Building a Calculus of Data Structures

Viktor Kuncak!*, Ruzica Piskac!, Philippe Suter!, and Thomas Wies?

L EPFL School of Computer and Communication Sciences, Lausanne, Switzerland
firstname.lastname@epfl.ch
2 Institute of Science and Technology Austria, Klosterneuburg, Austria
wies@ist.ac.at

Abstract. Techniques such as verification condition generation, predi-
cate abstraction, and expressive type systems reduce software verification
to proving formulas in expressive logics. Programs and their specifica-
tions often make use of data structures such as sets, multisets, algebraic
data types, or graphs. Consequently, formulas generated from verification
also involve such data structures. To automate the proofs of such formu-
las we propose a logic (a “calculus”) of such data structures. We build
the calculus by starting from decidable logics of individual data struc-
tures, and connecting them through functions and sets, in ways that go
beyond the frameworks such as Nelson-Oppen. The result are new decid-
able logics that can simultaneously specify properties of different kinds
of data structures and overcome the limitations of the individual logics.
Several of our decidable logics include abstraction functions that map
a data structure into its more abstract view (a tree into a multiset, a
multiset into a set), into a numerical quantity (the size or the height), or
into the truth value of a candidate data structure invariant (sortedness, or
the heap property). For algebraic data types, we identify an asymptotic
many-to-one condition on the abstraction function that guarantees the
existence of a decision procedure.

In addition to the combination based on abstraction functions, we can
combine multiple data structure theories if they all reduce to the same
data structure logic. As an instance of this approach, we describe a de-
cidable logic whose formulas are propositional combinations of formulas
in: weak monadic second-order logic of two successors, two-variable logic
with counting, multiset algebra with Presburger arithmetic, the Bernays-
Schonfinkel-Ramsey class of first-order logic, and the logic of algebraic
data types with the set content function. The subformulas in this combi-
nation can share common variables that refer to sets of objects along with
the common set algebra operations. Such sound and complete combina-
tion is possible because the relations on sets definable in the component
logics are all expressible in Boolean Algebra with Presburger Arithmetic.
Presburger arithmetic and its new extensions play an important role in
our decidability results. In several cases, when we combine logics that
belong to NP, we can prove the satisfiability for the combined logic is
still in NP.

* This research is supported in part by the Swiss National Science Foundation Grant
#120433 “Precise and Scalable Analyses for Reliable Software”.

C* [PSTO00]
two-variable with counting
WS2S [TW68] Bernays-Schonfinkel-Ramsey
monadic 2nd-order over trees [Ram30] (EPR)

APA [PK08c, PK08a
multisets 4+ cardinality

algebraic data types with
abstraction functions [SDK10]

BAPA
sets + cardinality

(Presburger (Integer Linear) Arithmetic)

Fig. 1. Components of our decidable logic and reductions used to show its decidability.

1 Introduction

A cornerstone of software verification is the problem of proving the validity
of logical formulas that describe software correctness properties. Among the
most effective tools for this task are the systems (e.g. [dMBO08]) that incorpo-
rate decision procedures for data types that commonly occur in software (e.g.
numbers, sets, arrays, algebraic data types). Such decision procedures leverage
insights into the structure of these data types to reduce the amount of unin-
formed search they need to perform. Prominent examples of decision procedures
are concerned with numbers, including (the quantifier-free fragment of) Pres-
burger arithmetic (PA) [Pre29]. For the verification of modern software, data
structures are at least as important as numerical constraints. Among the best
behaved data structures are sets, with Boolean algebra of sets [Skol9] among
the basic decidable examples, others include algebraic data types [Opp78,BST07]
and arrays [SBDL01,BM07,dMB09]. Reasoning about imperative data structures
can be described using formulas interpreted over graphs; decidable fragments of
first-order logic present a good starting point for such reasoning [BGG97].

In this paper we give an overview of some recent decision procedures for
reasoning about data structures, including sets and multisets with cardinality
bounds, algebraic data types with abstraction functions, and combinations of
expressive logics over trees and graphs. Our results illustrate the rich structure of
connections between logics of different data structures and numerical constraints.
Figure 1 illustrates some of these connections; they present combinations that
go beyond the disjoint combination framework of Nelson-Oppen [NO79].

Given logics A and B we often consider a combined logic ¢(A, B) that sub-
sumes A and B and has additional operators that make the combined logic more
useful (e.g. abstraction functions from A to B, or numerical measures of the data
structure). In such situation, we have found it effective to reduce the combina-

tion ¢(A, B) to one of the logic, say B. Under certain conditions, if we consider
another combination ¢/(A’, B) we can obtain the decidability of the combination
(A, A’, B) of all three logics. When B is the propositional logic, this idea has
been applied to combine logics that share only equality (e.g. [LS04]).

In our approach, we take as the base logic B a logic of sets with cardinality
operator, which we call Boolean Algebra with Presburger Arithmetic (BAPA).
BAPA is much richer than propositional logic. Consequently, we can use BAPA
to combine logics that share not only equalities but also sets of objects. Differ-
ent logics define the sets in different ways: first-order logic fragments use unary
predicates to define sets, other logics have variables denoting sets (this includes
monadic second-order logic, the logics of multisets, and the logic of algebraic
data types with abstractions). A key technical challenge is establishing reduc-
tions from new logics to existing ones, and casting known decision procedures
as reductions to BAPA. The formulas in our combined logic are quantifier-free
combinations of possibly quantified formulas of component logics. Our approach
leads to the decidability of classes of complex verification conditions for which
we previously had only heuristic, incomplete, approaches.

The results we present follow [KR07,PK08a,PK08¢,PK08b,SDK10, WPKO09].

2 Boolean Algebra with Presburger Arithmetic

We start by considering a logic that combines two well-known decidable logics:
1) the algebra of sets (with operations such as union, intersection, complement,
and relations such as extensional set equality and subset), and 2) Presburger
arithmetic [Pre29] (with linear arithmetic expressions over integer variables). We
establish a connection between these two logics by introducing the cardinality
operator that computes the number of elements in the set expression. We call
this logic BAPA (Boolean Algebra with Presburger Arithmetic) [KNRO6], and
focus on its quantifier-free fragment (QFBAPA). Figure 2 shows the syntax of
QFBAPA. Figure 3 shows example verification conditions that it can express.

Fu:=A|FLANF | FLVEF|-F

Au=B1 =B |BiC By | Th =T | T1 < T | (K|T)
Bu=z|0|U|BiUBy| BiNBy | B°
Tu=k|K|Th'+T|K-T| |BI
Ko=...-2]-1]0|1]2...

Fig. 2. Quantifier-Free Boolean Algebra with Presburger Arithmetic (QFBAPA)

Methods to decide QFBAPA. Like Presburger arithmetic [Pre29], BAPA ad-
mits quantifier elimination [KNROG], which gives NEXPTIME decision procedure
for quantifier-free formulas. The logic also admits small model property, but, due
to formulas such as |Ag| = 1 A A, |A;| = 2|Ai—1], the number of assignments to

verification condition

property being checked

x ¢ content A size = card content —
(size = 0 «> content = ()

using invariant on size to
prove correctness of an
efficient emptiness check

x ¢ content A size = card content —
size + 1 = card({z} U content)

maintaining correct size
when inserting fresh
element

size = card content A
sizel = card({z} U content) —
sizel <size—+1

maintaining size after
inserting any element

content C alloc A

z1 ¢ alloc A

z2 ¢ alloc U {z1} A

x3 ¢ alloc U {z1} U{z2} —

card (content U {z1} U {z2} U{zs}) =

card content + 3

allocating and inserting
three objects into a
container data structure

ze€CNCL=(C\{z}) A
card(allocl \ allocO) <1 A
card(alloc2 \ allocl) < cardC; —

bound on the number of
allocated objects in a
recursive function that

card (alloc2 \ alloc0) < card C' incorporates container C' into

another container

Fig. 3. Example verification conditions that belong to QFBAPA

set variables can be doubly exponential, which would again give NEXPTIME
procedure. We can obtain an optimal worst-case time decision procedure for
QFBAPA using two insights. The first insight follows the quantifier elimination
algorithm and introduces an integer variable for each Venn region (an intersec-
tion of set variables and their complements), reducing the formula to Presburger
arithmetic. The second insight shows that the generated Presburger arithmetic
formulas enjoy a sparse model property: if they are satisfiable, they are satisfiable
in a model where most variables (denoting sizes of Venn regions) are zero. Using
an appropriate encoding it is possible to generate a polynomial-sized instead of
exponential-sized Presburger arithmetic formula. This can be used to show that
the satisfiability problem for QFBAPA remains within NP [KRO07].

3 Multisets Algebra with Presburger Arithmetic

The decidability and NP completeness of QFBAPA also extends to Multiset Al-
gebra with Presburger Arithmetic, in which variables can denote both sets and
multisets (and where one can test whether a set is a multiset, or convert a
multiset into a set). The motivation for multisets comes from verification of
data structures with possibly repeated elements, where, in addition to knowing
whether an element occurs in the data structure, we are also interested how many
times it occurs. A detailed description of decision procedures for satisfiability of
multisets with cardinality constraints is in [PK08a, PK08c, PK08b].

A multiset is a function m from a fixed finite set E to N, where m(e) de-
notes the number of times an element e occurs in the multiset (multiplicity
of e). In addition to multiset operations such as multiplicity-preserving union
and the intersection, every PA formula defining a relation leads to an operation
on multisets in our logic, defined point-wise using this relation. For example,
(m1 N'ma)(e) = min(my(e), ma(e)) and my C ms means Ve.my(e) < ma(e). The
logic also supports the cardinality operator that returns the number of elements
in a multiset. The cardinality operator is a useful in applications, yet it prevents
the use of previous decision procedures for arrays [BM07] to decide our logic. Fig-
ure 4 summarizes the language of multisets with cardinality constraints. There
are two levels at which integer linear arithmetic constraints occur: to define
point-wise operations on multisets (inner formulas) and to define constraints on
cardinalities of multisets (outer formulas). Integer variables from outer formulas
cannot occur within inner formulas.

Top-level formulas:
Fu:=A|FAF|-F
A= M=M|M C M |Ve.F" | A
Outer linear arithmetic formulas:
FOUt e AOUt | FOUt /\ FOUt | _‘FOUt
Aout - tout S tout | tout:tout | (tout7 o ’tout): Z(tin7 . 7tin)
Fin
" a=k| M| | C |t 4+t | C -t | if F** then t** else t°°
Inner linear arithmetic formulas:
Fin - Ain | Fin A Fin | _|Fin
Ain - tin S tin | tin:tin
th i=m(e) | C [t" +t" | C-t" | if F" then t" else t"
Multiset expressions:
M:=m|0|MNM|MUM|MOM|M\M|M\M |set(M)
Terminals:
m - multiset variables; e - index variable (fixed)
k - integer variable; C' - integer constant

Fig. 4. Quantifier-Free Multiset Constraints with Cardinality Operator

First, we sketch the decision procedure from [PKO08a]. Given a formula Fjy,
we convert it to the following sum normal form:

P A (ul,...,un) = Z(tlaatn) AVe.F
eck
where

— P is a quantifier-free PA formula without any multiset variables

— the variables in 1, ..., ¢, and F occur only as expressions of the form m(e)
for m a multiset variable and e the fixed index variable

— formula P can only share variables with terms w1, ..., U,.

The algorithm that reduces a formula to its sum normal form runs in poly-
nomial time. The goal of our decision procedure is to express the subformula

(Ugy.ooytun) = > (t1,...,tn) A Ve.F as a quantifier-free PA formula and thus
ecE
reduce the satisfiability of a formula belonging to the language of Figure 4 to

satisfiability of quantifier-free PA formulas. As a first step, we use the fact that
a formula in the sum normal form

P A (w1, un) =Y (b, t) A Ve
ecE

is equisatisfiable with the formula
P A (Ut tn) € {(Ehs-n s t) | B}

where the terms ¢ and the formula F’ are formed from the terms ¢; and the
formula F in the following way: for each multiset expression m;(e) we introduce
a fresh new integer variable x; and then we substitute each occurrence of m;(e)
in the terms terms ¢; and the formula F' with the corresponding variable ;. The
star-closure of a set C' is defined as C* = {vi +... 4+ v, | v1,...v, € CAn >
0}. We are left with the problem of deciding the satisfiability of quantifier-
free PA formulas extended with the star operator [PK08c]. For this we need
representations of solutions of PA formulas using semilinear sets.

3.1 Semilinear Sets

Let S C N™ be a set of vectors of non-negative integers and let a € N” be a
vector of non-negative integers. A linear set LS(a;S) is defined as LS(a;S) =
{a+z1+4+...+x, |z € SAn>0}. A vector a is called the base vector, while
elements of S are called the step vectors. A semilinear set Z is defined as a finite
union of linear sets: Z = U LS(a;; Si).

By definition, a semilinear set can be described as a solution set of a PA
formula. [GS66] showed that the converse also holds: the solution of a PA formula
is a semilinear set.

Consider the set {(¢},...,t,) | F'}*. The set of all vectors which are solution
of formula F” is a semilinear set. Moreover, it is not difficult to see that applying
the star operator on a semiliner set results with the set which can be described
with the Presburger arithmetic formula. Consequently, applying the star opera-
tor on a semiliner set results in a new semilinear set. Because {(¢},...,t,) | F'}*
is a semilinear set, checking whether (u1,...,u,) € {(t},...,t,) | F'}* is effec-
tively expressible as a Presburger arithmetic formula. Consequently, satisfiability
of an initial multiset constraints problem reduces to satisfiability of quantifier-
free Presburger arithmetic formulas. Following the constructions behind these
closure properties gives the decidability, but, unfortunately, not the optimal NP
complexity.

3.2 NP Complexity of Multisets with Cardinality Constraints

To show NP membership of the language in Figure 4, we prove the linear arith-
metic with positively occurring stars is in NP [PK08c]. We use theorems bound-
ing the sizes of semilinear sets and again apply a sparse model theorem.

Bounds on Size of the Vectors Defining Semilinear Set. In [Pot91] Pottier
investigates algorithms and bounds for solving a system of integer constraints.
The algorithm presented there runs in singly exponential time and returns a
semilinear set Z which is a solution of the given system. This paper also es-
tablishes the bounds on the size of base and step vectors which occurs in the
definition of Z. Let = (x1,...,x,) be an integer vector. We use two standard
norms of the vector z:

= fly = 20

= l#lloe = maxiLy [
For matrices we use the norm |[[A[|1,0c = supi{>_; |ai;[}.

Fact 1 ([Pot91], Corollary 1) Given a system Ax <b, a semilinear set de-
scribing the solution can be computed in singly exponential time. Moreover, if v
18 a base or a step vector that occurs in the semilinear set, then

vlls < 2+ [[A]l1,00 + [[Bl]oc)™

Let F' be a Presburger arithmetic formula and let Z be a semilinear set
describing a set of solutions of F. Let S be a set of all base and step vectors of
Z. Theorem 1 implies that there exists polynomial p(s), where s is a size of the
input formula, such that for each v € S, ||v||; < 2P().

Sparse Solutions of Integer Cones. Let S be a set of integer vectors. For a
vector v € S* we are interested in the minimal number of vectors from S such
that v is their linear combination. Eisenbrand and Shmonin [ES06] proved that
this minimal number depends only on the dimension of vectors and on the size
of the coefficients of those vectors, as follows.

Fact 2 ([ES06], Theorem 1(ii)) Let S be a finite set of integer vectors of
the dimension n and let v € S*. Then there exists S; C S such that b € S1* and
[S1] < 2nlog(4nM), where M = maxzes ||2]|oo-

Small Model Property for Integer Linear Programming. [Pap81] proves
the small model property for systems of integer linear constrains Ax = b.

Fact 3 ([Pap81]) Given an mxn integer matriz A, an m-dimensional integer
vector b and an integer M such that ||Al|1,00 < M and ||b||ec < M, if the system
Ax = b has a solution, then it also has a non-negative solution vector v such
that ||v]|ee < n(mM)?>mTL,

Membership in NP. Back to our formula F’, consider a semilinear set
Z = UF_ LS(a;;{bi1,...,bix,}) which corresponds to the set {t | F’(t)}. Elim-
ination of the star operator from the expression w € {t | F'(¢)}* results in
the formula w = Fn(a;, b;;), where Fy is a new Presburger arithmetic formula
which has base vectors and step vectors of Z as variables. Using Theorem 2 we
can show that there exists equisatisfiable formula w = Fj(a;,b;;) which uses
only polynomially many (O(n?logn)) vectors a; and b;;. The next problem is to
verify in polynomial time whether a vector belongs to a set of vectors defining
the semilinear set. We showed in [PKO08c| that instead of guessing a; and b;;, it
is enough to guess vectors v. which are solutions of F”.

Using this we proved that w € {¢ | F'(t)}* is equisatisfiable with the formula

Q Q
UZZ)\ivi/\/\F(vi)
1=1 i=1

where @) is a number (not a variable!) which can be computed from the proofs
of the above theorems, and depends on

— dimension of a problem
— ||'||eo of generating vectors of the semilinear sets

The important is that we do not actually need to compute vectors generating the
semilinear set. We only require their norm ||-||oc and it can be easily calculated
by applying Theorem 1.

The last hurdle is that the derived formula does not seem to be linear as
it contains multiplication of variables: A\;v;. This problem is solved by apply-
ing Theorem 3. Because we know that there exists a bounded solution, we can
calculate the concrete bound on the size of the solution and obtain the num-
ber r. Using this number we can rewrite v; as a binary number and expand
multiplication this way:

)\ivi = (Z ’Uij2j)>\i = Z 2j (’U”>\1) = Z 2jite(vij, >\i; 0) =
7=0 7=0 7=0
ite(’Uio, >\i; 0) + 2(ite(vi1,)\i, 0) + 2(ite(vi2, >\i; 0) + .-)))

This way we derive the linear arithmetic formula which polynomial in the
size of the initial problem and obtain NP-completeness.

4 Algebraic Data Types with Abstraction Functions

In this section, we give an overview of a decision procedure for a logic which
combines algebraic data types with an abstraction function mapping these types
to elements of a collection theory. The full account of our results is available
in [SDK10]. To simplify the presentation, we restrict ourselves to the data type of
binary trees storing elements of a countably infinite type, which in Scala [OSV08]
syntax would be written as

abstract class Tree
case class Node(left: Tree, value: &, right: Tree) extends Tree
case class Leaf() extends Tree

for an element type £. We consider abstraction functions which are given as a
catamorphism (generalized fold) over the trees, given as
def a(t: Tree): C = t match {

case Leaf() = empty
case Node(l,e,r) = combine(«(l), e, a(r))

for some functions empty : C and combine : (C,&,C). Formally, our logic is
parametrized by a collection theory L¢ and an abstraction function « given in
terms of empty and combine as above. We denote the logic by 7, (note that L¢
is implicit in «). Fig. 5 shows the syntax of 7, and Fig. 6 its semantics. The
description refers to the catamorphism «, as well as the semantics of the theory
Lec, denoted [.

T :=t | Leaf | Node(T, E,T) | left(T) | right(T) Tree terms
Cu=clalt)]| % C-terms
Fr:=T=T|T#T Equations over trees
Fc:=C=C|3%c¢ Formulas of L¢
FE:=e Variables of type £
¢ = NFrANN\Fc Conjunctions
Yu=9¢|=d|oVo|oNP|d=0 e Formulas

Tc and Fe represent terms and formulas of L¢ respectively. Formulas are assumed to
be closed under negation.

Fig. 5. Syntax of 7,

[Node(T', e, T2)] = Node([T1], [e]e, [72])
[Leaf] = Leaf
[left(Node(T1,e,T2))] = [T1]
[right(Node(T1, e, T2))] = [12]
[Ty =T2] = [T1] = [T2]
[Ty # T2] = [T1] # [T2]
[a(Leaf)] = [empty],
[o(Node([71], [e], [72])] = [combine([T1], [e], [T2])].
[C1 = C2] = [Ch], = [C2]
[[%’C]] - IISC}]C
[-¢] = —[¢]
[p1 * =] = [#1] * [¢2] where x € {V, A, =, <}

Fig. 6. Semantics of 7,

object BSTSet {
type E = Int
type C = Set[E]
abstract class Tree
case class Leaf() extends Tree
case class Node(left: Tree, value: E, right: Tree) extends Tree

// abstraction function o
def content(t: Tree): C = t match {
case Leaf() = Set.empty
case Node(l,e,r) = content(l) ++ Set(e) ++ content(r)

// adds an element to a set
def add(e: E, t: Tree): Tree = (t match {
case Leaf() = Node(Leaf(), e, Leaf())
case t @ Node(l,v,r) =
if (e < v) Node(add(e, 1), v, r) else if (e == v) t else Node(l, v, add(e, r))
}) ensuring (res = content(res) == content(t) ++ Set(e))

}

Fig. 7. A binary search tree implementation of a set

4.1 Examples of Applications

A typical target application for our decision procedure is the verification of
functional code. Fig. 7 presents an annotated code fragment of an implemen-
tation of a set data structure using a binary search tree.® Note that the ab-
straction function content is the catamorphism o defined by empty = () and
combine(ty, e, t2) = at1) U{e} Ua(ta), and that it is used within the postcondi-
tion of the function add. Such specifications in term of the abstraction function
are natural because they concisely express the algebraic laws one expects to hold
for the data structure.

By applying standard techniques to replace the recursive call in add by the
function contract, we obtain (among others) the following verification condition:

th,tg,tg,bl : Tree, €1,€e9 Int . t; = Node(tg,el,tg) =
Oé(t4) = Oé(tQ) U {62} = a(Node(t4, el,tg)) = Oé(tl) U {62}

This formula combines constraints over tree terms and over terms in the collec-
tion theory (in this case, over sets), as well as a non-trivial connection given by
« (the content function in the code).

Other abstraction functions of interest include the computation of a multiset
preserving multiplicities instead of a set, the computation of a list of the elements
read in, for instance, in-order traversal, the computation of minimal or maximal
elements, etc. In fact, even invariants like sortedness of a tree can be expressed
as a catamorphism, as shown in Fig 8.

3 Set.empty, ++ and Set(e) are Scala notations for (), U and {e} respectively.

10

def sorted(t: Tree): (Option[Int],Option[Int],Boolean) = t match {
case Leaf() = (None, None, true)
case Node(l, v, r) = {
(sorted(l),sorted(r)) match {
case ((_,_,false),_) = (None, None, false)
case (_,(-,- false)) = (None, None, false)
case ((None,None,_),(None,None,.)) = (Some(v), Some(v), true)
case ((Some(minL),Some(maxL),_),(None,None,_))
if (maxL < v) = (Some(minL),Some(v),true)
case ((None,None,_),(Some(minR),Some(maxR),_))
if (minR > v) = (Some(v), Some(maxR), true)
case ((Some(minL),Some(maxL),_), (Some(minR),Some(maxR),-))
if (maxL < v && minR > v) = (Some(minL),Some(maxR),true)
case _ = (None,None,false)

1

Fig. 8. A catamorphism which computes a triple where the first and second elements
are the minimal and maximal values of the tree, respectively, and the third is a boolean
value indicating whether the tree is sorted.

4.2 The Decision Procedure

We give an overview of our decision procedure for conjunctions of literals of 7.
To lift it to formulas of arbitrary boolean structure, one can follow the DPLL(T)
approach [GHNT04].

The general idea of the decision procedure is to first use unification to solve
the constraints on the trees, then to derive and propagate all consequences rel-
evant to the type C of collections that abstracts the trees. In such manner it
reduces a problem over trees and their abstract values in L¢ to a problem in Le.
We assume a decision procedure is available for L. Instances of such procedures
for sets and multisets were presented in sections 2 and 3, for example.

Rewriting into Normal Form. The first steps of the decision procedure
consist in rewriting the problem in a normal form more suitable for the final
reduction. To this end we:

— separate the equations and disequations between tree terms from the literals
of L¢ by introducing fresh variables and new equalities of the form ¢ = «/(t),
where ¢ and ¢ are variables representing a collection and a tree respectively
(purification)

— flatten the tree terms by introducing fresh variables to represent the subtrees

— eliminate the selector functions (left and right in Fig. 5)

We then guess an arrangement over all tree variables, as well as over the vari-
ables denoting elements stored in the nodes of the trees. (Note that this is a
non-deterministic polynomial process.) We add to the formula all the equalities
and disequalities that represent this arrangement. We then apply unification on
the equalities over tree variables and terms. At this point, we either detect un-
satisfiability, or we obtain a solved form for the unified equalities. In this solved

11

form, some tree variables are expressed as being terms built using the Node con-
structor, the Leaf constant and some other tree variables. We call all variables
appearing in such a construction parameter variables. A property of unification
is that parameter variables are never themselves defined as a term constructed
over other variables.

As a final transformation step, we rewrite all terms of the form «(t) where ¢
is a non-parameter tree variable as follows: we replace t by its definition in terms
of parameter tree variables from the solved form, and partially evaluate a over
this term, using the combine and empty functions which define «. After applying
this rewriting everywhere, « is only applied to parameter tree variables, and we
can write our formula in the following normal form:

N(T(t),t) NM(t,c) AN Fg A Fo
where:

— t denotes all parameter tree variables

— T'(t) denotes the terms mapped to the non-parameter variables in the solved
form

— N(T'(t)) is a formula expressing that all parameter variables are distinct,
that none of them is equal to Leaf, and that they are all distinct from the
terms T'(t)

— M(t,c) is a conjunction containing for each parameter variable ¢; the con-
junct ¢; = a(t;) (¢ is introduced if needed)

— Fg is a conjunction of literals of the form e; = e; or e; # e; expressing the
arrangement we guessed over the element variables

— F¢ is a formula of L¢

The formulas F¥ and F¢ are already expressed in the collection theory. We
call D the conjunction N(T'(t),t) A M(t,c). To ensure the completeness of our
decision procedure, we need to find a formula Dy, entirely expressed in L£¢ which
is equisatisfiable with D. We can then reduce the problem to the satisfiability of
Dy A Fg A Feo, which we can solve with a decision procedure for L. Note that
if we choose a formula Dj; which is weaker than D, our decision procedure is
still sound, but the equisatisfiability is required for completeness. We now give
a sufficient criterion for the existence of such an equisatisfiable formula D).

4.3 A Completeness Criterion

In [SDK10], we present two sufficient criteria for obtaining a complete decision
procedure. Since the first one is strictly subsumed by the second, we omit it here.

Definition 1 (Tree Shape). Let SLeaf be a new constant symbol and
SNode(t1,t2) a new constructor symbol. The shape of a tree t, denoted $(t),
is a ground term built from SLeaf and SNode(-, -) as follows:
5(Leaf) = SLeaf
§(Node(T1, €, TQ)) = SNode(§(T1), §(T2))

12

Definition 2 (Sufficient Surjectivity). We call an abstraction function suf-
ficiently surjective if and only if, for each natural number p > 0 there exist,
computable as a function of p

— a finite set of shapes S,
— a closed formula M, in the collection theory such that M,(c) implies
la™ (o) > p

such that, for every term t, My(«(t)) or 3(t) € Sp.

In practice, the formula M, can introduce new variables as long as it is exis-
tentially closed and the decision procedure for the collection theory can handle
positive occurrences of existential quantifiers.

We give in [SDK10] a construction for Dj; for any sufficiently surjective
abstraction. The intuition behind it is that we can proceed by case analysis
on the shapes of the parameter tree variables. Since there are finitely many
shapes in S, we can encode in our formula D), all possible assignments of
these shapes to the tree variables. The situation where the assigned tree is not
of a known shape is handled by adding the condition M, (c(t)), which is then
guaranteed to hold by hypotheses on S, and M, using a strengthened version
of the “independence of disequations lemma” [CD94, Page 178]. We omit the
technical details, but the sufficient surjectivity condition implies that for n trees
such that Mp(t1) A ... A M,(t,) and «a(t1) = ... = a(t,), we can always find
assignments to t1,. . .,t, such that p disequalities between them are satisfied (see
[SDK10, Section 5.3]). By setting p in our formula to the number of disequalities
in N(T'(t),t) we obtain a formula equisatisfiable with D: since Dj; encodes all
possible assignments of trees to the variables, D), is satisfiable if D is. In the
other direction, if D) is satisfiable, then we have an assignment for the elements
of the trees of known shape, and by the sufficient surjectivity criterion we know
that we can find a satisfying assignment for the other ones which will satisfy all
disequalities of D.

We conclude by pointing out that the set abstraction, the multiset abstrac-
tion, the in-order traversal list abstraction and the sortedness abstraction are all
infinitely surjective [SDK10].

5 Combining Theories with Shared Set Operations

We have seen several expressive decidable logics that are useful for specifying
correctness properties of software and thus enable automated software verifica-
tion. The correctness properties that are of practical interest often cannot be
expressed in any single one of these logics, but only in their combination. This
raises the question whether there exist decidable combinations of these logics
and whether the decision procedure for such a combination can reuse the de-
cision procedures for the component logics, e.g., in the style of the approach
pioneered by Nelson and Oppen [NOT79]. The Nelson-Oppen approach is one
of the pillars of modern constraint solvers based on satisfiability modulo theo-
ries (SMT) [dMBO08,BT07, GBTO07]. It enables the combination of quantifier-free

13

stably infinite theories with disjoint signatures. However, the theories that we
considered in the previous sections do not fit into this framework because they
all involve sets of objects and are therefore not disjoint.

To support a broader class of theories than the traditional Nelson-Oppen
combination, we consider decision procedures for the combination of possibly
quantified formulas in non-disjoint theories. In [WPKO09] we explored the case
of the combination of non-disjoint theories sharing operations on sets of un-
interpreted elements, a case that was not considered before. The theories that
we consider have the property that the tuples of cardinalities of Venn regions
over shared set variables in the models of a formula are a semilinear set (i.e.,
expressible in Presburger arithmetic).

Reduction-based decision procedure. The idea of deciding a combination
of logics is to check the satisfiability of a conjunction of formulas A A B by using
one decision procedure, D4, for A, and another decision procedure, Dg, for B.
To obtain a complete decision procedure, D4 and Dp must communicate to
ensure that a model found by D4 and a model found by Dp can be merged into
a model for A A B.

We follow a reduction approach to decision procedures. The first decision
procedure, D 4, computes a projection, Sa, of A onto shared set variables, which
are free in both A and B. This projection is semantically equivalent to existen-
tially quantifying over predicates and variables that are free in A but not in B; it
is the strongest consequence of A expressible only using the shared set variables.
Dp similarly computes the projection Sp of B. This reduces the satisfiability of
A A B to satisfiability of the formula S4 A Sp, which contains only set variables.

A logic for shared constraints on sets. A key parameter of our combination
approach is the logic of sets used to express the projections Sy and Sp. A suit-
able logic depends on the logics of formulas A and B. We consider as the logics
for A, B the logics we have discussed in the previous sections and other expres-
sive logics we found useful based on our experience with the Jahob verification
system [ZKRO08, Wie09]. Remarkably, the smallest logic needed to express the
projection formulas in these logics has the expressive power of BAPA, described
in Section 2. We showed that the decision procedures for these logics can be nat-
urally extended to a reduction to BAPA that captures precisely the constraints
on set variables. The existence of these reductions, along with quantifier elimina-
tion [KNRO6] and NP membership of the quantifier-free fragment [KR07], make
BAPA an appealing reduction target for expressive logics.

We proved that 1) (quantified) Boolean Algebra with Presburger Arith-
metic (Section 2), 2) quantifier-free multisets with cardinality constraints (Sec-
tion 3), 3) weak monadic second-order logic of trees [TW68], 4) two-variable logic
with counting C? [PHO05], 5) the Bernays-Schonfinkel-Ramsey-class of first-order
logic [Ram30], and 6) certain algebraic data types with abstraction functions
(Section 4), all meet the conditions of our combination technique. Consequently,
we obtain the decidability of quantifier-free combination of formulas in these
logics. In the following we give an overview of our combination technique.

14

tree [left ,right] A left p = null A p € nodes A

nodes={x. (root,x) € {(xy). left x = y|right x =y} %} A

content={x. 3 n. n # null A n € nodes A data n = x} A

e ¢ content A nodes C alloc A

tmp ¢ alloc A left tmp = null A right tmp = null A

data tmp = null A (V y. data y # tmp) A

nodesl={x. (root,x) € {(x,y). (left (p:=tmp)) x =y) | right x =y} A

contentl={x. 3 n. n # null A n € nodesl A (data(tmp:=e)) n = x} —
card contentl = card content + 1

Fig. 9. Verification condition

SHARED SETS: nodes, nodesl, content, contentl, {e}, {tmp}

WS2S FRAGMENT: tree[left,right] A left p = null A p € nodes A left tmp = null A
right tmp = null A nodes={x. (root,x) € {(x,y). left x = y|right x =y} "} A
nodesl={x. (root,x) € {(xy). (left (p:=tmp)) x =vy) | right x =y}

CONSEQUENCE: nodesl=nodes U {tmp}

C2 FRAGMENT: data tmp = null A (V y. data y # tmp) A tmp ¢ alloc A nodes C alloc A
content={x. 3 n. n # null A n € nodes A data n = x} A
contentl={x. 3 n. n # null A n € nodesl A (data(tmp:=e)) n = x}

CONSEQUENCE: nodesl # nodes U {tmp} V contentl = content U {e}

BAPA FRAGMENT: e ¢ content A card contentl # card content + 1
CONSEQUENCE: e ¢ content A card contentl # card content + 1

Fig. 10. Negation of Fig. 9, and consequences on shared sets

5.1 Example: Proving a Verification Condition

Our example shows a verification condition formula generated when verifying
an unbounded linked data structure. The formula belongs to our new decidable
class obtained by combining several decidable logics.

Decidability of the verification condition. Fig. 9 shows the verification
condition formula for a method (insertAt) that inserts a node into a linked list.
The validity of this formula implies that invoking a method in a state satisfying
the precondition results in a state that satisfies the postcondition of insertAt.
The formula contains the transitive closure operator, quantifiers, set compre-
hensions, and the cardinality operator. Nevertheless, there is a (syntactically
defined) decidable class of formulas that contains the verification condition in
Fig. 9. This decidable class is a set-sharing combination of three decidable logics,
and can be decided using the method we present in this paper.

To understand the method for proving the formula in Fig. 9, consider the
problem of showing the unsatisfiability of the negation of the formula. Fig. 10
shows the conjuncts of the negation, grouped according to three decidable log-
ics to which the conjuncts belong: 1) weak monadic second-order logic of two
successors (WS2S) 2) two-variable logic with counting C? 3) Boolean Algebra
with Presburger Arithmetic (BAPA). For the formula in each of the fragments,
Fig. 10 also shows a consequence formula that contains only shared sets and

15

statements about their cardinalities. (We represent elements as singleton sets,
so we admit formulas sharing elements as well.)

A decision procedure. Note that the conjunction of the consequences of
three formula fragments is an unsatisfiable formula. This shows that the original
formula is unsatisfiable as well (the verification condition is valid). In general,
our decidability result shows that the decision procedures of logics such as WS2S
and C? can be naturally extended to compute “precise” consequences of formulas
involving given shared sets. When a precise consequence is satisfiable in some
assignment to set variables, it means that the original formula is also satisfiable
with the same values of set variables. The consequences are all expressed in
BAPA, which is decidable. In summary, the following is a decision procedure for
satisfiability of combined formulas:

1. split the formula into fragments (belonging to, e.g. WS2S, C?, or BAPA);
2. for each fragment compute its strongest BAPA consequence;
3. check the satisfiability of the conjunction of consequences.

5.2 Combination by Reduction to BAPA

The Satisfiability Problem. We are interested in an algorithm to determine
whether there exists a structure o« € M in which the following formula is true

B(Fy,...,F,) (1)
where

1. Fy,...,F, are formulas with FV(F;) C {A41,..., Ap, 21, ..., 24}

2. Vs = {A,..., Ay} are variables of sort set, whereas z1,...,z, are the re-
maining variables.*

3. Each formula F; belongs to a given class of formulas, F;. For each F; we
assume that there is a corresponding theory 7; C F.

4. B(Fy,...,F,) denotes a formula built from Fi,...,F, using the proposi-
tional operations A, V. °

5. As the set of structures M we consider all structures « of interest (with finite
[obj], interpreting BAPA symbols in the standard way) for which a(U}_;7;).

6. (Set Sharing Condition) If i # j, then FV({F;} UT;) NFV({F;} UT;) C Vs.

Note that, as a special case, if we embed a class of first-order formulas into our
framework, we obtain a framework that supports sharing unary predicates, but
not e.g. binary predicates.

Combination Theorem. The formula B in (1) is satisfiable iff one of the dis-
juncts in its disjunctive normal form is satisfiable. Consider any of the disjuncts

4 For notational simplicity we do not consider variables of sort obj because they can
be represented as singleton sets, of sort set.

® The absence of negation is usually not a loss of generality because most F; are closed
under negation so B is the negation-normal form of a quantifier-free combination.

16

FiA. . .AFy, for m < n. By definition of the satisfiability problem (1), FyA. .. AFy,
is satisfiable iff there exists a structure « such that for each 1 < i < m, for each
G € {F;} UT;, we have a(G) = true. Let each variable z; have some sort s;
(such as obj?> — bool). Then the satisfiability of F} A ... A F,, is equivalent to
the following condition:

3 finite set w. Jai,...,ap Cu. Jvg € [s1]™.... Jug € [s4]*. AiL; @)
{obj = u, A1 = a1,..., Ap — ap,x1 — v1,..., 24 — v {Fi}UT)

By the set sharing condition, each of the variables 1, ..., z, appears only in one
conjunct and can be moved inwards from the top level to this conjunct. Using
x;; to denote the j-th variable in the i-th conjunct we obtain the condition

3 finite set w. Ja1,...,ap Cu. A2y Ci(u,aq,...,ap) (3)
where C;(u, a1, ...,ap) is
E"U“. N E"ini.
{Ob.J - U,Al = ai, .. -7Ap = a’paz’il = Vily e ooy Ty Uzwl}({ﬂ} U/]—';)

The idea of our combination method is to simplify each condition
Ci(u,aq,...,ap) into the truth value of a BAPA formula. If this is possible,
we say that there exists a BAPA reduction.

Definition 3 (BAPA Reduction). If F; is a set of formulas and T; C F; a
theory, we call a function p : F; — Faapa a BAPA reduction for (F;,T;) iff for

every formula F; € F; and for all finite w and ai,...,a, C u, the condition

H’Uil cee H’ini.
{obj = u, A1 = a1,..., Ap — ap, i1 — Vit .o Tiw, — Viw, J{EFi}UT)

is equivalent to the condition {obj — u, A1 — ai,..., Ay ap}(p(F})).

A computable BAPA reduction is a BAPA reduction which is computable as a
function on formula syntax trees.

Theorem 4. Suppose that for every 1 < i < n for (F;,T;) there exists a com-
putable BAPA reduction p;. Then the satisfiability problem (1) is decidable.

Specifically, to check satisfiability of the formula B(Fi,...,F,), compute
B(p1(F1),. .., pn(Fy)) and then check its satisfiability using a BAPA decision
procedure [KNR06, KRO7].

5.3 BAPA Reductions

The proof that a particular decidable logic exhibits a BAPA reduction follows a
generic recipe. Given such a logic £ = (F,7) and a formula F' € F,let V1,...,V,
be the Venn regions over the free set variables in F'. To prove that £ is BAPA-
reducible, one needs to characterize the cardinality vectors of the V; in all the

17

models of F: V(F) ={ (| a(V1) |,...,] a(Vy) |) | «(TU{F}) =1} and show that
this set is semilinear. Moreover, a finite representation of the set V(F') in terms
of base and set vectors must be effectively computable from F, by extending
the decision procedure for £ appropriately. We have shown [WPKO09, Theorems
5, 11, 12, 13], [SDK10] that the decision procedures for a number of expressive
decidable logics can indeed be extended in this way to BAPA reductions.

Theorem 5. There exist BAPA reductions for the following logics (see Figure 1)

. weak monadic second-order logic of trees [TW68]
. two-variable logic with counting C* [PH05]

. quantifier-free multisets with cardinality constraints (Figure 4)

1
2
3. the Bernays-Schionfinkel-Ramsey class of first-order logic [Ram30]
4
5

. logic of algebraic data types with the content function (in Figure 7)

Thus, the set-sharing combination of all these logics is decidable.

References

[BGGIT]
[BMO7]

[BSTO7]

[BT07]
[CDY4]
[dMBOg]
[dMBO09]
[ES06]

[GBTO7]

Egon Borger, Erich Gridel, and Yuri Gurevich. The Classical Decision
Problem. Springer-Verlag, 1997.

Aaron R. Bradley and Zohar Manna. The Calculus of Computation.
Springer, 2007.

Clark Barrett, Igor Shikanian, and Cesare Tinelli. An abstract decision
procedure for satisfiability in the theory of recursive data types. Electronic
Notes in Theoretical Computer Science, 174(8):23-37, 2007.

Clark Barrett and Cesare Tinelli. CVC3. In CAV, volume 4590 of LNCS,
2007.

Hubert Comon and Catherine Delor. Equational formulae with membership
constraints. Information and Computation, 112(2):167-216, 1994.
Leonardo de Moura and Nikolaj Bjgrner. Z3: An efficient SMT solver. In
TACAS, pages 337-340, 2008.

Leonardo de Moura and Nikolaj Bjgrner. Generalized, efficient array deci-
sion procedures. In FMCAD, 2009.

Friedrich Eisenbrand and Gennady Shmonin. Carathéodory bounds for in-
teger cones. Operations Research Letters, 34(5):564-568, September 2006.
Yeting Ge, Clark Barrett, and Cesare Tinelli. Solving quantified verification
conditions using satisfiability modulo theories. In CADE, 2007.

[GHN"04] Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras,

[GS66]
[KNROG6]
[KRO7]

[LS04]

and Cesare Tinelli. DPLL(T): Fast decision procedures. In CAV, pages
175-188, 2004.

S. Ginsburg and E. Spanier. Semigroups, Presburger formulas and lan-
guages. Pacific Journal of Mathematics, 16(2):285-296, 1966.

Viktor Kuncak, Hai Huu Nguyen, and Martin Rinard. Deciding Boolean
Algebra with Presburger Arithmetic. J. of Automated Reasoning, 2006.
Viktor Kuncak and Martin Rinard. Towards efficient satisfiability checking
for Boolean Algebra with Presburger Arithmetic. In CADE-21, 2007.
Shuvendu K. Lahiri and Sanjit A. Seshia. The UCLID decision procedure.
In CAV°04, 2004.

18

[NO79]
[Opp78]
[0SV08]
[Pap81]

[PHO5]

[PK08a]
[PKO8b)
[PKOSc]
[Pot91]

[Pre29]

[PSTO00]

[Ram30)]

[SBDLO1]

[SDK10]

[Sko19]

[TW68]

[Wie09)]
[WPKO09)]

[ZKRO8|

Greg Nelson and Derek C. Oppen. Simplification by cooperating decision
procedures. ACM TOPLAS, 1(2):245-257, 1979.

Derek C. Oppen. Reasoning about recursively defined data structures. In
POPL, pages 151-157, 1978.

Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala: a
comprehensive step-by-step guide. Artima Press, 2008.

Christos H. Papadimitriou. On the complexity of integer programming. J.
ACM, 28(4):765-768, 1981.

Tan Pratt-Hartmann. Complexity of the two-variable fragment with count-
ing quantifiers. Journal of Logic, Language and Information, 14(3):369-395,
2005.

Ruzica Piskac and Viktor Kuncak. Decision procedures for multisets with
cardinality constraints. In VMCAI 2008.

Ruzica Piskac and Viktor Kuncak. Fractional collections with cardinality
bounds. In Computer Science Logic (CSL), 2008.

Ruzica Piskac and Viktor Kuncak. Linear arithmetic with stars. In CAV,
2008.

Loic Pottier. Minimal solutions of linear diophantine systems: Bounds and
algorithms. In RTA, volume 488 of LNCS, 1991.

Mojzesz Presburger. Uber die Vollstindigkeit eines gewissen Systems der
Aritmethik ganzer Zahlen, in welchem die Addition als einzige Operation
hervortritt. In Comptes Rendus du premier Congrés des Mathématiciens
des Pays slaves, Warsawa, pages 92-101, 1929.

Leszek Pacholski, Wieslaw Szwast, and Lidia Tendera. Complexity results
for first-order two-variable logic with counting. SIAM J. on Computing,
29(4):1083-1117, 2000.

F. P. Ramsey. On a problem of formal logic. Proc. London Math. Soc.,
$2-30:264-286, 1930. doi:10.1112/plms/s2-30.1.264.

Aaron Stump, Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. A
decision procedure for an extensional theory of arrays. In LICS, pages 29-37,
2001.

Philippe Suter, Mirco Dotta, and Viktor Kuncak. Decision procedures for
algebraic data types with abstractions. In POPL, 2010.

Thoralf Skolem. Untersuchungen iiber die Axiome des Klassenkalkiils and
iiber “Produktations- und Summationsprobleme”, welche gewisse Klassen
von Aussagen betreffen. Skrifter utgit av Vidnskapsselskapet i Kristiania,
I. klasse, no. 3, Oslo, 1919.

J. W. Thatcher and J. B. Wright. Generalized finite automata theory with
an application to a decision problem of second-order logic. Mathematical
Systems Theory, 2(1):57-81, August 1968.

Thomas Wies. Symbolic Shape Analysis. PhD thesis, University of Freiburg,
2009.

Thomas Wies, Ruzica Piskac, and Viktor Kuncak. Combining theories with
shared set operations. In FroCoS: Frontiers in Combining Systems, 2009.
Karen Zee, Viktor Kuncak, and Martin Rinard. Full functional verification
of linked data structures. In PLDI, 2008.

19

