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Abstract
Craig interpolation has been a valuable tool for formal methods
with interesting applications in program analysis and verification.
Modern SMT solvers implement interpolation procedures for the
theories that are most commonly used in these applications. How-
ever, many application-specific theories remain unsupported, which
limits the class of problems to which interpolation-based tech-
niques apply. In this paper, we present a generic framework to build
new interpolation procedures via reduction to existing interpolation
procedures. We consider the case where an application-specific the-
ory can be formalized as an extension of a base theory with addi-
tional symbols and axioms. Our technique uses finite instantiation
of the extension axioms to reduce an interpolation problem in the
theory extension to one in the base theory. We identify a model-
theoretic criterion that allows us to detect the cases where our tech-
nique is complete. We discuss specific theories that are relevant in
program verification and that satisfy this criterion. In particular, we
obtain complete interpolation procedures for theories of arrays and
linked lists. The latter is the first complete interpolation procedure
for a theory that supports reasoning about complex shape properties
of heap-allocated data structures. We have implemented this proce-
dure in a prototype on top of existing SMT solvers and used it to
automatically infer loop invariants of list-manipulating programs.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Mean-
ing of Programs]: Specifying and Verifying and Reasoning about
Programs; I.2.3 [Artificial Intelligence]: Deduction and Theorem
Proving

General Terms Algorithms, Theory, Reliability, Verification

Keywords Craig Interpolants, Decision Procedures, Satisfiability
Module Theories, Program Analysis, Data Structures

1. Introduction
In his pioneering work [37], McMillan recognized the usefulness
of Craig interpolants [13] for the automated construction of ab-
stractions of systems. Since then, interpolation-based algorithms
have been developed for a number of problems in program anal-
ysis and verification [1, 15, 17, 24, 25, 31, 34, 39]. An impor-
tant requirement for most of these algorithms is that interpolants
are ground (i.e., quantifier-free). This is because the computed in-
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terpolants again serve as input to decision procedures that only
support quantifier-free formulas. Modern SMT solvers implement
ground interpolation procedures for the theories that are most com-
monly used in program verification. This includes theories such as
linear arithmetic [8, 9, 23, 38], the theory of uninterpreted func-
tion symbols with equality [19, 38, 50], and combinations of such
theories [11, 21, 38, 50]. However, many application-specific the-
ories remain unsupported. This limits the class of problems and
programs to which interpolation-based algorithms can be applied.

In this paper, we present a generic framework that enables
the modular construction of ground interpolation procedures for
application-specific theories via a reduction to existing interpola-
tion procedures. We focus on cases where an application-specific
theory can be formalized as an extension of a base theory with addi-
tional symbols and universally quantified axioms. As an example of
such a theory extension, consider the theory of arrays over integers.
Here, the base theory is the theory of linear integer arithmetic, the
extension symbols are the array selection and update functions, and
the extension axioms are McCarthy’s read over write axioms [36],
which give meaning to the extension symbols. Theory extensions
often appear in practice, e.g., as part of the background theories of
verification systems such as BOOGIE [3] and WHY [18], and the
tools that are built on top of these systems.

Our starting point is the approach to instantiation-based inter-
polation for local theory extension presented in [47]. Local theory
extensions [46] are extensions for which satisfiability of ground
formulas can be decided via a reduction to satisfiability in the base
theory. The reduction works by instantiating the extension axioms
only with terms that already appear in the input formula. In [47],
this instantiation-based reduction approach is applied to the prob-
lem of computing ground interpolants in local theory extensions.
This technique is used, e.g., in the interpolation procedures un-
derlying the software model checker ARMC [44] and the interpo-
lating prover CSIsat [6]. In [47], the instantiation-based interpola-
tion approach was shown to be complete for a syntactically defined
class of local theory extensions. Unfortunately, many interesting
application-specific theories do not fall into this class.

Instead of imposing syntactic restrictions, we identify a stronger
condition on the theory extension than just locality to ensure com-
pleteness of instantiation-based interpolation. We then relate this
condition to a semantic property of the models of the theory exten-
sion. We refer to this property as the partial amalgamation prop-
erty. This property allows us to systematically construct theory
extensions for which the instantiation-based approach produces a
complete ground interpolation procedure. The resulting framework
then applies to a more general class of theory extensions than [47].

We discuss several non-trivial examples of theories that are rel-
evant in program verification and to which our framework applies.
In particular, we consider the theory of arrays with difference func-
tion [10]. Using our approach we obtain an alternative ground inter-
polation procedure for this theory. Unlike the procedure presented
in [10], our procedure does not require a dedicated decision proce-



dure for this specific array theory. Instead, it reduces the interpola-
tion problem to existing interpolation procedures for uninterpreted
functions and linear arithmetic.

The second example that we discuss in detail is a variation of
Nelson’s theory of linked lists with reachability predicates [41],
which was studied more recently in [35]. We show that this theory
does not admit ground interpolation, unless it is extended (among
others) with an additional join function. Given two heap nodes, the
join function returns the join point of the two list segments that
start in the given nodes (if such a join point exists). Incidentally,
the join function is not just of theoretical interest, but is also useful
to express properties about the heap that are important for verifying
frame conditions. We prove that our extended theory of linked lists
with reachability has partial amalgamation. Using our approach we
then obtain the first ground interpolation procedure for a theory
that supports reasoning about complex shape properties of heap-
allocated data structures. This interpolation procedure has promis-
ing applications in CEGAR-based shape analysis [5, 42] and may
also provide a new perspective on the construction of shape do-
mains in parametric shape analysis [45].

To show the feasibility of our approach, we have implemented a
prototype of our interpolation framework and instantiated it for the
theory of linked lists presented in this paper. We have successfully
applied the resulting interpolation procedure to automatically infer
loop invariants for the verification of list-manipulating programs.
Summary. The main contributions of this paper can be summa-
rized as follows:

• We present a new framework to modularly construct interpola-
tion procedures for application-specific theories.
• We present a model-theoretic criterion that allows us to identify

the theories for which our interpolation framework is complete.
• We present examples of theories that are important for program

verification and to which our framework applies. In particular,
we present the first decidable theory for reasoning about com-
plex shape properties of heap-allocated data structures that ad-
mits ground interpolation.
• We report on our experience with a prototype implementation of

our framework, which we have successfully used to infer loop
invariants of simple list-manipulating programs.

An extended version of this paper including proofs of key lemmas
and theorems is available as a technical report [48].

2. Motivation and Overview
We motivate our approach using the concrete application of inter-
polation to the problem of inferring invariants for program verifica-
tion. Consider the reverse function given in Figure 1. This function
takes a pointer x to a singly-linked list as input, reverses the list,
and then returns a pointer to the head of the reversed list.

Our goal is to verify that the reverse function preserves acyclic-
ity, i.e., if the input list is acyclic, then so is the output list. We can
express acyclicity of list x by saying that null is reachable from x
by following the n pointer fields in the heap. Using the notation
that we formally introduce in Section 5.2, this is denoted by the
reachability predicate x

n−→ null. Hence, the property we want to
verify is that if the pre-condition x

n−→ null holds at the entry point
of function reverse, then the same formula holds again at the return
point.

The graph in Figure 1 depicts an intermediate state of the heap
that is observed during the execution of reverse when the function
is applied to an acyclic list of length six. This state is observed at
the entry point of the while loop, after the first three iterations of the
loop. An appropriate inductive loop invariant for a Hoare proof of

typedef struct Node {
struct node∗ n;
int data;

} ∗List ;
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null
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n n
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n n

n

List reverse ( List x) {
List prev , curr , succ;
curr = x;
prev = null ;
while (curr != null ) {

succ = curr.n;
curr .n = prev;
prev = curr;
curr = succ;
}
x = prev;
return x;
}

Figure 1. C code for in-place reversal of a linked list. The graph
depicts a reachable program state at the entry point of the while
loop in function reverse.

our verification goal must capture the situation depicted in Figure 1,
but abstract from the concrete length of the list segments. That is,
the loop invariant must express that the list segments pointed to
by prev and curr are acyclic (in fact, only the former is strictly
necessary for the proof), and that the two list segments are disjoint.
An appropriate inductive loop invariant is given by the following
formula:

prev
n−→ null ∧ curr

n−→ null ∧ (prev
n
gcurr) = null (1)

The term (prev
n
g curr) denotes the join point of the list segments

starting from prev and curr, i.e., (prev
n
gcurr) is the first node that

is reachable from both prev and curr by following n pointer fields
in the heap, unless such a node does not exist, in which case its
value is prev. The formula (prev

n
g curr) = null, thus, implies the

disjointness of the two list segments. Note that this formula cannot
be expressed in terms of the reachability predicate, unless we allow
universal quantification over heap nodes.

We next describe how to compute inductive loop invariants such
as (1) using our instantiation-based interpolation approach.

2.1 Interpolation-Based Program Verification
Given an unsatisfiable conjunction of formulas A ∧ B, an inter-
polant for A ∧ B is a formula I such that I is implied by A, the
conjunction I∧B is unsatisfiable, and I only speaks about common
symbols of A and B. A popular approach to interpolation-based
verification uses bounded model checking to generate infeasible
error traces of the analyzed program. These infeasible error traces
are then translated into unsatisfiable formulas A∧B, where A and
B encode a partition of the trace into a prefix and suffix trace. An
interpolant I for A ∧ B then describes a set of program states that
(1) includes all states that are reachable by executing the prefix of
the trace and (2) only includes states from which no feasible exe-
cution of the suffix is possible. The interpolant I is then used as a
candidate invariant to refine the search for additional infeasible er-
ror traces. This process is continued until a fixed point is reached,
i.e., until an inductive invariant has been computed that proves the
program correct. We illustrated this approach through an example.

The left-hand side of Figure 2 shows an error trace of function
reverse that is obtained by unrolling the while loop three times. The
first and last assume statements correspond to the pre-condition,
respectively, the negated post-condition of reverse. This error trace
is infeasible, i.e., there is no execution that reaches the end of the
trace (note that a failing assume statement blocks an execution).
The right-hand side of Figure 2 shows an encoding of this error
trace into a first-order formula using static single assignments. Note
that the symbols • •−→ •, •.•, and •[• := •] are interpreted. That



assume x
n−→ null;

curr = x;
prev = null;
assume curr != null;
succ = curr.n;
curr.n = prev;
prev = curr;
curr = succ;

9>>>>>>>>>=>>>>>>>>>;
A

8>>>>>>>>><>>>>>>>>>:

x0
n0−→ null ∧

curr0 = x0 ∧
prev0 = null ∧
curr0 6= null ∧
succ1 = curr0.n0 ∧
n1 = n0[curr0 := prev0] ∧
prev1 = curr0 ∧
curr1 = succ1 ∧

assume curr != null;
succ = curr.n;
curr.n = prev;
prev = curr;
curr = succ;
assume curr != null;
succ = curr.n;
curr.n = prev;
prev = curr;
curr = succ;
assume curr==null;
x = prev;

assume !(x
n−→ null);

9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;

B

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

curr1 6= null ∧
succ2 = curr1.n1 ∧
n2 = n1[curr1 := prev1] ∧
prev2 = curr1 ∧
curr2 = succ2 ∧
curr2 6= null ∧
succ3 = curr2.n2 ∧
n3 = n2[curr2 := prev2] ∧
prev3 = curr2 ∧
curr3 = succ3 ∧
curr3 = null ∧
x1 = prev3 ∧
¬(x1

n3−→ null)

Figure 2. Spurious error trace of function reverse and its encoding
as a trace formula

is, they are given meaning by a specific first-order theory, here
the theory of linked lists with reachability that we introduce in
Section 5.2. The symbol • •−→ • is interpreted as described above.
The symbol •.• denotes field dereference and the symbol •[• := •]
field update. The remaining symbols such as curr0 and n1 are
uninterpreted. We call this formula the trace formula of the error
trace because the valuations of uninterpreted symbols that make
the trace formula true exactly correspond to the feasible executions
of the trace. Since the error trace is infeasible, its trace formula is
unsatisfiable. We can now split the trace formula into two parts A
and B, say, where A corresponds to the prefix of the trace up to the
end of the first iteration of the while loop andB to the remainder of
the trace. This is depicted in Figure 2. Since A∧B is unsatisfiable,
we can interpolate the two formulas. A possible ground interpolant
for this choice of A and B is:

prev1
n1−→ null ∧ curr1

n1−→ null ∧ prev1

n1
gcurr1 = null (2)

Note that this is a valid interpolant for A and B. In particular, it
only speaks about uninterpreted symbols that are common to both
A and B. Further note that (modulo renaming of variables) for-
mula (2) exactly corresponds to the inductive loop invariant (1) of
reverse. Formula (2) is also the exact interpolant that the prototype
implementation of our interpolation framework produces for this
particular conjunction A ∧ B. We next describe through an exam-
ple how our interpolation framework works in detail.

2.2 Instantiation-Based Interpolation through an Example
Our interpolation framework is parameterized by a theory exten-
sion. This theory extension consists of the base theory, for which
we assume that a ground interpolation procedure exists, and the
symbols and axioms that extend the base theory. In our example,
we consider the theory of linked lists with reachability, where the
base theory is the empty theory. That is, the base theory only sup-
ports uninterpreted constants and equality. The extension symbols
are the symbols •

•
g •, •.•, and •[• := •], which we described

earlier, as well as the constrained reachability predicate • •/•−−→ •.
Intuitively, a

f/c−−→ b means that b is reachable via an f -path from

a that does not go through c. In particular, a
f−→ b is simply a

shorthand for a
f/b−−→ b. The meaning of the extension symbols is

given by the extension axioms shown in Figure 6 of Section 5.2.
All free variables appearing in these axioms are implicitly univer-
sally quantified. Note in particular how the constrained reachability
predicate is used to define reachability with respect to an updated
field f [u := v] in terms of reachability with respect to field f . In
the following, we denote this set of extension axioms by K.

Instantiation-based interpolation reduces the computation of in-
terpolants in the theory extension to the problem of computing in-
terpolants in the base theory, thus, effectively building new interpo-
lation procedures by reusing existing ones. The reduction works by
turning the interpreted extension symbols into uninterpreted ones.
This is accomplished by generating finitely many ground instances
K[T ] of the extension axioms K for a finite set of terms T that is
computed from the input formula A ∧ B. The set of terms T is
chosen such that the formulaK[T ]∧A∧B is already unsatisfiable
in the base theory. If in addition, the set K[T ] does not contain in-
stances that mix non-shared symbols of A and B, then K[T ] can
be divided into K[T ] = K[TA] ∪ K[TB ] where K[TA] contains
only symbols of A and K[TB ] only symbols of B. That is, we ob-
tain an instance A0 ∧ B0 of an interpolation problem for the base
theory (modulo uninterpreted functions) where A0 = K[TA] ∧ A
and B0 = K[TB ] ∧ B. We then compute a ground interpolant I0
for A0 ∧ B0 using the interpolation procedure for the base theory.
Finally, from I0 we reconstruct a ground interpolant I for A ∧B.

We illustrate this approach by computing an interpolant for the
following formula A ∧B:

c
f−→ a ∧ a.f = c| {z }

A

∧ c f−→ b ∧ ¬b f−→ c| {z }
B

(3)

Note that this conjunction is unsatisfiable in the theory of linked
lists with reachability because A implies that c lies on an f cycle,
while B implies that this is not the case.

From the formula A ∧ B we compute the sets of terms TA and
TB that we use to instantiate the extension axioms. In our example,
we use TA = {a, c, c.f} and TB = {b, c, c.f}. Figure 3 then
shows the resulting sets of ground clauses A0 = A ∪ K[TA] and
B0 = B ∪ K[TB ]. Note that we omit all instances of extension
axioms that are not needed to prove unsatisfiability of A0 ∧B0.

To see why the conjunction A0 ∧ B0 is unsatisfiable, suppose
that a = c. Then clause 2 in A0 implies c.f = c. If on the other
hand a 6= c, then clauses 4 and 2 imply a

f−→ c. Hence together with

8 and 6 this implies a
f/a−−→ c.f ∨ c.f f−→ a. If c.f

f−→ a, then 3

implies c.f
f−→ c. If a

f/a−−→ c.f then from 7 follows again c.f
f−→ c

because otherwise clause 5 gives a = c, which contradicts the
assumption. Thus,A0 implies the formula I ≡ c = f.c∨ c.f f−→ c.
Using similar reasoning we can show that I ∧ B0 is unsatisfiable.
Since I only speaks about common symbols of A0 and B0, it is an
interpolant for A0 ∧B0 and hence also for A ∧B.

Note that in the above derivation of the interpolant I , all func-
tion and predicate symbols in A0 and B0 where treated as uninter-
preted symbols, i.e., we can compute I by applying an interpolation
procedure for the theory of uninterpreted functions with equality to
the formula A0 ∧ B0. We thus reduced the problem of computing
ground interpolants in the theory of linked lists with reachability to
computing ground interpolants in the combination of the base the-
ory (which is empty in our case) with the theory of uninterpreted
functions and equality.

The crux of this instantiation-based reduction approach is
whether it is indeed always possible to compute sets of terms TA
and TB fromA∧B such that the reduced formulaA0∧B0 is an in-
terpolation problem for the base theory. That is, to find TA and TB



A0 B0z }| {
1 : c

f−→ a
2 : a.f = c

3 : c.f
f−→ a ∧ a f−→ c⇒

c.f
f−→ c

4 : a
f/c−−→ a.f ∨ a = c

5 : a
f/a−−→ c⇒ a = c

6 : c
f/a−−→ c.f ∨ c = a

7 : a
f−→ c ∧ a f/a−−→ c.f⇒
a
f/c−−→ c.f ∧ c.f f−→ c ∨

a
f/a−−→ c ∧ c f/a−−→ c.f

8 : c
f/a−−→ c.f ∧ c f−→ a⇒
a
f/a−−→ c.f ∨ c.f f−→ a

9 : . . .

z }| {
1 : c

f−→ b

2 : ¬b f−→ c

3 : c
f/b−−→ c.f ∧ c.f f/b−−→ c ∧
c.f

f−→ b⇒ c
f/c−−→ c.f

4 : c.f
f−→ c ∧ c f−→ b⇒

c.f
f−→ b

5 : c
f/c−−→ f.c⇒ c = c.f

6 : c
f/b−−→ f.c ∨ c = b

7 : c.f = c ∧ c f−→ b⇒ c = b

8 : c.f
f−→ c ∧ c.f f−→ b⇒

c.f
f/c−−→ b ∧ b f−→ c ∨

c.f
f/b−−→ c ∧ c f−→ b

9 : . . .

Figure 3. Interpolation problem A0 ∧ B0 that is obtained from
(3) after instantiation of the extension axioms. All function and
predicate symbols are uninterpreted.

such that (1) A0 ∧ B0 is unsatisfiable and (2) A0, B0 do not share
terms that are not already shared by A,B. It is here where our se-
mantic completeness criterion of partial amalgamation comes into
play. It allows us to systematically construct these sets of terms.

3. Preliminaries
In the following, we define the syntax and semantics of formulas.
We further recall the notions of partial structures and (Ψ-)local
theory extensions as defined in [28, 46]. Finally, we define the
problem that interpolation problems we are considering.
Sorted first-order logic. We present our problem in sorted first-
order logic with equality. A signature Σ is a tuple (S,Ω), where
S is a countable set of sorts and Ω is a countable set of function
symbols f with associated arity n ≥ 0 and associated sort s1 ×
· · · × sn → s0 with si ∈ S for all i ≤ n. Function symbols of
arity 0 are called constant symbols. We assume that all signatures
contain a dedicated sort bool ∈ S and dedicated equality symbols
=s ∈ Ω of sort s×s→ bool for all sorts s ∈ S \{bool}. Note that
we generally treat predicate symbols of sort s1, . . . , sn as function
symbols of sort s1 × . . . × sn → bool and we typically drop
sort annotations from equality symbols. Terms are built as usual
from the function symbols in Ω and (sorted) variables taken from a
countably infinite set X that is disjoint from Ω. A term t is said to
be ground, if no variable appears in t.

A Σ-atom A is a Σ-term of sort bool. We use infix notation for
atoms built from the equality symbol. A Σ-formula F is defined via
structural recursion as either one ofA, ¬F1, F1∧F2, or ∀x : s.F1,
where A is a Σ-atom, F1 and F2 are Σ-formulas, and x ∈ X is
a variable of sort s ∈ S. We typically omit sort annotations from
quantifiers if this causes no confusion. We use syntactic sugar for
Boolean constants (>, ⊥), disjunctions (F1 ∨ F2), implications
(F1⇒F2), and existential quantification (∃x.F1).
Total and partial structures. Given a signature Σ = (S,Ω), a
partial Σ-structure M is a function that maps each sort s ∈ S to
a non-empty set M(s) and each function symbol f ∈ Ω of sort
s1 × · · · × sn → s0 to a partial function M(f) : M(s1) ×
· · · × M(sn) ⇀ M(s0). We denote by [M ] the support of M

which is the non-disjoint union of the interpretation of all sorts in
M . We assume that all partial structures interpret the sort bool
by the two-element set of Booleans {0, 1}. We further assume
that all structures M interpret each symbol =s by the equality
relation on M(s). A partial structure M is called total structure
or simply structure if it interprets all function symbols by total
functions. For a Σ-structure M where Σ extends a signature Σ0

with additional sorts and function symbols, we write M |Σ0 for the
Σ0-structure obtained by restricting M to Σ0. Given partial Σ-
structures M and N , a weak embedding of M into N is a total
injective function h : [M ] → [N ] such that for all f ∈ Σ, and
a1, . . . , an ∈ M , if M(f) is defined on (a1, . . . , an) then N(f)
is defined on (h(a1), . . . , h(an)) and h(M(f)(a1, . . . , an)) =
N(f)(h(a1), . . . , h(an)). If h is a weak embedding between M
andN , then we denote this by h : M → N . We say thatM weakly
embeds into N if a weak embedding of M into N exists. A weak
embedding between total structures is simply called embedding. If
M weakly embeds into N and [M ] ⊆ [N ], we call M a (partial)
substructure ofN , which (abusing notation) is denoted byM ⊆ N .

Given a total structure M and a variable assignment β : X →
M , the evaluation tM,β of a term t in M,β is defined as usual.
For the evaluation of a ground term t in M we write just M(t). A
quantified variable of sort s ranges over all elements ofM(s). From
the interpretation of terms the notions of satisfiability, validity, and
entailment of atoms, formulas, clauses, and sets of clauses in total
structures are derived as usual. In particular, we use the standard
interpretation of propositional connectives in classical logic. We
write M,β |= F if M satisfies F under β where F is a formula,
a clause, or a set of clauses. We write M |= F if F is valid in
M . In this case we also call M a model of F . The interpretation
tM,β of a term t in a partial structure M is as for total structures,
except that if t = f(t1, . . . , tn) for f ∈ Ω then tM,β is undefined if
either tiM,β is undefined for some i, or (t1M,β , . . . , tnM,β) is not
in the domain of M(f). We say that a partial structure M weakly
satisfies a literal L under β, written M,β |=w L, if (i) L is an
atom A and either AM,β = 1 or AM,β is undefined, or (ii) L is
a negated atom ¬A and either AM,β = 0 or AM,β is undefined.
The notion of weak satisfiability is extended to (sets of) clauses as
for total structures. A clause C (respectively, a set of clauses) is
weakly valid in a partial structure M if M weakly satisfies C for
all assignments β. We then call M a weak partial model of C.
Theories and theory extensions. A theory T over signature Σ is
simply a set of Σ-formulas. We consider theories T defined as a set
of Σ-formulas that are consequences of a given set of clauses K.
We call K the axioms of the theory T and we often identify K and
T . For a theory T and formulas (clauses, sets of clauses) F and G,
we use F |=T G as a short-hand for T ∪ F |= G.

Let Σ0 = (S0,Ω0) be a signature and assume that signature
Σ1 = (S0∪Se,Ω0∪Ωe) extends Σ0 by new sorts Se and function
symbols Ωe. We call the elements of Ωe extension symbols and
terms starting with extension symbols extension terms. A theory T1

over Σ1 is an extension of a theory T0 over Σ0, if T1 is obtained
from T0 by adding a set of (universally quantified) Σ1-clauses K.
Ψ-local theory extensions. The following definition captures one
specific variant of (Ψ-)local theory extensions that is discussed
together with other variants of this notion in [46] and [28].

Let T be a theory over signature Σ0 = (S0,Ω0) and T1 =
T0 ∪ K a theory extension of T0 with finite K and signature Σ1 =
(S0 ∪ Se,Ω0 ∪ Ωe). In the following, when we refer to a set of
ground clauses G, we assume they are over the signature Σc1 which
extends Σ1 with a set of new constant symbols Ωc. For a set of
clauses K, we denote by st(K) the set of all ground subterms
that appear in K. An embedding closure for T1 is a function Ψ
associating with a set of (universally quantified) clauses K and
a finite set of ground terms T a finite set Ψ(T ) of ground terms



such that (i) all ground subterms in K and T are in Ψ(T ); (ii) Ψ
is monotone, i.e., for all sets of ground terms T, T ′ if T ⊆ T ′

then Ψ(T ) ⊆ Ψ(T ′); (iii) Ψ is idempotent, i.e., for all sets of
ground terms T , Ψ(Ψ(T )) ⊆ Ψ(T ). (iv) Ψ is compatible with
any map h between constants, i.e., Ψ(h(T )) = h(Ψ(T )) where h
is homomorphically extended to terms. For a set of ground clauses
G, we denote by Ψ(G) the set Ψ(st(G)). Let K[Ψ(G)] be the set
of instances ofK in which all extension terms are in Ψ(G). We say
that T1 = T0 ∪ K is a Ψ-local theory extension if there exists an
embedding closure Ψ such that for every finite set of ground clauses
G, T1 ∪ G |= ⊥ iff T0 ∪ K[Ψ(G)] ∪ G |= ⊥. Theory extension
T1 = T0∪K is a local theory extension, if it is a Ψ-local extension,
where Ψ is defined as Ψ(T ) = st(K) ∪ st(T ).

Craig interpolation modulo theories. We use a notion of Craig
interpolation modulo theories where interpreted symbols are con-
sidered to be shared between formulas. Let Σ be a signature and T
a Σ-theory. Let further Σc be the signature Σ extended with fresh
constant symbols Ωc. We say that a Σc-term t is shared between
two sets of Σc-terms TA and TB , if all constants from Ωc in t ap-
pear in both TA and TB , i.e., st(t)∩Ωc ⊆ st(TA)∩st(TB). We say
that t is TA-pure if st(t)∩Ωc ⊆ st(TA), respectively, t is TB-pure
if st(t)∩Ωc ⊆ st(TB). We extend these notions from sets of terms
TA and TB to clauses and sets of clauses, as expected.

Given a conjunction A ∧ B of Σc-formulas A,B that is unsat-
isfiable in T , a Craig interpolant for A∧B is a Σc-formula I such
that: (a) I is a consequence ofA in T :A |=T I , (b) the conjunction
of I and B is unsatisfiable in T : I ∧B |=T ⊥, and (c) all terms in
st(I) are shared between A and B. We say that T admits ground
interpolation if for all finite sets of Σc-ground clauses A and B
with A ∪B |=T ⊥, there exists a finite set of Σc-ground clauses I
that is a Craig interpolant for A ∧B.

4. Instantiation-Based Interpolation
We now present our framework for instantiation-based interpola-
tion. In the following, when we refer to a theory extension T1 =
T0∪K, we denote by Σ0 the signature of T0 and by Σ1 = Σ0∪Σe
the signature of T1, where Σe = (Se,Ωe) are the extension sym-
bols and sorts.

In the case of local theories, the instantiation-based reduction
approach to interpolation works as follows [47]. Suppose we are
given sets of ground clauses A and B over Σ1, whose conjunction
is unsatisfiable in T1. The goal is to compute a ground interpolant I
forA∧B. Locality tells us that we can reduce the problem of check-
ing (un)satisfiability of A ∪ B in T1 to checking (un)satisfiability
ofK[A∪B]∪A∪B in T0. Here,K[A∪B] is the (finite) set of in-
stances of clauses in K that are obtained by replacing the free vari-
ables appearing below extension terms in K with ground subterms
appearing in K ∪ A ∪ B, such that all resulting ground extension
terms inK[A∪B] already appear inA∪B. The instancesK[A∪B]
can be partitioned into A-pure instances KA (obtained by instanti-
ating clauses in K with terms from A only), B-pure instances KB
(obtained by instantiating clauses in K with terms from B only),
and mixed instances KC (obtained by instantiating clauses in K
with terms from both A and B). If it is possible to find a finite set
of non-mixed terms that separates the mixed instancesKC into sets
ofA-pure instancesKC,A andB-pure instancesKC,B , then we ob-
tain an interpolation problem for the base theory A0 ∪B0 |=T0 ⊥.
Here, A0 and B0 are the results of applying Ackermann’s expan-
sion to eliminate the extension symbols from the sets of clauses
KA ∪ KC,A ∪ A, respectively, KB ∪ KC,B ∪ B. From a ground
interpolant I0 forA0∧B0 one can then easily reconstruct a ground
interpolant I for A ∧B.

The question is whether it is indeed possible to separate the in-
stances KC into A-pure and B-pure parts. The result in [47] iden-

proc Interpolate

input
T1 = T0 ∪ K : theory extension
Interpolate0 : ground interpolation procedure for T0 ∪ TEUF

W : amalgamation closure for T1

A,B : sets of ground Σc1-clauses with A ∪B |=T1 ⊥
begin
A0 := A ∪ K[W (A,B)]

B0 := B ∪ K[W (B,A)]

I := Interpolate0(A0, B0)

return I
end

Figure 4. Generic instantiation-based interpolation procedure.

tifies sufficient conditions on the theory extension to ensure this.
Unfortunately, these restrictions are quite severe. In particular, the
axioms in K are required to be Horn clauses of a specific form,
which rules out many interesting applications. Instead of impos-
ing such syntactic restrictions on the theory, we first identify a
stronger completeness condition on the theory extension than just
(Ψ-)locality and then relate this condition to a semantic condition
on the models of the theory. By combining these two results, we
obtain a framework of complete instantiation-based ground inter-
polation procedures for a more general class of theory extensions.

4.1 W -Separable Theories
To formalize the set of terms that is required to separate the
mixed instances of A and B, we introduce the notion of an
amalgamation closure. An amalgamation closure for a theory
extension T1 = T0 ∪ K is a function W associating with fi-
nite sets of ground terms TA and TB , a finite set W (TA, TB)
of ground terms such that (i) all ground subterms in K and TA
are in W (TA, TB); (ii) W is monotone, i.e., for all TA ⊆ T ′A,
TB ⊆ T ′B , W (TA, TB) ⊆ W (T ′A, T

′
B); (iii) W is a clo-

sure, i.e., W (W (TA, TB),W (TB , TA)) ⊆ W (TA, TB); (iv)
W is compatible with any map h between constants satisfying
h(c1) 6= h(c2), for all constants c1 ∈ st(TA), c2 ∈ st(TB) that
are not shared between TA and TB , i.e., for any such h we require
W (h(TA), h(TB)) = h(W (TA, TB)); and (v) W (TA, TB) only
contains TA-pure terms. For sets of ground clauses A,B we write
W (A,B) as a shorthand for W (st(A), st(B)). For the remainder
of this section W always refers to an amalgamation closure.

We next identify the cases where the instances of extension
axioms can be separated.

Definition 1. We say that a theory extension T1 = T0 ∪ K is W -
separable if for all sets of ground clausesA andB, T1∪A∪B |= ⊥
iff T0 ∪ K[W (A,B)] ∪A ∪ K[W (B,A)] ∪B |= ⊥.

From this definition we directly obtain the following theorem.

Theorem 2. If T1 = T0 ∪ K is W -separable, then it is Ψ-local
where Ψ is defined by Ψ(T ) = W (T, T ), for all sets of ground
terms T .

Our generic instantiation-based interpolation procedure is de-
scribed in Figure 4. Procedure Interpolate reduces the given inter-
polation problem A ∧ B for the theory extension T1 = T0 ∪ K,
to an interpolation problem A0 ∧ B0 in T0 ∪ TEUF, where TEUF is
the theory of uninterpreted function symbols with equality. ForW -
separable theory extensions, procedure Interpolate is sound and
complete, provided that a complete ground interpolation procedure
Interpolate0 for T0 ∪ TEUF exists:

Theorem 3. Let T1 = T0 ∪ K be a theory extension such that:



1. T0 ∪ TEUF has a ground interpolation procedure Interpolate0,
2. all free variables in K appear below extension symbols, and
3. T1 ⊇ T0 is W -separable.

Then Interpolate is a ground interpolation procedure for T1.

4.2 Identifying W -Separable Theories
We now present our semantic criterion to identify W -separable
theories. Let us begin by recalling the model theoretic notion
of amalgamation [32]. An amalgam for a theory T is a tuple
(MA,MB ,MC) where MA,MB ,MC are models of T with
MA ⊇ MC ⊆ MB and [MC ] = [MA] ∩ [MB ]. Theory T has the
amalgamation property if for every amalgam (MA,MB ,MC) of
T , there exists a model MD of T , and embeddings hA : MA →
MD and hB : MB → MD such that hA|[MC ] = hB |[MC ].
If in addition hA[MA] ∩ hB [MB ] = hA[MC ] = hB [MC ]
where for any sets X ⊆ Y and function f with domain Y ,
f X = { f(x) | x ∈ X }, then T is said to have the strong amal-
gamation property. Note that T has the strong amalgamation prop-
erty iff for all modelsMA,MB ,MC of T withMA ⊇MC ⊆MB

and [MC ] = [MA] ∩ [MB ] there exists a model MD of T with
MA ⊆MD ⊇MB .

It is well-known that amalgamation and ground interpolation
are strongly related:

Theorem 4 ([2]). A theory T has ground interpolation iff T has
the amalgamation property.

Theorem 4 provides an effective tool to check whether a given
theory admits ground interpolation. Unfortunately, the amalgama-
tion property only tells us that ground interpolants exist, not how
to compute them (other than by brute-force enumeration). To rem-
edy this fact, we define a related notion of partial amalgamation
that refers to partial instead of total models and weak embeddings
instead of embeddings. This notion allows us to characterize W -
separable theories. Together with Theorem 3, we then obtain a pow-
erful model theoretic criterion that does not just allow us to prove
the existence of ground interpolants, but also tells us how to gener-
ically construct the accompanying interpolation procedure by ap-
plying Theorem 3.

For a weak partial model M of a theory extension T1 =
T0 ∪ K, we denote by T (Ωe,M) the set of terms T (M) =
{ f(a1, . . . , an) | ai ∈ [M ], f ∈ Ωe,M(f)(a1, . . . , an) defined }
where we treat the elements of the support [M ] as constant sym-
bols that are interpreted by themselves. Further, we denote by
PMod(T1) the set of all weak partial Σ1-models M of T1 in which
all symbols in Σ0 are totally defined and T (M) is finite. Let W
be an amalgamation closure for theory extension T1 = T0 ∪ K. A
partial W -amalgam for T1 = T0 ∪ K is a tuple (MA,MB ,MC)
where (i)MA,MB ,MC ∈ PMod(T1); (ii)MC is a substructure of
both MA and MB ; (iii) [MC ] = [MA] ∩ [MB ]; (vi) both T (MA)
and T (MB) are closed under W , i.e., W (T (MA), T (MB)) ⊆
T (MA) and W (T (MB), T (MA)) ⊆ T (MB); and (v) T (MA) ∩
T (MB) ⊆ T (MC).

Definition 5. A theory extension T1 = T0 ∪ K is said to have the
partial amalgamation property with respect to W if for all partial
W -amalgams (MA,MB ,MC) there exists a modelMD of T1, and
weak embeddings hA : MA → MD and hB : MB → MD such
that hA|[MC ] = hB |[MC ].

To simplify matters, we assume that the extension axioms K
are in a specific normal form: a clause C is called Σ1-flat if no
term that occurs in C below a predicate symbol or the symbol =
contains nested function symbols. A clause C is called Σ1-linear if
(i) whenever a variable occurs in two non-variable terms in C that
do not start with a predicate or the equality symbol, the two terms
are identical, and if (ii) no such term contains two occurrences of

the same variable. Note that every set of extension axioms can be
syntactically transformed into one that is Σ1-flat and Σ1-linear.

Intuitively, a weak partial model M of A0 ∧ B0 corresponds
to a partial W -amalgam (MA,MB ,MC) where MA is obtained
from M by restricting M to the terms in A0, MB is obtained by
restrictingM to the terms inB0, andMC is obtained by restricting
M to the common terms of A0 and B0. Partial amalgamation then
tells us that we can always obtain a total model of A0 ∧ B0 from
M . This is what the following theorem says:

Theorem 6. Let T1 = T0 ∪ K be a theory extension with K Σ1-
linear and Σ1-flat. If T1 has the partial amalgamation property
with respect to W , then T1 is W -separable.

Finally, in order to apply Theorem 3, we need to be able to iden-
tify the cases where a ground interpolation procedure Interpolate0

for the theory T0 ∪ TEUF exists. One possibility is that we view
T0 ∪ TEUF as the disjoint combination of the theories T0 and TEUF.
In this case, we require that T0 is decidable, has the strong amalga-
mation property, and is stably infinite. Since TEUF satisfies the same
properties, a ground interpolation procedure for the disjoint com-
bination of the theories T0 and TEUF exists, as follows from [11,
Corollary 1].

Corollary 7. Let T1 = T0 ∪ K be a theory extension such that:

1. satisfiability of sets of ground clauses is decidable for T0,
2. T0 is stably infinite
3. T0 has the strong amalgamation property,
4. all free variables in K appear below extension symbols, and
5. T1 ⊇ T0 is W -separable.

Then Interpolate is a ground interpolation procedure for T1 where
Interpolate0 is the ground interpolation procedure for the disjoint
theory combination T0 ∪ TEUF.

Alternatively, we can view T0 ∪ TEUF as a local extension of T0

and use results from [47] to obtain the procedure Interpolate0. This
yields different requirements on the base theory than the ones stated
in Corollary 7. See the technical report [48] for further details.

5. Examples
Our framework of complete instantiation-based interpolation ap-
plies to many known local theory extensions, including those de-
scribed in [47]. In the following, we discuss two non-trivial exam-
ples that go beyond the theories considered in [47].

5.1 Theory of Arrays with Difference Function
Our first example is the theory of arrays with difference function
that has been recently investigated in [10]. We define this theory of
arrays as a theory extension Tarr = T0 ∪ Karr that is parametric in
its base theory T0. For this purpose, we assume that the base theory
T0 is over signature Σ0 = (S0,Ω0) with sorts index and elem in
S0, and that T0 satisfies the assumptions of Corollary 7. Examples
of appropriate base theories are the empty theory (in which case
Ω0 contains only equality predicates), the theory of uninterpreted
function symbols with equality, and the theory of linear arithmetic,
interpreting the sort index as integers.

The theory Tarr extends T0 with a fresh sort array and extension
symbols rd : array × index → elem, wr : array × index ×
elem → array, and diff : array × array → index. The function
symbols rd and wr stand for the usual array selection and update
function whose meaning is given by McCarthy’s read over write
axioms [36]:

rd(wr(a, i, e), i) = e, (4)
i 6= j⇒ rd(wr(a, i, e), j) = rd(a, j) (5)



The function diff is defined as follows: for any two distinct arrays
a and b, the term diff (a, b) denotes an index at which a and b differ.
This is formalized by the following axiom:

a 6= b⇒ rd(a, diff (a, b)) 6= rd(b, diff (a, b)) (6)

Note that this axiom is obtained by skolemizing the extensionality
axiom for arrays

∀ab. a 6= b⇒∃i. rd(a, i) 6= rd(b, i)

where diff is the introduced Skolem function for the existentially
quantified variable i. The set of extension axiomsKarr of our theory
of arrays consists of the flattened and linearized versions of the
axioms (4), (5), and (6) where a, b, i, j and e are implicitly
universally quantified variables. For instance, the linearized and
flattened version of axiom (4) is

b = wr(a, i, e) ∧ i = j⇒ rd(b, j) = e

It is well-known that the standard theory of arrays (i.e., the
one given by axioms (4) and (5)) does not admit ground in-
terpolation. We illustrate this through an example due to Ranjit
Jhala: consider the ground formulas A ≡ b = wr(a, i, e) and
B ≡ j 6= k ∧ rd(a, j) 6= rd(b, j) ∧ rd(a, k) 6= rd(b, k)
whose conjunction is unsatisfiable. There exists no ground inter-
polant for (A,B) that only contains the shared constants a, b and
the theory symbols wr and rd . However, as has been observed
in [10], such a ground interpolant can be constructed if one in-
cludes the difference function diff in the theory. An appropriate
ground interpolant for (A,B) in the extended theory is given by
b = wr(a, diff (a, b), rd(b, diff (a, b))). In fact, the authors of [10]
have shown that including the diff function is sufficient for ground
interpolation. We now give an alternative proof of this result by
showing that Tarr has the partial amalgamation property. This leads
to an alternative interpolation procedure for theory Tarr that can be
easily implemented on top of an existing interpolation procedure
for the base theory.

In order to define an appropriate amalgamation closure Warr,
we need to generalize the example above. That is, we have to
defineWarr in such a way that there exists no partialWarr-amalgams
(MA,MB ,MC) with arrays a and b that are shared between MA

and MB , and MA,MB disagree on the number of indices at which
a and b differ. To this end, inductively define for any terms a and b
of sort array and k ≥ 0 the term a

k
 b as follows:

a
k
 b = a if k = 0 and

a
k
 b = wr(a

k−1
 b, diff (a

k−1
 b, b), rd(b, diff (a

k−1
 b, b)))

for all k > 0. Note that if in some Tarr-model two arrays a and b
differ in exactly k positions, then b = a

k
 b. Now define Warr as

follows:

Warr(TA, TB) =

let T0 = st(TA ∪ { a
k
 b | a, b ∈ st(TA ∩ TB) }) in

let T1 = st(T0 ∪ { rd(a, diff (a, b)) | a, b ∈ st(TA) }) in
T1 ∪ { rd(a, i) | a, i ∈ st(T1), rd(b, i) ∈ T1 ∪ st(TB) }

where k is the number of non-shared terms of the form wr(a, i, e)
in TA ∪ TB . Note that Warr(TA, TB) can be represented in
space that is polynomial in the size of TA ∪ TB . Hence, also
Karr[W (A,B)] ∪ Karr[W (B,A)] is polynomial in A,B for finite
sets of ground clauses A,B.

Clearly Warr satisfies properties (i), (ii), (iv), and (v) of amal-
gamation closures. To see that it also satisfies (iii), note that Warr

does not increase the number of non-shared terms of the form
wr(a, i, e).

Lemma 8. Warr is an amalgamation closure.

Theorem 9. The theory Tarr = T0 ∪ Karr has the partial amalga-
mation property with respect to Warr.

5.2 Theory of Linked Lists with Reachability
Our second example is an extension of Nelson’s theory of linked
lists with reachability [41], which is also at the core of the LISBQ
logic studied in [35]. This theory is useful for reasoning about
the correctness of programs that manipulate list-like heap-allocated
data structures. We show that neither Nelson’s original theory, nor
its variation in [35] admit ground interpolation. Using counterex-
amples to the partial amalgamation property for Nelson’s theory,
we then systematically develop an extension of the theory, which
admits ground interpolation. As a result, we obtain the first com-
plete ground interpolation procedure for a non-trivial theory of
linked data structures.

As in the previous example, we define our theory of lists with
reachability as a theory extension Tllr = T0 ∪Kllr that is parametric
in its base theory T0. We require that the base theory is over the
signature Σ0 = (S0,Ω0) with a dedicated sort addr in S0 and that
T0 satisfies the assumptions of Corollary 7. Theory Tllr extends the
base theory with an additional sort field and extension symbols rd ,
wr , df , jp, lb, and R. The associated sorts are as follows:

rd : field× addr→ addr

wr : field× addr × addr→ field

df : field× field→ addr

jp, lb : field× addr × addr→ addr

R : field× addr × addr × addr→ bool

Before we present the axioms of the theory extension, we define
the meaning of the extension symbols in terms of a set of struc-
turesMllr in which the interpretation of extension symbols is de-
termined by the interpretation of the sorts addr and field. We call
the structures inMllr heap models. In a heap modelM ∈Mllr, the
sort addr represents a set of memory addresses and the sort field a
set of address-valued pointer fields. We use a Bornat/Burstall-style
memory model [7], i.e., each field is represented as a function from
addresses to addresses. The base theory may, e.g., interpret the sort
addr as integers to model pointer arithmetic, or it may leave this
sort uninterpreted to obtain a more abstract memory model.

In a heap model, the extension symbols rd and wr are inter-
preted as function application and function update, respectively.
For notational convenience, we write x.f and f [x := y] in for-
mulas for terms of the form rd(f, x), respectively, wr(f, x, y). An
atom R(f, a, b, c) holds in a heap modelM , if there exists a path in
the function graph spanned by field f that connects addresses a and
b, and the shortest such path does not visit address c. In formulas,

we write x
f/u−−→ y instead of R(f, x, y, u) and we write x

f−→ y as

a short-hand for x
f/y−−→ y. Note that a

f−→ b holds in a heap model
M iff a and b are related by the reflexive transitive closure of f .
The function symbol jp is interpreted such that jp(f, a, b) denotes
the join point of addresses a and b, i.e., jp(f, a, b) is the first ad-
dress on the f -path starting in a that is also on the f -path starting
in b, unless these paths are disjoint. In the latter case, we define
jp(f, a, b) = a. Note that even if the f -paths starting in a and b are
not disjoint, we might still have jp(f, a, b) 6= jp(f, b, a) if the two

paths form a cycle. In formulas, we write x
f
g y as a shorthand for

jp(f, x, y). The function symbol lb is interpreted such that if b is
reachable from a via f , then lb(f, a, b) is the last address before b
on the shortest f -path from a to b. The function symbol df is inter-
preted as in the theory of arrays, i.e., df (f, g) denotes an address
for which f and g take different values in case f and g are not the
same functions.



M(rd)(f, a) = f(a)

M(wr)(f, a, b) = f [a 7→ b]

M(R)(f, a, b, c) = 1 iff

(a, b) ∈ { (d, f(d)) | d ∈M(addr) ∧ d 6= c }∗

M(df )(f, g) ∈ { a ∈M(addr) | f(a) 6= g(a) } if f 6= g

M(jp)(f, a, b) = c iff

(a, c) ∈ { (d, f(d)) | (b, d) /∈ f∗ }∗ ∧ ((b, c) ∈ f∗ ∨ a = c)

M(lb)(f, a, f(b)) = b if M(R)(f, a, b, f(b)) = 1

Figure 5. Restrictions on the interpretation of extension symbols
in a heap model M

Formally, for a binary relation P over a set X (respectively, a
unary function P : X → X), we denote by P ∗ the reflexive tran-
sitive closure of P . The set of heap modelsMllr is then defined as
the set of all structures M such that (i) M |Σ0 is a model of T0, (ii)
M(field) is the set of all functions M(addr)→M(addr), (iii) the
interpretation of the extension symbols in M satisfies the restric-
tions specified in Figure 5, and (iv) for every a ∈ M(addr), f ∈
M(field), the set { b ∈M(addr) | a f−→ b∨b f−→ a } is finite. Con-
dition (iv) is not strictly necessary, but it provides a more precise
characterization of the models that we obtain from partial amal-
gams of Tllr.

We make the following simplifying assumption, which restricts
the set of input formulas that we consider.

Assumption 10. The set of uninterpreted constants Ωc contains at
most one constant of sort field.

Assumption 10 means that we will only consider input formulas
A∧B in which all terms of sort field are related by a finite sequence
of field writes. That is, there will be no models of such formulas
in which the interpretation of two terms of sort field appearing in
A ∧ B differ at more than n addresses, where n is the number of
field writes in A ∧B.

The extension axioms Kllr are the set of clauses that is obtained
by computing the conjunctive normal form of the axioms given in
Figure 6, and linearizing and flattening the resulting set of clauses.
The following lemma states that the resulting theory extension Tllr

is a sound axiomatization of heap models.

Lemma 11. All heap models are models of Tllr.

As we shall see later, the extension axioms are also sufficient
to fully characterize heap models, i.e., every ground formula that
is satisfiable modulo Tllr is also satisfiable in some heap model.
However, let us first explain why the theory without the function
jp does not have ground interpolation. To this end, consider the
situation illustrated in Figure 7. The graphs MA, MB , and MC

depict (partial) heap models where the dashed edges denote binary
reachability x

f−→ y. Transitive and reflexive edges are omitted for
readability. The structures MA and MB are almost identical. They
only differ in the order in which the list segments starting in c1 and
c2 join the list segment starting in c0. In MA the segment of c1
joins before the one of c2 and inMB it is the other way around. We
express MA and MB in terms of formulas A and B as follows:

A ≡ c0
f/c1−−−→ a0 ∧ c1

f/c0−−−→ a0 ∧ a0
f−→ a1 ∧ c2

f/a0−−−→ a1 ∧
a1

f−→ c3 ∧ a0 6= a1

B ≡ c0
f/c2−−−→ b0 ∧ c2

f/c0−−−→ b0 ∧ b0
f−→ b1 ∧ c1

f/b0−−−→ b1 ∧
b1

f−→ c3 ∧ b0 6= b1

Reflexive x
f/u−−→ x

Step x
f/u−−→ x.f ∨ x = u

SelfLoop x.f = x ∧ x f−→ y⇒x = y

Sandwich x
f/x−−→ y⇒x = y

Reach x
f/u−−→ y⇒x

f−→ y

Linear1 x
f−→ y⇒x

f/y−−→ u ∨ x f/u−−→ y

Linear2 x
f/u−−→ y ∧ x f/v−−→ z⇒

x
f/u−−→ z ∧ z f/u−−→ y ∨ x f/v−−→ y ∧ y f/v−−→ z

Transitive1 x
f/u−−→ y ∧ y f/u−−→ z⇒x

f/u−−→ z

Transitive2 x
f/z−−→ y ∧ y f/z−−→ u ∧ y f−→ z⇒x

f/u−−→ y

Join1 x
f−→ (x

f
gy)

Join2 x
f−→ z ∧ y f−→ z⇒ y

f−→ (x
f
gy)

Join3 x
f−→ z ∧ y f−→ z⇒x

f/z−−→ (x
f
gy)

Join4 y
f−→ (x

f
gy) ∨ (x

f
gy) = x

LastBefore x
f/y.f−−−−→ y ⇒ lb(f, x, y.f) = y

ReachWrite x
f [u:=v]/w−−−−−−→ y⇔

x
f/w−−−→ y ∧ x f/u−−→ y ∨

x
f/w−−−→ u ∧ v f/w−−−→ y ∧ v f/u−−→ y ∧ u 6= w

ReadWrite1 x.(f [x := y]) = y

ReadWrite2 x 6= y⇒ y.(f [x := z]) = y.f

Diff f 6= g⇒ df (f, g).f 6= df (f, g).g

Figure 6. Axioms of theory extension Tllr

The conjunction A ∧ B is unsatisfiable because A and B do not
agree on the order of the join points of the list segments. An
appropriate ground interpolant for A ∧B is given by

¬(c0
f
gc2)

f−→ (c0
f
gc1)

All other ground interpolants for A ∧ B also rely on the join
function. Hence, if we drop the join function from the theory Tllr,
we lose ground interpolation. This is also reflected in a violation
of the amalgamation property. If we drop joins, the models MA

andMB have a common substructureMC , which we also depict in
Figure 7. There is no model MD in which both MA and MB can
be embedded while preserving the common substructure MC .

The function lb plays a similar role than jp in that it is also
needed for the completeness of ground interpolation. A correspond-
ing counterexample to partial amalgamation can be found in the
extended version of this paper [48]. We omit further details here
because the function lb appears to be of less practical importance
than the join function.

Although the full theory Tllr admits ground interpolation, it is
still difficult to devise an amalgamation closure Wllr that allows
us to prove partial amalgamation for this theory. We illustrate this
using the unsatisfiable formula (3) in Section 2.2. One ground
interpolant for A ∧ B is c.f

f−→ c, which expresses that c lies on
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Figure 7. An amalgam (MA,MC ,MB) of the theory of linked
lists without join that witnesses a violation of amalgamation

a cycle. In order to prove the partial amalgamation property for
theory Tllr, we have to ensure that the shared substructure of every
partial amalgam already contains all information about which of
the shared terms c lie on a cycle. Since we can express this using
the formula c.f

f−→ c we may attempt to define the amalgamation
closure Wllr such that for every shared field f and every shared
address c defined in the common substructure, also c.f is defined.
However, since c.f is again shared, such an operator Wllr would
inevitably fail to satisfy condition (iii) of amalgamation closures.

We can avoid this problem by further extending Tllr with an
additional predicate symbol Cy : field × addr → bool such that
Cy(f, c) holds iff c.f

f−→ c. The corresponding extension axioms
defining Cy are as follows

Cycle1 x
f−→ y ∧ y f−→ x⇒Cy(f, x) ∨ x = y

Cycle2 Cy(f, x) ∧ x f−→ y⇒ y
f−→ x

Note that in these axioms we do not use c.f to define Cy(f, c),
which avoids the problem with the definition of the amalgamation
closure mentioned above. We denote by Kllrc the set of extension
axioms obtained by adding these axioms to Kllr and we denote by
Tllrc the resulting theory extension Tllrc = T0 ∪ Kllrc.

To define the amalgamation closure for Tllrc, we first define the
terms f k

 g for all terms f, g of sort field and k ≥ 0, as in the
case of the array theory, except that we replace array reads by field
reads and array writes by field writes. The amalgamation closure
for Tllrc is then defined as follows:

Wllrc(TA, TB) =

let T0 = st(TA ∪ { f
k
 g | f, g ∈ st(TA ∩ TB) }) in

let T1 = st(T0 ∪ { df (f, g).f | f, g ∈ st(TA) }) in
let T2 = T1 ∪ { a.f | f, a ∈ st(T1), a.g ∈ T1 ∪ st(TB) } in
let T3 = T2 ∪ { lb1(f, a, b.f) | a, b.f ∈ T2 } in

let T4 = T3 ∪ { (a
f
gb)1 | a, b, f ∈ T3 shared with TB } in

let T5 = T4 ∪ { a
f/c−−→ b | a, b, c, f ∈ T4 } in

let T6 = T5 ∪ {Cy(f, a) | f, a ∈ T5 shared with TB } in
T6

where k is the number of non-shared terms of the form f [a := b] in
TA∪TB , lb1(f, a, b.f) denotes lb(f, a, b.f) if lb does not appear in

a or else it denotes a, and similarly (a
f
gb)1 denotes a

f
gb if no join

appears in a and b, or else a. The intermediate set of terms T2 in the
definition of Wllrc(TA, TB) is similar to the set of terms computed
byWarr for the theory of arrays. The set of terms T4 ensures that the

joins of all shared terms are defined. Note that in models of Tllrc we

have for all a, b, c and f , (a
f
gb)

f
gc = a

f
gc or (a

f
gb)

f
gc = b

f
gc,

and similarly a
f
g(b

f
gc) = a

f
gb or a

f
g(b

f
gc) = a

f
gc. Because of

this property and Assumption 10, we can avoid the construction of
terms with nested occurrences of joins. The set T5 ensures that the
reachability predicate is fully defined in all partial models. Finally,
T6 ensures that the predicate Cy is defined for all shared terms.

Lemma 12. Wllrc is an amalgamation closure.

We can now prove that theory Tllrc has the partial amalgamation
property. In fact, we can prove a slightly stronger statement:

Lemma 13. For every partial Wllrc-amalgam (MA,MB ,MC) of
Tllrc there exists a total model MD of Tllrc, and weak embeddings
hA : MA → MD and hB : MB → MD such that hA|[MC ] =
hB |[MC ]. Moreover, MD|Σllr is isomorphic to a heap model.

Theorem 14. The theory Tllrc = T0 ∪Kllrc has the partial amalga-
mation property with respect to Wllrc.

Theorem 14 does not just give us a complete ground interpo-
lation procedure for Tllrc, but also for Tllr. This is because we can
always rewrite atoms of the form Cy(f, c) in interpolants for the-
ory Tllrc into atoms c.f

f−→ c, obtaining an interpolant for Tllr.

Corollary 15. Theory Tllr admits ground interpolation.

Finally, we can show that satisfiability of ground formulas mod-
ulo Tllr is equivalent to satisfiability of ground formulas modulo
heap models. This is a consequence of Lemma 13 and Lemma 11.

Theorem 16. Let G be a finite set of ground Σcllr-clauses. Then
Tllr ∪G |= ⊥ iff M 6|= G for all M ∈Mllr.

Note that the number of terms in Wllrc(TA, TB) is polynomial
in the size of TA ∪ TB and, hence, so is the number of generated
instances of extension axioms. Together with Theorem 14 this im-
plies that satisfiability of ground formulas modulo Tllr is decidable
in NP, provided T0 ∪ TEUF is also decidable in NP.

6. Combining Interpolation and Abstraction
We now turn towards more practical concerns. A common problem
in interpolation-based algorithms is that interpolants are not unique.
Often the interpolation procedure produces interpolants that are
not useful for a specific application. This may cause, e.g., that
the refinement loop of a software model checker diverges because
the generated interpolants do not sufficiently abstract from the
infeasible error traces.

To illustrate this problem, consider the program shown in Fig-
ure 8. The function concat takes two lists x and y as input and con-
catenates them by first traversing x and then swinging the pointer of
the last node of x to y. A second while loop then traverses x again to
check whether y is reachable after the concatenation. Suppose we
want to use interpolation-based verification to check that the assert
statement in concat never fails. The right-hand side of Figure 8
shows the trace formula for a spurious error trace of concat, which
is obtained by unrolling both loops twice. The trace formula is un-
satisfiable, hence we can compute an interpolant for the indicated
choice of A ∧B. One valid interpolant is as follows:

x.n1.n1 6= null ∨ y = null

This interpolant is rather useless for obtaining an inductive invari-
ant that allows us to prove our verification goal. The interpolant
only rules out the one given error trace and fails to abstract from its
specifics, i.e., the length of the traversed list. We would rather like
to obtain the alternative interpolant x

n1−→ y, which is the induc-
tive loop invariant we are seeking. But how can we ensure that the



void concat ( List x, List y) {
List curr , prev ;
prev = null ;
curr = x;
while (curr != null ) {

prev = curr;
curr = curr.n;
}
if (prev == null) x = y;
else prev .n = y;

curr = x;
while (curr != null &&

curr != y) {
curr = curr.n
}
assert (curr == y);

}

A

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

prev0 = null ∧
curr0 = x ∧
curr0 6= null ∧
prev1 = curr0 ∧
curr1 = curr0.n0 ∧
curr1 = null ∧
prev2 = curr1 ∧
curr2 = curr1.n0 ∧
curr2 = null ∧
prev2 6= null ∧
n1 = n0[prev2 := y] ∧

B

8>>>>>>>>>>>><>>>>>>>>>>>>:

curr3 = x ∧
curr3 6= null ∧
curr3 6= y ∧
curr4 = curr3.n1 ∧
curr4 6= null ∧
curr4 6= y ∧
curr5 = curr4.n1 ∧
(curr5 = null ∨
curr5 = y) ∧

curr5 6= y

Figure 8. C code for concatenation of two lists. The second while
loop checks whether y is reachable from x after the concatenation.
The right-hand side shows the trace formula for an infeasible error
trace that is obtained by unfolding both while loops twice.

interpolation procedure finds the right interpolant? What accounts
for a “good” interpolant often depends on the concrete application.
It is therefore difficult to devise generic strategies that can be hard-
wired into the interpolation procedure.

Our approach enables the user of the interpolation procedure
to inject domain-specific knowledge that helps to guide the proof
search and improves the quality of the produced interpolants. This
can be done as follows. Note that a partial modelM can be thought
of as a symbolic representation of a set of total models, namely
the set of all models into which M weakly embeds. In fact, for
many local theory extensions we can represent a ground formula
A as a finite set of partial models each of which is represented as a
finite set of ground unit clauses. We can then guide the interpolation
procedure as follows: instead of interpolating A ∧ B directly, we
enumerate partial models MA of A, which we interpolate one
by one with B. However, before we compute the interpolant of
MA ∧ B for a given partial model MA, we first apply a user-
defined abstraction function α that widensMA by dropping certain
clauses. For instance, in the case of the theory of linked-lists we
may want to drop all clauses containing the function symbol for
field dereference from partial models and only keep information
about reachability and joins.

This idea of combining interpolation and abstraction is re-
alized in procedure InterpolateWithAbstraction given in Fig-
ure 9, which refines our earlier procedure in Figure 4. Procedure
InterpolateWithAbstraction takes as additional arguments the
user-defined abstraction function α and a procedure GetModel0
that is able to generate partial models for satisfiable formulas in the
theory T0 ∪ TEUF. The while loop enumerates the partial models of
A. In each iteration, we only consider partial models that are not
yet subsumed by the already computed interpolants I . This ensures
that only few partial models have to be considered in practice. The
conditional statement in the body of the while loop guarantees that
the interpolation procedure falls back to the full partial model MA

in the cases where the abstraction function is too coarse and does
not preserve unsatisfiability of MA ∧B.

Procedure InterpolateWithAbstraction enables us to easily
incorporate domain-specific abstraction and widening techniques

proc InterpolateWithAbstraction

input
T1 = T0 ∪ K : theory extension
Interpolate0 : ground interpolation procedure for T0 ∪ TEUF

GetModel0 : model generation procedure for T0 ∪ TEUF

W : amalgamation closure for T1

α : abstraction function for weak partial models PMod(T1)

A,B : sets of ground Σc1-clauses with A ∪B |=T1 ⊥
begin
I := ⊥
while ¬I ∧A ∧ K[W (A,B)] 6|=T0∪TEUF ⊥ do
MA := GetModel0(¬I ∧A ∧ K[W (A,B)])

A0 := α(MA) ∪ K[W (α(MA), B)]

B0 := B ∪ K[W (B,α(MA))]

if A0 ∪B0 6|=T0∪TEUF ⊥ then
A0 := MA ∪ K[W (MA, B)]

B0 := B ∪ K[W (B,MA)]
I := I ∨ Interpolate0(A0, B0)

return I
end

Figure 9. Instantiation-based interpolation procedure with user-
defined abstraction of partial models.

into the interpolation procedure while still treating the underlying
interpolation procedure for the base theory as a black box. The
ability of modern SMT solvers to generate models for satisfiable
formulas makes it easy to implement this approach.

7. Implementation and Evaluation
We have implemented our framework in a prototype tool and in-
stantiated it for the theory of linked lists with reachability that we
presented in Section 5.2. The prototype is written in OCaml. It im-
plements a variation of the algorithm presented in Figure 9. We use
the SMT solver Z3 v.4.0 [14] for the generation of partial mod-
els and MathSAT 5 [22] for interpolation of formulas in the base
theory. Communication with both provers is done via their SMT-
LIB 2 [4] interfaces. The difference between the implementation
and the vanilla algorithm in Figure 9 is that we use the incremen-
tal solving capability of the SMT solver to get a more fine-grained
abstraction of partial models. Instead of falling immediately back
to the full partial model MA whenever the abstract partial model
is too weak to prove unsatisfiability, we sort the clauses of MA

in a particular order and then push them one by one on the as-
sertion stack of the solver. Each time we push a new clause onto
the stack, we check whether the conjunction of the stack with B
is still satisfiable. Once it becomes unsatisfiable, we compute the
interpolant. The order in which the clauses of the partial model
are pushed is determined by a weight associated with each clause,
where lighter clauses are considered first. The weight function en-
codes the domain-specific knowledge that guides the proof search
of the solver. In our implementation we have chosen the weight
function such that highest weight is given to clauses that contain
dereferences of pointer fields. This makes it more likely that the
computed interpolants abstract from the length of the lists.

The number of generated instances of extension axioms is poly-
nomial in the size of the input formulas, which means that the un-
derlying decision problem remains in NP. However, in practice the
eager instantiation approach can still be a performance bottle neck
with thousands of clauses generated even for small examples. We
therefore implemented several optimizations to reduce the number



benchmark #unroll. #MA #inst. time (s)
reverse 3 1 5,003 0.4
concat 2-2 1 9,953 0.6
delete 2 2 27,934 2.3
insertBefore 2 2 28,176 2.3
splice 2 4 135,446 12.1

Table 1. Summary of experiments. The columns list the bench-
mark name, the number of loop unrollings in the error trace, the
number of generated partial models forA, the number of generated
instances of extension axioms, and the total computation time.

of instances of axioms that we generate. First, we compute the con-
gruence closure for the terms appearing in the original input for-
mula and then only instantiate axioms by selecting one representa-
tive term per congruence class. We have found this to work partic-
ularly well for trace formulas, which typically contain many equal-
ities. Second, we use a more lazy instantiation approach where we
first compute a subset of the terms in the amalgamation closure that
is likely to be sufficient for proving unsatisfiability. For example, in
our experiments we never needed to generate instances with terms
that contain the df function. Apart from these obvious optimiza-
tions, our instance generation procedure is still rather naive.

To evaluate the feasibility of our approach, we have used our
implementation to automatically infer loop invariants for verify-
ing properties of simple list-manipulating programs. In particular,
we checked functional correctness properties and whether certain
shape invariants are preserved. For this purpose, we manually gen-
erated spurious error traces from the considered programs by un-
rolling their loops a few times. Our prototype accepts such error
traces as input and converts them into trace formulas which are then
interpolated. Our experiments where conducted on a Linux laptop
with a dual-core processor and 4GB RAM. Table 1 shows the sum-
mary of our experiments. In all cases, the obtained interpolant was
an inductive loop invariant of the program and strong enough to
prove the program correct. Roughly 40% of the running time is
spent on I/O with the provers. However, the main bottle neck of the
implementation is the eager instantiation of extension axioms. We
believe that the running times can be significantly improved by us-
ing more sophisticated model-driven instantiation approaches such
as [20, 29], which instantiate axioms incrementally.

8. Related Work
Our notion of partial amalgamation is closely related to the (strong)
amalgamation property [32], whose role in ground interpolation for
disjoint theory combinations has been recently studied [11]. Our
use of amalgamation properties is orthogonal to [11], as we con-
sider (non-disjoint) theory extensions rather than disjoint theory
combinations. In a sense, partial amalgamation is the adaptation
of the weak embedability condition in [46] to the case of inter-
polation. Our approach can thus be thought of as the symbioses
of the two orthogonal approaches described in [46, 47] and [11].
Note that neither of the interpolation techniques presented in [47]
and [11] can be applied directly to the theory of lists considered in
this paper. The approach in [47] is restricted to extension axioms of
a very specific syntactic form: Horn clauses in which all predicate
symbols are binary and where additional guard constraints on the
quantified variables apply. All three restrictions are violated by the
axioms of the list theory. The approach in [11] could be used, in
principle, to obtain an interpolation procedure for the combination
of a theory of lists with uninterpreted heap nodes and, e.g., the the-
ory of linear integer arithmetic (for interpreting heap nodes as ad-
dresses). However, the technique in [11] assumes that interpolation
procedures for the component theories already exist. There is no

interpolation procedure for the list theory component to start with.
Hence, the combination technique of [11] cannot be applied. Other
reduction-based approaches to interpolation that are less closely re-
lated include [33], which is based on quantifier elimination.

Ground interpolation procedures for specific theories have been
developed, e.g., for linear arithmetic over reals [23, 38] and inte-
gers [8, 9], uninterpreted functions with equality [19, 38, 50], func-
tional lists [50], as well as, combinations of these theories [11, 21,
38, 50]. These are the procedures that our approach builds on. We
discussed two specific theories for which ground interpolation re-
duces to these existing procedures: the theory of arrays with dif-
ference functions [10], and the theory of linked-lists with reach-
ability [35, 41] extended with join. We believe that our approach
applies to many other theory extensions that are of importance in
program verification, such as our theory of imperative trees [49].

Interpolation approaches that use resolution-based automated
theorem provers have been studied, e.g., in [26, 40]. Unlike our ap-
proach, these methods target undecidable fragments of first-order
logic and infer quantified interpolants. Sometimes, such quanti-
fied interpolants are needed to obtain inductive invariants. We can
use our approach to infer quantified interpolants by applying tech-
niques explored in [1]. One interesting observation is that these
quantified interpolants themselves often constitute local theory ex-
tensions and can therefore be treated systematically by our frame-
work, if they become part of subsequent interpolation problems. To
out knowledge, McMillan’s [40] interpolating version of the the-
orem prover SPASS, is the only other interpolation-based system
that has been used to infer shape invariants of heap-allocated data
structures. Unlike our theory of linked-lists, McMillan’s axiomati-
zation of reachability predicates is incomplete.

Recent works have explored techniques to influence the quality
of computed interpolants, e.g., by reducing the size of unsatisfia-
bility proofs from which interpolants are generated [27], restricting
the language in which interpolants can be expressed [1, 30], or by
controlling the interpolant strength [16]. Our technique of guiding
the proof search of the interpolation procedure through user-defined
abstraction functions is orthogonal to these approaches. In spirit, it
is most closely related to [30]. The key difference is that we do
not need to modify the underlying interpolation procedure, which
would contradict our modular approach to interpolation. The idea
of using the ability of SMT solvers to generate models for abstrac-
tion has been previously explored, e.g., in [43]. Whether the ap-
proach of combining interpolation and abstraction can be explained
more concisely in terms of abstract interpretation, e.g., in the spirit
of [12], remains a question for future research.

9. Conclusion
We have presented a new instantiation-based interpolation frame-
work that enables the modular construction of ground interpolation
procedures for application-specific theories. We introduced the se-
mantic notion of partial amalgamation to systematically identify
and construct theories for which our framework yields complete
interpolation procedures. We gave examples of both new and ex-
isting theories to which our framework applies. Using a prototype
implementation we demonstrated that our framework enables new
applications of interpolation-based algorithms in program verifica-
tion. Therefore, we see this work as a starting point for a new line
of research that studies efficient instantiation-based interpolation
procedures for applications in program verification.
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