fact,
this is the output generated by our new algorithm. The line
numbers refer to the program source code in Figure 1. Note
that some of the statements encode the passing of parameters
and return values of function calls.

Both of these abstract slices consist of concrete executable
statements which alternate with assertions that hold before and
after execution of the statements in the abstract slice. We refer
to these assertions as error invariants. For example, in Figure 3
the error invariant I02 holds at the beginning of the error trace,
after the initialization of the global variable last_regex, and
before the execution of the statement at line 27. That is, error
invariants summarize the behavior of the statements that have
been sliced from the full trace. They only capture information
that is preserved by the sliced statements and that is relevant
for helping the programmer isolate the cause of the bug.

Both of these possible abstract slices are useful for under-
standing the cause of the bug. The address-insensitive slice
in Figure 2 represents an answer to the question “why did a
particular memory location have a particular value?” In this
case, the answer is that last_regex was initialized to 0,
therefore addr->addr_regex pointed to the value 0, and
hence rxb was assigned 0 before being dereferenced.

This information would be enough for the programmer to
debug the problem. However, in some cases the programmer
might also wonder “why did addr->addr_regex point to
the location that it did?” In this case, we need the address-
sensitive slice shown in Figure 3, which shows the flow of
pointer assignments that were necessary to cause the bug.

Static Fault Abstraction with Error Invariants. The algo-
rithm in [10] works by encoding the error trace into a logical
formula whose satisfying assignment exactly corresponds to
the states that are observed during the concrete execution
of the trace. The encoding uses standard symbolic execution
techniques. Namely, we first convert the trace into static single-
assignment form, then translate each individual statement into
a logical constraint, and finally conjoin all the constraints to
a single formula. We call the resulting conjunction the error
trace formula of the trace.

By conjoining the error trace formula with the property that
is violated at the end of the trace, we obtain an unsatisfiable
formula. For example, in the case of the failing sed trace, the
error trace formula is conjoined with the formula rxb !=
0. Since this property is violated at the end of the execution
of the error trace, we obtain a contradiction. We then use
an interpolating SMT solver to generate an error invariant
for each position in the trace from a refutation proof of the
unsatisfiable formula. The computed error invariants have two
important properties: (1) they are satisfied by the concrete state
that is observed at the respective position in the trace; and (2)
any execution of the remainder of the trace starting from that



1 struct vector *the_program = 0;
2 ...
3 struct re_pattern_buffer *last_regex;
4 ...
5 int main (int argc, char **argv)
6 {
7 ...
8 compile_file (...);
9 ...

10 read_file (...);
11 }
12 ...
13 void compile_file (...)
14 {
15 ...
16 the_program = compile_program (...);
17 ...
18 }
19 ...
20 struct vector * compile_program (...)
21 {
22 struct sed_cmd *cur_cmd;
23 ...
24 vector = (struct vector *) malloc (sizeof (struct

vector));
25 vector->v = (struct sed_cmd *) malloc (40 *

sizeof (struct sed_cmd));
26 ...
27 vector->v_length = 0;
28 ...
29 cur_cmd = vector->v + vector->v_length;
30 ...
31 compile_address (&(cur_cmd->a1));
32 ...
33 return vector;
34 }
35 ...
36 int compile_address(struct addr *addr)
37 {
38 ...
39 #ifndef FAULTY_F_AG_19
40 compile_regex ();
41 #endif
42 addr->addr_regex = last_regex;
43 ...
44 }

45 void read_file (...)
46 {
47 ...
48 execute_program(the_program);
49 ...
50 }
51 ...
52 void execute_program (struct vector *vec)
53 {
54 struct sed_cmd *cur_cmd;
55 ...
56 cur_cmd = vec->v;
57 ...
58 match_address (&(cur_cmd->a1));
59 ...
60 }
61 ...
62 int match_address (struct addr *addr)
63 {
64 ...
65 re_search (addr->addr_regex, ...);
66 ...
67 }
68 ...
69 int
70 re_search (struct re_pattern_buffer *rxb, ...)
71 {
72 ...
73 unsigned num_regs = rxb->re_nsub + 1;
74 ...
75 }

Fig. 1. Relevant excerpt of sed’s source code that shows the seeded bug. The pre-processor directive on line 39 in compile_addr suppresses the call to
compile_regex, which causes last_regex to stay uninitialized. This, in turn, leads to a segmentation fault when accessing rxb on line 73 of re_search.
The indicated call sequence causes rxb to point to the same address as last_regex.

position with a state that satisfies the error invariant will still
violate the property at the end of the trace.

The generated error invariants are then propagated along
the trace to identify maximal subtraces such that the same
error invariant holds at both the beginning and the end of the
subtrace. For instance, in the error trace for sed, the theorem
prover will produce the error invariant last_regex==0 for
the position that is reached after line 3 has been executed. This
error invariant also holds at the position before the statement on
line 27. From the two properties of error invariants, it follows
that the statements between these two positions are irrelevant
for understanding the bug and, hence, can be sliced from the
trace. After line 27 we now also need to keep track of the
fact that vector->v_length==0 holds. Hence, we need
a new error invariant. That is, the trace may no longer fail if
we continue execution after line 27 with a state that does not
satisfy this property. Since we cannot further propagate the
error invariant last_regex==0 across line 27, we keep the

statement at this line. We proceed like this for the entire error
trace to produce the abstract slice.

Challenges to Static Fault Abstraction. Unfortunately, the
simple algorithm that we outlined above cannot be applied
directly to real-world error traces. There are several reasons for
this. First, real-world error traces quickly become too large to
be processed by today’s theorem provers. This scalability issue
is rooted in the NP-hardness of the underlying decision problem
of checking satisfiability of the error trace formula. While the
length of the sed trace is still manageable, the performance
of the provers degrades for longer traces. We therefore need a
way of breaking the error trace down into smaller fragments
that can be analyzed in isolation.

Second, the symbolic encoding of the error trace needs to be
based on a precise memory model that takes into account low-
level details such as pointer arithmetic, as in lines 29 and 31 of
Figure 1. Typically, in deductive reasoning about programs one
uses the theory of mutable maps (commonly referred to as array



//I00: true
3 last_regex = 0;
//I01: last_regex==0 && addr==0x123

42 addr->addr_regex = last_regex;
//I02: mem[0x123]==0 && addr==0x123

65 rxb = addr->addr_regex;
//I03: rxb==0

73 num_regs = rxb->re_nsub + 1;
//I04: false

Fig. 2. Address-insensitive slice produced by our algorithm for the sed error
trace.

//I00: true
3 last_regex = 0;
//I01: last_regex==0

27 vector->v_length = 0;
//I02: last_regex==0 &&
// vector->v_length==0

29 cur_cmd = vector->v + vector->v_length;
//I03: last_regex==0 &&
// cur_cmd==vector->v

31 addr = &cur_cmd->a1;
//I04: last_regex==0 &&
// addr==&vector->v->a1

42 addr->addr_regex = last_regex;
//I05: vector->v->a1.addr_regex==0

16 the_program = vector;
//I06: the_program->v->a1.addr_regex==0

48 vec = the_program;
//I07: vec->v->a1.addr_regex==0

56 cur_cmd = vec->v;
//I08: cur_cmd->a1.addr_regex==0

58 addr = &cur_cmd->a1;
//I09: addr->addr_regex==0

65 rxb = addr->addr_regex;
//I10: rxb==0

73 num_regs = rxb->re_nsub + 1;
//I11: false

Fig. 3. Address-sensitive abstract slice produced by our algorithm for the
sed error trace.

theory) to model the memory; see, e.g., [6], [24]. However,
there is no robust implementation of an interpolating decision
procedure for this theory in any off-the-shelf theorem prover.
Also, the use of these theories makes automated reasoning less
scalable.

Finally, certain operations that occur on the trace might not
be expressible in any decidable logical theory. For example,
some statements on the trace may contain nonlinear arithmetic
expressions over integer variables or involve calls to library
functions whose source code is not available.

Concolic Trace Splitting. Inspired by concolic testing [11],
[28], we propose a concolic fault abstraction algorithm that
addresses the above challenges by combining concrete execution
and symbolic reasoning about the error trace.

First, we describe how we use the concrete execution of the
trace to improve the scalability of our static fault abstraction.
Observe that an error invariant serves as an interface between
the two halves of the trace. For example, the error invariant
I10 splits the error trace into two segments, a prefix trace that
executes up to the call site of function re_search on line 65,
and a suffix trace that executes re_search up to line 73.
In particular, we can analyze the prefix trace in isolation by

viewing it as an error trace that violates the negation of I10
at the end of its execution.

However, how can we infer an error invariant to split
the error trace into smaller chunks without resorting to static
analysis of the full trace? To solve this problem, we use the
concrete execution of the trace to first seed the analysis of the
suffix trace and then use the first error invariant in the computed
abstract slice of the suffix to obtain the violated postcondition
for the analysis of the prefix trace.

Concretely, in the executable error trace that we obtain from
Figure 1, we insert breakpoints at each function call and at each
return statement. We end up with 158 breakpoints (for some
of the 89 calls we do not create breakpoints at the procedure
exit because the procedure exit is not reached on our trace).
The breakpoints define 159 subtraces to be analyzed. The last
breakpoint is at the entry of the procedure re_search. Each
of these subtraces is analyzed in isolation starting with the last
subtrace. That is, we then run gdb up to the last breakpoint
and extract the values of all variables that are active from this
breakpoint to the segmentation fault. In this final segment, no
global variable is read or written, so the only variables that we
have to watch are the formal parameters of the procedure.

Using the information about the values of the relevant vari-
ables at the breakpoint we generate a shorter executable trace
that leads to the segmentation fault. This shorter trace consists
of assignments from the formal parameters of re_search
to the extracted concrete values, and all the statements from
the breakpoint to the end of the trace. On this trace segment
we now apply our error-invariant-based fault diagnostics. We
then extract the first error invariant from the generated abstract
slice, which is rxb==0, negate it, and recursively proceed
with the analysis of the preceding subtrace defined by the
previous breakpoint. Finally, the abstract slice for the full trace
is obtained by concatenating the computed abstract slices of
all the subtraces. By using this new algorithm, static fault
abstraction is only ever applied to small segments of the
full error trace. We describe this algorithm in full detail in
Section IV.

Concolic Pointer Elimination. To avoid the use of complex
memory models in the encoding of trace formulas, we take
advantage of the fact that we only deal with a single finite
trace. That is, only finitely many memory locations are accessed
during the execution of the trace. Hence, we can explicitly
represent each of these memory locations by a distinct local
program variable. Effectively, we reduce the error trace to a
behaviorally equivalent trace that no longer dereferences any
pointer variables. The encoding of the resulting trace only
requires simple logical theories that are supported by standard
interpolating SMT solvers.

The encoding that we outlined above requires us to identify
all aliases between the dereferenced pointers in the trace. For
this purpose, we instrument the error trace to record the actual
address that is stored in each pointer whenever the pointer is
dereferenced during execution. Each pointer dereference is then
replaced by a distinguished variable associated with the address
that is stored in the pointer at the respective position in the trace.
We call this pointer elimination address-insensitive because the
association between pointers and the memory addresses that
they reference is lost in the encoding. Using this form of pointer



elimination, our algorithm produces the abstract slice shown
in Fig. 2.

Sometimes it is important to keep the association between
pointers and the referenced locations intact to diagnose the
faulty program behavior. We therefore propose a more precise
address-sensitive pointer elimination. In this alternative encod-
ing, every access to the place-holder variable for the location
of a dereferenced pointer is conditioned by a check that the
pointer indeed stores the right address. This way, the theorem
prover will need to explain why the pointer was holding the
specific address if the corresponding location was involved in
the error. Using the address-sensitive encoding, our algorithm
produces the abstract slice shown in Fig. 3.

Other operations that are not supported by the SMT solver
are eliminated in a similar manner. We discuss the details of the
elimination of pointers and problematic operations in Sec. V.

III. PRELIMINARIES

Before we explain our concolic fault abstraction algorithm
in detail, we provide a brief summary of the formal foundations
of error invariants and abstract slices.

An error trace is a sequence of simple program statements
(such as assignments) together with an input determining the
initial state, and an assertion that is violated at the end of
the trace. We assume that invoking the original program on
the given input executes the sequence of statements in the
error trace. Often the assertion violation may be implicit in
the program, e.g., the program may crash due to a run-time
error. In such cases, the violated assertion can be generated
automatically by inspecting the failing program statement and
the program state immediately before the execution of that
statement. We encode the initial state directly in the error
trace by adding initial assignments of input values to program
variables. Similarly, we fold the violated assertion F into the
error trace by adding the statement assert(F ) at the end of the
trace. Thus, we represent an error trace as a finite sequence of
statements σ = st1; . . . ; stn that has no normally terminating
execution.

Throughout this paper, we use quantifier-free first-order
logic formulas to describe error traces. We assume standard
syntax and semantics of such formulas and use > and ⊥ to
denote the Boolean constants for true and false, respectively.
Let X be a set of program variables. A state is a valuation of the
variables from X . A state formula F is a first-order constraint
over free variables from X . A state formula F represents the
set of all states s that satisfy F and we write s |= F to denote
that a state s satisfies F .

For a variable x ∈ X and i ∈ N, we denote by x〈i〉 the
variable which models the value of x in a state that is shifted
i time steps into the future. We extend this shift function from
variables to sets of variables, as expected, and we denote by X ′
the set of variables X〈1〉. For a formula F with free variables
from Y , we write F 〈i〉 for the formula obtained by replacing
each occurrence of a variable y ∈ Y in F with the variable
y〈i〉.

A transition formula T is a first-order logic formula over
X∪X ′ that models the semantics of a single program statement,
respectively, a summary of multiple program statements. A

transition formula T represents a binary relation on states and
we write s, s′ |= T to denote that the pair of states (s, s′) is
in the relation represented by T . For example, the semantics
of an assert statement assert(F ) is given by the transition
formula F ∧X = X ′. Other examples of how statements in
the programming language C can be encoded into transition
formulas are given in Sec. V. In the following, we write Tst for
the transition formula that encodes the semantics of a statement
st .

Given an error trace σ = st1; . . . ; stn, the error trace
formula of σ, denoted τ(σ), is the conjunction T1,∧ . . . ∧ Tn

where Ti = T
〈i−1〉
sti

. Since σ has no normally terminating
executions, the formula τ(σ) is unsatisfiable, i.e., there is no
assignment to the variables in τ(σ) such that the formula
evaluates to true.

Error Invariants. From the proof of unsatisfiability of a
given error trace formula, τ(σ) = T1,∧ . . . ∧ Tn, we can use
Craig interpolation to infer a sequence of error invariants [10],
I0, . . . , In. Each error invariant Ik is a state formula that
satisfies the following two properties:

1) T1 ∧ . . . ∧ Tk =⇒ I
〈k〉
k , and

2) I
〈k〉
k ∧ Tk+1 ∧ . . . ∧ Tn =⇒ ⊥

The first property states that the error invariant Ik provides an
over-approximation of the set of all states that are reachable by
executing the prefix of the trace up to position k. The second
property states that any execution of the suffix trace starting
from position k with a state that satisfies Ik will still fail.

Abstract Slices. We call an error invariant I inductive
for positions k < j in a trace σ = st1; . . . ; stn if I is
an error invariant for both k and j. If we find such an
inductive error invariant, we can replace the transition formulas
Tk ∧· · ·∧Tj−1 in τ(σ) by I and the resulting formula remains
unsatisfiable. That is, in the original error trace, the statements
stk; . . . ; stj−1 do not make progress towards the error and
can be sliced from the trace. More generally, we can replace
the statements stk; . . . ; stj−1 by an abstract statement that
nondeterministically updates the program state such that Ik
remains true. We refer to an error trace where statements are
replaced by such abstract statements as an abstract slice of the
error trace. The abstract trace fails with the same error, and the
same error cause as the original error trace, but unlike the error
trace, the abstract slice only executes statements for which no
inductive error invariant can be found.

Our fault abstraction approach relies on techniques that have
been traditionally applied to loop invariant synthesis in program
verification. However, it is important to realize that finding
inductive error invariants is much simpler than finding inductive
loop invariants. Error invariants only need to generalize over
a finite trace segment in a given trace while loop invariants
need to generalize over potentially infinitely many traces of
the loop.

IV. CONCOLIC FAULT ABSTRACTION

The high-level overview of our concolic fault abstraction
approach is given in Algorithm 1. The algorithm takes two
input parameters: a program Prog and an input In for Prog



that leads to a certain error. The algorithm returns an abstract
slice, abstractSlice, that explains the observed error.

Algorithm 1: Concolic fault abstraction.
Input: Prog : program with known bug

In : input that triggers the known bug
Output: abstractSlice : abstract slice
begin

abstractSlice← ε
σ ← CreateTrace(Prog, In)
b1, . . . , bm ← CreateBreakpoints(σ)
lastInvariant← ⊥
for i from m− 1 to 1 do

st init ← GetConcreteState(σ, bi)
stpost ← assert(¬lastInvariant)
st ′1, . . . , st

′
k ←

ExtractSubtrace(σ, bi, bi+1)
σ′ ← st init ; st ′1; . . . ; st

′
k; stpost

I[0] . . . I[k + 1]← Interpolate(τ(σ′))
lastInvariant← I[1]
abstractSlice←
Abstract(σ′, I) @ abstractSlice

end for
end

The algorithm starts by initializing its return value abstract-
Slice to the empty trace. Then it calls the procedure Create-
Trace to extract an executable error trace σ for the given
input In. We describe this procedure in more detail in the
next section. On the executable trace σ, we set a sequence of
breakpoints b1, . . . , bm for the debugger using the procedure
CreateBreakpoints. Here, we assume that the first break-
point b1 is at the beginning of the trace and the last breakpoint
bm at the end of the trace.

Setting breakpoints at the locations where control enters or
leaves functions in the original code turned out to be practical in
our experiments. In general, however, CreateBreakpoints
could set breakpoints at arbitrary program locations, as long
as the code between two breakpoints is small enough to be
processable by the theorem prover.

Once we have generated the trace and set the breakpoints,
the actual fault abstraction loop starts. The loop iterates
backwards through the generated breakpoints starting with the
second last breakpoint (because the last breakpoint is where
the actual fault happens). Our algorithm executes the full trace
σ in a debugger, stops execution at the selected breakpoint
and collects the values of all variables and memory locations
necessary using GetConcreteState (see Sec. V). From
these values, we create a sequence of assignment statement
st init that assigns all program variables to their corresponding
values.

Further, we create a statement, stpost , that asserts the
negation of the last known error invariant lastInvariant . In
the first iteration, lastInvariant is false because there is no
execution that goes past the assert statement at the end of
the trace.

Now, we use the procedure SubTrace(trace, bi, bi+1)
to extract the sequence of statements, st ′0, . . . st

′
k, between the

current, and the last breakpoint. That is, in the first iteration,
we extract the statements from the second last breakpoint until
the end of the trace. Together with the initialization statement
st init and the assertion stpost , we obtain an error trace σ’,
that has no uninitialized variables (every variable is assigned
by st init ), and whose execution always terminates abnormally
(because the last statement stpost is always asserting a negated
error invariant).

From this trace, we then create the error trace formula τ(σ′).
This formula must be unsatisfiable (because σ′ has no normally
terminating executions). Thus, we can compute a sequence
of error invariants I[0] . . . I[k + 1] for the statements in σ′

using the procedure Interpolate. This procedure calls the
underlying interpolating SMT solver. It is important to note that
I[1] is the interpolant after st init. The interpolant I[0] before
st init is always >. We use I[1] to compute the postcondition
for the error trace fragment that is analyzed in the next iteration
by assigning I[1] to lastInvariant . That is, instead of requiring
the subtrace in the next iteration to end in the state constructed
by st init , we use the weaker condition I[1].

Note that due to the concrete nature of the trace we
analyze, this slicing technique does not lose any information,
and generates interpolation problems that are mathematically
equivalent to the interpolants for the full trace. In particular,
since every variable in the trace takes on a single concrete
value after st ′k, the conjunction of the assertions representing
the statements st ′0, . . . st

′
k is equivalent to the assertion that the

variables are equal to their concrete values at the breakpoint.
This means that replacing st ′0, . . . st

′
k with a statement assigning

all variables to their concrete values after st ′k does not affect
the mathematical structure of the calculation for I[k + 1].

With σ′ and the sequence of error invariants I , we can
now apply our error-invariant-based fault abstraction from
[10], denoted by the procedure Abstract. The procedure
Abstract checks for each interpolant I[k] whether it is an
inductive error invariant on σ′. More precisely, Abstract
tries to identify the smallest subset of error invariants in I
that cover the largest possible number of statements in σ′.
Then Abstract returns the corresponding abstract slice for σ′
where all trace fragments for which an inductive error invariant
has been found are replaced by this invariant. This abstract
slice is then prepended to abstractSlice . That is, abstractSlice
holds the abstract slice for the suffix of the full trace σ that
has been analyzed in previous iterations.

Once all fragments of the error trace have been processed,
our algorithm terminates and returns the accumulated abstract
slice.

V. ERROR TRACE CONSTRUCTION

Our technique produces an executable trace which allows for
easy reproducibility of the bug. We start by instrumenting our
program using a custom cilly [20] pass. When the instrumented
program is run on an input, it generates a “C” program which
precisely represents the instructions executed by the original
program on that input. This new program has the property that
is it branch free (all branches have been resolved), loop free
(all loops have been unrolled the correct number of times),
and effectively function-call free (all local functions have
been inlined). Since system calls cannot be inlined, they are



represented in the trace as by the appropriate function call. All
that is needed to reproduce the bug is to add the appropriate
headers, compile the trace using any “C” compiler, and then
execute the program with the bug causing input.

As discussed in Section II, pointers are challenging for
interpolating SMT solvers. We therefore take an aggressive
approach to constructing executable error traces. Unlike existing
work (e.g., [1]), our encoding translates every memory cell that
is used on the trace into a separate variable to allow the theorem
prover in our static fault abstraction to reason more efficiently
about the trace. Note that this is only possible because we
consider a single trace and a fixed input to the program.

As outlined in Section II, we propose two different ap-
proaches for constructing executable error traces: an address-
sensitive encoding and an address-insensitive encoding. In both
cases, we encode pointer accesses to the memory using local
variables. For each used memory cell, we generate one unique
local variable of appropriate type. For the address-sensitive
encoding, we encode updates to pointers by assigning the
pointer variable to an integer value representing the respective
memory address. Each memory access is guarded by the
assumption that the pointer carries the correct address (which is
always the case, because we only consider one trace with a fixed
input). With an address-sensitive encoding, our fault abstraction
is able to generate abstract slices that contain information about
how pointer values change over time, as shown in Fig. 3.

For the address-insensitive encoding, we also generate one
variable per memory location, but we do not explicitly track
the connection between pointer values and memory locations.
This way, our error trace only contains assignments to actual
memory locations. The information about the pointer variables
that are used to access this memory is lost. This encoding
allows our fault abstraction to construct much denser abstract
slices as shown in Fig. 2, but may lose useful information such
as why a dangling pointer in an error trace actually pointed
to the specific location. This information is useful if the error
was caused by assigning a wrong pointer variable rather than,
say, a wrong or missing assignment to the location referenced
by the pointer.

A. Address-Sensitive Pointer Elimination

For the address-sensitive encoding, we create one variable
per memory location that can be accessed during the execution
of the heap. As we only consider one fixed input, the number
of variables that need to be generated is always finite. For each
pointer variable, we log the memory addresses it carries during
execution of the trace. For each memory location (e.g., 0x123)
collected during this step, we create a local variable (e.g.,
mem_0x123). Now, we iterate over the executable trace and
replace all pointer dereferences by the corresponding generated
variable (i.e., mem_0x123), guarded by the condition that the
pointer points to this memory cell. For example, the assignment
statement from our sed example:
vector->v_length = 0;

is translated into the conditional assignment:
if(vector+8==0x123) {mem_0x123 = 0;}

where the magic constant “8” represents

offsetof(typeof(vector),v_length)

Adding the conditional (vector+8==0x123) may seem
odd at first sight because we know it must always be true on
the trace for the given input. However, it serves an important
purpose during the static fault abstraction: the conditional
turns into an implication when translating into first-order
logic (vector + 8 = 0x123 =⇒ mem 0x123 = 0). This
forces the theorem prover to include the variable vector into
the proof when showing that the formula is unsatisfiable.
Therefore, we obtain a different set of Craig interpolants and our
fault abstraction preserves all statements that are necessary to
understand why vector->v_length points to the memory
location 0x123. This results in a detailed abstract slice as
shown in Fig. 3. This trick of encoding conditional dependencies
between variables using implications is inspired by [4] where
the same idea is used to make static fault localization aware
of branching conditions.

B. Address-Insensitive Pointer Elimination

For the address-insensitive encoding we take a similar
approach: we create one local variable per used memory
location and replace pointer dereferences by the corresponding
generated variable. The difference is that this time, we do not
add the condition that the pointer points to the right memory
location. That is, the assignment:

vector->v_length = 0;

is now translated into the simple assignment:

mem_0x123 = 0;

This way, when translating the program into first-order logic,
the theorem prover will not reason about the address that
vector->v_length is pointing to. Hence, our fault abstrac-
tion will only contain the statements that actually change the
value of this memory location. This results in a more compact
abstract slice as shown in Fig. 2.

C. Additional Benefits of Concolic Reasoning

One of the advantages of concolic reasoning is that it
provides a simple way of dealing with library calls. Formal
verification typically requires full specifications for library calls,
such as the stubs provided by tools such as Frama-C [7]. In
concolic analysis, on the other hand, we only need to capture
the effect of such calls for one concrete input. This is much
easier to automate and also leads to simpler formulas (e.g.,
quantification is not necessary).

Calls with side-effects such as malloc and realloc can
be translated into proper assignments to the generated local
variables. Other calls, for example to the math library, can be
eliminated by recording their return values.

VI. REAL-WORLD EXAMPLES

We illustrate the effectiveness of our approach along two
examples of bugs in open source programs: sed and gzip. Both
bugs were drawn from the SIR benchmark [8] suite. The actual
source code and the test input that reveals the bugs are taken
from the BugRedux [14], [16] distribution.



sed gzip
0 LOC Full Program 11990 7328
1 Execution Time (s) 0.052 0.042
2 Execution Time instrumented (s) 0.305 0.172
3 Slowdown 5.8× 4.1×
4 Log size 36kB 18kB
5 LOC Trace Executable code 985 232
6 LOC Address-Sensitive Slice 11 51
7 LOC Address-Insensitive Slice 4 49
8 Bug-Assist reported error locations2 0 valid, 2 spurious 2 valid, 1 spurious
9 F 3 ranking of error location 3/19 3/80

TABLE I. EXPERIMENTAL EVALUATION OF CONCOLIC FAULT
ABSTRACTION TO BUGGY VERSIONS OF SED AND GZIP. ROWS 0 – 4
DESCRIBE CONCOLIC TRACE GENERATION; ROWS 5 – 7 DESCRIBE THE
EFFECT OF FAULT ABSTRACTION, AND ROWS 8 – 9 COMPARE TO FAULT
LOCALIZATION TOOLS BUG-ASSIST AND F 3 .

sed is a UNIX utility which parses and transforms text, based
on a compact scripting language. We analyzed a bug in “GNU
sed version 2.05”, an open source version of sed with 11990
lines of code. As described in Section II, the bug is that the
global variable last_regex is never initialized, leading to a
segmentation fault when the pointer is finally dereferenced.

gzip is a UNIX utility which compresses and decompresses
files. We analyzed a bug in version 1.2.4, which had 7328
lines of code. The root cause of the bug is that the function
huft_build returns an incorrect error code after a failed
allocation. The program then takes the wrong branch in the
error-handling path, and dereferences a null pointer.

A. Implementation Details

Our procedure to generate fault-localized error traces
requires a set of steps. We evaluated the practicality of each
step on both of our examples.

Trace generation. The first step of our procedure is to
generate an executable trace leading to the error. We used
the default bug-triggering inputs provided by the benchmark
suite — file000001 and pattern000001 in the case of
the sed bug, and file000001 in the case of the gzip bug.

As discussed in Section V, we used a custom cilly pass
which instrumented the buggy program to generate an exe-
cutable “C” program which represents the set of instructions
that led to the bug. The runtime overhead of this step, compared
to executing the unmodified version of the program directly
in the shell, was approximately 5×, as shown in Table I. We
expect that this slowdown should be independent of the length
of both the program, and of the error trace. Logfile lengths
were also quite manageable, measuring in the tens of kilobytes.

The executable trace for sed had 976 executable statements
(plus variable decelerations, typedefs, etc). The final executable
trace for gzip consisted of 415 lines, of which 232 were
executable statements, and the rest were boilerplate variable
decelerations, typedefs, etc.

Formula Generation. As we discuss in Section V, we
generated two different traces that served as basis for the
formula generation using an address-insensitive, and an address-
sensitive encoding.

2Applied to error traces as Bug-Assist could not process the full programs.

sed makes active use of pointers and the heap, and hence
there was a visible difference between the generated abstract
slices for the two encodings: the address-sensitive slice contains
11 statements, while the address insensitive slice contains
4 (the abstract slices themselves can be seen in Figures 2
and 3). In both cases invariant generation completed almost
instantaneously on a 2GHz Intel Core i7 with 8GB of RAM.

We similarly encoded our gzip error trace into an SMT
formula. Unlike sed, which made significant use of heap
allocated storage and pointer arithmetic, there were only four
statements in the error trace that depended on the address of
heap objects, and hence there was effectively no difference
between the address-sensitive and the address-insensitive en-
codings of the trace. For implementation reasons, our encoding
did not precisely follow that of Section V: for example, some
small arrays have been modeled using uninterpreted functions,
and pointers to the arrays were substituted with plain integer
variables as indices.

We further experimented on our new divide-and-conquer
algorithm with this particular gzip trace and confirmed the
potential and promising applicability of our error-invariant
technique on long traces. We set one breakpoint in the middle
of the trace, splitting the entire trace into two parts and observed
that the overall time to compute the abstract slice is considerably
reduced compared to the time to compute from the single entire
trace. The Nov. 2010 version of smtinterpol used in [10] took
12.2 and 9.2 seconds to process the two subtraces respectively,
but failed with an out-of-memory exception after 141 seconds
against the entire trace. A similar result was obtained with the
latest version of smtinterpol 2.1: it took 2.49 and 0.94 seconds
for the two subtraces respectively, totalling 3.43 seconds, vs
4.53 seconds to process the entire trace.

Address-Insensitive Encoding. Analyzing the quality of a
debugging tool is an inherently subjective task. Quantitatively,
we note that for sed, our technique reduced a 976 statement
error trace to 4 statements address-insensitive statements; for
gzip, it reduced 232 statements to 49.

In both cases, a qualitative analysis showed that the new
trace effectively highlighted the path that led to the bug. In the
case of sed, it is harder to imagine a simpler trace that would
show the bug. Similarly, in the case of gzip, the generated
trace was effective in concisely explaining why the null pointer
was invalid. We were unable to remove any additional lines
from the trace that our algorithm automatically produced.

We also noted that the invariants generated by the Craig
interpolation procedure were logically identical to the invariants
that we developed by hand, using human analysis.

Address-Sensitive Encoding. Quantitatively, the reductions
to the address-sensitive memory trace was highly effective,
reducing 985 to 11 lines in the case of sed, and 232 to 51 lines
in the case of gzip. As before, the discovered invariants were
equivalent in quality to those we would have hand-generated,
and we were not able to remove any additional lines that were
not removed automatically by our tool.

Qualitatively, our experience with attempting to understand
the cause of this bug was that the shorter simplified trace was
much easier to reason about than the full trace.



B. Comparison with other tools

Static fault localization. We attempted to run the static
analyzer Bug-Assist [19] on our two case studies. Bug-Assist
takes a different approach to bug localization: whereas we
generate an abstract slice which explains the path to the bug,
it generates a list of possible bug locations.

Bug-Assist was unable to parse the full versions of either
program. This is not particularly surprising, as the Bug-Assist
designers warn that it is a research prototype, and is not
necessarily expected to scale to complex programs.

We were able to run Bug-Assist on the executable error
traces. Note that these represent a best-case scenario for static
fault localization, because we remove all conditional branches
and loops, which would otherwise require effort to analyze. We
further had to supply the --slice option to remove statements
unrelated to the violated assertions in order for the tool to scale
to our traces. In the gzip case, it reported three candidate bug
locations, two of which were related to the assertion violation,
although neither of them pinpointed the precise bug location.
In the case of sed, Bug-Assist reported two candidate bug
locations, neither of which was related to the actual bug.

Dynamic fault localization. As we discuss in the related
work section, there has been significant work on dynamic fault
localization tools, such as Igor3. These tools require a set of
both passing and failing executions. In our case, we only have
a single failing execution, and hence cannot use these tools.

Hybrid fault diagnostics. F 3 uses a concolic approach to
solve this problem. Given a single failing trace, it uses a
concolic test generator (BugRedux) to generate a set of both
failing and passing tests, which it then uses to do dynamic fault
localization. In some ways, this approach is the mirror image of
ours: whereas we do a static analysis on a single dynamically
generated error trace, they do static analysis to generate many
error traces, which they then dynamically analyze.

They also take a different approach to bug diagnosis:
F 3 generates a ranked list of possible bug locations. The
effectiveness of F 3 on our test cases is reported in [16]. In
the case of the sed fault, F 3 ranked the actual bug location
13 out of 19 candidate locations; for gzip, it ranked the bug
location 3/80.

VII. RELATED WORK

Concolic testing. Our work was inspired by the success
of concolic testing tools such as DART [11], CUTE [28],
KLEE [3], Java PathFinder [31], and Yogi [21]. These tools
combine symbolic analysis (which achieves high coverage)
with concrete execution (which allows the static analysis to
scale). Traditional concolic testing is orthogonal to our work:
it focuses on how to detect the existence of errors, whereas
our concolic fault location is designed to explain the cause of
an error.

Dynamic Fault Localization. Research on automated fault
localization has mostly focused on dynamic techniques (e.g.,

3http://www.st.cs.uni-saarland.de/askigor/downloads/

[9], [23], [26], [35], [37]). These techniques repeatedly execute
the faulty program fragment, comparing failing and passing
runs that are sufficiently similar to identify the defect. Individual
dynamic fault localization approaches differ in the way the
failing and passing executions are obtained, the way they are
compared, and in the information they report to the user. A
detailed survey about the differences between these approaches
can be found in [34]. All of these approaches have in common
that they depend on the availability of high-quality test suites
to compare passing and failing executions. The main difference
to our approach is that we do not need any passing program
executions and hence do not depend on high-quality test suites.

Static fault diagnostics. The best explored static approach is
program slicing [33]. For a survey of static slicing techniques
see [30]. While slicing uses a form of abstraction, it is defined
purely in terms of the program syntax because it only tracks
data flow and control flow dependencies.

Bug-Assist [18], [19] reduces the problem of error local-
ization to the maximal satisfiability problem (MAX-SAT). It
first does bounded model checking to encode the semantics of
a bounded unrolling of a failing program into a Boolean trace
formula. By repeatedly calling a MAX-SAT solver, it finds a
maximal set of statements that does not violate the desired
property so as to report the complement set as potential bug
locations.

Hybrid fault diagnostics. In addition to purely dynamic and
static techniques there also exist hybrid techniques that combine
the two approaches. Notable is the technique described in [12],
which improves dynamic fault localization by analyzing the
unsatisfiable cores of error path formulas. F 3 [16] uses the
concolic tool BugRedux [15] to generate the passing test cases
that are needed for dynamic fault localization.

VIII. CONCLUSIONS

We have presented a novel approach to automated fault
diagnostics and demonstrated that it delivers useful results on
real-world error traces. At the core of this technique is a static
analysis that uses an automated theorem prover to compute
an abstract slice of the faulty program, which explains the
faulty behavior. In this paper, we have shown that this fault
abstraction technique can be scaled to real error traces by
combining it with a dynamic analysis. In particular, we use
dynamic analysis to split the faulty program trace into smaller
subtraces that are amenable to static analysis. Moreover, the
use of dynamic analysis allows us to significantly simplify the
logical encoding of error traces. With the address-sensitive and
address-insensitive encodings presented in this papers, we are
able to avoid expensive memory models and the use of complex
reasoning theories.

We believe that our two encodings of the memory can
provide valuable information for debugging. For example, the
address-insensitive abstract slice could be presented directly to
the programmer, while the address-sensitive slice could be used
to generate breakpoints in the program that partially automate
a more detailed analysis of the error trace with the help of a
debugger.

We conclude that concolic fault abstraction is a very
promising approach. Exploiting information about concrete

http://www.st.cs.uni-saarland.de/askigor/downloads/


memory states eliminates the main bottlenecks and complexities
of purely static approaches.
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